R version 3.3.1 (2016-06-21) -- "Bug in Your Hair" Copyright (C) 2016 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(465,455,444,424,630,620,465,362,372,372,382,403,434,424,362,372,661,723,558,465,486,496,548,599,610,506,517,382,765,878,620,537,589,651,744,858,858,785,754,568,878,1023,899,765,785,858,961,1085,1002,951,951,785,1023,1178,1054,920,961,1126,1199,1302,1219,1085,1054,806,971,1147,951,837,951,1064,1126,1292,1209,1002,1023,827,992,1137,971,858,961,1085,1064,1312,1271,1106,1116,899,1033,1240,1085,992,1147,1240,1168,1498,1416,1230,1178,940,1075,1199,1044,1044,1219,1312,1261,1622,1529,1354,1281,1023,1116,1281,1157,1126,1271,1395,1261,1581) > par1 = '12' > par1 <- '12' > #'GNU S' R Code compiled by R2WASP v. 1.2.291 () > #Author: root > #To cite this work: Wessa P. (2012), Standard Deviation-Mean Plot (v1.0.6) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_smp.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > # > par1 <- as.numeric(par1) > (n <- length(x)) [1] 120 > (np <- floor(n / par1)) [1] 10 > arr <- array(NA,dim=c(par1,np)) > j <- 0 > k <- 1 > for (i in 1:(np*par1)) + { + j = j + 1 + arr[j,k] <- x[i] + if (j == par1) { + j = 0 + k=k+1 + } + } > arr [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 465 434 610 858 1002 1219 1209 1271 1416 1529 [2,] 455 424 506 785 951 1085 1002 1106 1230 1354 [3,] 444 362 517 754 951 1054 1023 1116 1178 1281 [4,] 424 372 382 568 785 806 827 899 940 1023 [5,] 630 661 765 878 1023 971 992 1033 1075 1116 [6,] 620 723 878 1023 1178 1147 1137 1240 1199 1281 [7,] 465 558 620 899 1054 951 971 1085 1044 1157 [8,] 362 465 537 765 920 837 858 992 1044 1126 [9,] 372 486 589 785 961 951 961 1147 1219 1271 [10,] 372 496 651 858 1126 1064 1085 1240 1312 1395 [11,] 382 548 744 961 1199 1126 1064 1168 1261 1261 [12,] 403 599 858 1085 1302 1292 1312 1498 1622 1581 > arr.mean <- array(NA,dim=np) > arr.sd <- array(NA,dim=np) > arr.range <- array(NA,dim=np) > for (j in 1:np) + { + arr.mean[j] <- mean(arr[,j],na.rm=TRUE) + arr.sd[j] <- sd(arr[,j],na.rm=TRUE) + arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE) + } > arr.mean [1] 449.5000 510.6667 638.0833 851.5833 1037.6667 1041.9167 1036.7500 [8] 1149.5833 1211.6667 1281.2500 > arr.sd [1] 90.06513 111.49834 149.19326 136.57263 142.61731 145.76161 137.49719 [8] 154.10944 184.14783 166.11011 > arr.range [1] 268 361 496 517 517 486 485 599 682 558 > (lm1 <- lm(arr.sd~arr.mean)) Call: lm(formula = arr.sd ~ arr.mean) Coefficients: (Intercept) arr.mean 72.36589 0.07535 > (lnlm1 <- lm(log(arr.sd)~log(arr.mean))) Call: lm(formula = log(arr.sd) ~ log(arr.mean)) Coefficients: (Intercept) log(arr.mean) 1.7666 0.4684 > (lm2 <- lm(arr.range~arr.mean)) Call: lm(formula = arr.range ~ arr.mean) Coefficients: (Intercept) arr.mean 189.8029 0.3335 > postscript(file="/var/wessaorg/rcomp/tmp/16agu1471032206.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation') > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/2loiq1471032206.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range') > dev.off() null device 1 > > #Note: the /var/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/wessaorg/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Section',header=TRUE) > a<-table.element(a,'Mean',header=TRUE) > a<-table.element(a,'Standard Deviation',header=TRUE) > a<-table.element(a,'Range',header=TRUE) > a<-table.row.end(a) > for (j in 1:np) { + a<-table.row.start(a) + a<-table.element(a,j,header=TRUE) + a<-table.element(a,arr.mean[j]) + a<-table.element(a,arr.sd[j] ) + a<-table.element(a,arr.range[j] ) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/3xigp1471032206.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'alpha',header=TRUE) > a<-table.element(a,lm1$coefficients[[1]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'beta',header=TRUE) > a<-table.element(a,lm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'T-STAT',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'p-value',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,4]) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/4x42c1471032206.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'alpha',header=TRUE) > a<-table.element(a,lnlm1$coefficients[[1]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'beta',header=TRUE) > a<-table.element(a,lnlm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'T-STAT',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'p-value',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,4]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Lambda',header=TRUE) > a<-table.element(a,1-lnlm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/5ldsc1471032206.tab") > > try(system("convert tmp/16agu1471032206.ps tmp/16agu1471032206.png",intern=TRUE)) character(0) > try(system("convert tmp/2loiq1471032206.ps tmp/2loiq1471032206.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.899 0.076 0.992