R version 3.2.4 (2016-03-10) -- "Very Secure Dishes" Copyright (C) 2016 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(93166,93517,94547,95299,95121,95583,96138,96647,97311,97644,100299,101130,102239,103667,104494,105944,106956,109156,109528,109813,110939,112182,113137,114506,115197,116142,117478,118678,119808,121210,122372,123266,124020,124922,125863,126898,127522,128062,129630,130919,131175,133387,134512,135423,136395,137384,138344,139342,139885,140560,141457,144577,145505,146767,147602,148490,149516,150688,151012,151614,151779,152062,152432,153634,153989,155114,155448,155514,156552,157472,158928,154948,155178,155396,156479,157562,158255,159138,160067,161112,162009,162941,163463,165473,165805,166524,167426,168593,169452,170386,171281,171950,172842,173644,174380,175639,176169,176642,177225,178180,178771,180337,180740,181299,181768,182304,182670,183241,183106,183039,183447,184915,185144,185787,186243,186518,187156,186083,186350,187010,187057,187019,187487,188280,188756,189574,189996,190251,190925,191499,192172,191639) > par1 = '12' > par1 <- '12' > #'GNU S' R Code compiled by R2WASP v. 1.2.291 () > #Author: root > #To cite this work: Wessa P. (2012), Standard Deviation-Mean Plot (v1.0.6) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_smp.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > # > par1 <- as.numeric(par1) > (n <- length(x)) [1] 132 > (np <- floor(n / par1)) [1] 11 > arr <- array(NA,dim=c(par1,np)) > j <- 0 > k <- 1 > for (i in 1:(np*par1)) + { + j = j + 1 + arr[j,k] <- x[i] + if (j == par1) { + j = 0 + k=k+1 + } + } > arr [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 93166 102239 115197 127522 139885 151779 155178 165805 176169 183106 [2,] 93517 103667 116142 128062 140560 152062 155396 166524 176642 183039 [3,] 94547 104494 117478 129630 141457 152432 156479 167426 177225 183447 [4,] 95299 105944 118678 130919 144577 153634 157562 168593 178180 184915 [5,] 95121 106956 119808 131175 145505 153989 158255 169452 178771 185144 [6,] 95583 109156 121210 133387 146767 155114 159138 170386 180337 185787 [7,] 96138 109528 122372 134512 147602 155448 160067 171281 180740 186243 [8,] 96647 109813 123266 135423 148490 155514 161112 171950 181299 186518 [9,] 97311 110939 124020 136395 149516 156552 162009 172842 181768 187156 [10,] 97644 112182 124922 137384 150688 157472 162941 173644 182304 186083 [11,] 100299 113137 125863 138344 151012 158928 163463 174380 182670 186350 [12,] 101130 114506 126898 139342 151614 154948 165473 175639 183241 187010 [,11] [1,] 187057 [2,] 187019 [3,] 187487 [4,] 188280 [5,] 188756 [6,] 189574 [7,] 189996 [8,] 190251 [9,] 190925 [10,] 191499 [11,] 192172 [12,] 191639 > arr.mean <- array(NA,dim=np) > arr.sd <- array(NA,dim=np) > arr.range <- array(NA,dim=np) > for (j in 1:np) + { + arr.mean[j] <- mean(arr[,j],na.rm=TRUE) + arr.sd[j] <- sd(arr[,j],na.rm=TRUE) + arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE) + } > arr.mean [1] 96366.83 108546.75 121321.17 133507.92 146472.75 154822.67 159756.08 [8] 170660.17 179945.50 185399.83 189554.58 > arr.sd [1] 2445.564 3905.563 3875.953 4024.316 4129.112 2185.516 3326.705 3180.724 [9] 2465.329 1480.378 1827.541 > arr.range [1] 7964 12267 11701 11820 11729 7149 10295 9834 7072 4117 5153 > (lm1 <- lm(arr.sd~arr.mean)) Call: lm(formula = arr.sd ~ arr.mean) Coefficients: (Intercept) arr.mean 5496.06661 -0.01677 > (lnlm1 <- lm(log(arr.sd)~log(arr.mean))) Call: lm(formula = log(arr.sd) ~ log(arr.mean)) Coefficients: (Intercept) log(arr.mean) 17.4076 -0.7952 > (lm2 <- lm(arr.range~arr.mean)) Call: lm(formula = arr.range ~ arr.mean) Coefficients: (Intercept) arr.mean 1.765e+04 -5.775e-02 > postscript(file="/var/wessaorg/rcomp/tmp/145ec1458293284.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation') > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/2bqiq1458293284.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range') > dev.off() null device 1 > > #Note: the /var/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/wessaorg/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Section',header=TRUE) > a<-table.element(a,'Mean',header=TRUE) > a<-table.element(a,'Standard Deviation',header=TRUE) > a<-table.element(a,'Range',header=TRUE) > a<-table.row.end(a) > for (j in 1:np) { + a<-table.row.start(a) + a<-table.element(a,j,header=TRUE) + a<-table.element(a,arr.mean[j]) + a<-table.element(a,arr.sd[j] ) + a<-table.element(a,arr.range[j] ) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/3azxl1458293284.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'alpha',header=TRUE) > a<-table.element(a,lm1$coefficients[[1]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'beta',header=TRUE) > a<-table.element(a,lm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'T-STAT',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'p-value',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,4]) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/4wokp1458293284.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'alpha',header=TRUE) > a<-table.element(a,lnlm1$coefficients[[1]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'beta',header=TRUE) > a<-table.element(a,lnlm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'T-STAT',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'p-value',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,4]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Lambda',header=TRUE) > a<-table.element(a,1-lnlm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/5l32w1458293284.tab") > > try(system("convert tmp/145ec1458293284.ps tmp/145ec1458293284.png",intern=TRUE)) character(0) > try(system("convert tmp/2bqiq1458293284.ps tmp/2bqiq1458293284.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.832 0.166 1.003