R version 3.3.0 (2016-05-03) -- "Supposedly Educational" Copyright (C) 2016 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(45564.6,47295.5,46465.5,50679.5,47452.8,49415.4,48165.3,51814,49030.7,50820.8,49729.5,53501.6,50524.9,52095,51290.3,55064,52505.2,54318.3,53039.6,57607.6,54236.4,56586.4,55614,60085.9,56963.5,59152.8,57804.6,62541.5,59449.3,61704.7,60399,65724.7,62679.4,65526.5,64274.8,68769.1,63542.8,66198,64544.9,71041.8,66087.2,69005.8,66897,73702,68485.3,71457,69774.6,76479.7,71204.7,73783.9,71651,78541.6,72714.4,75258,73168.1,79701.6,73944.5,76401.2,73948.1,80583.3) > par1 = '4' > par1 <- '4' > #'GNU S' R Code compiled by R2WASP v. 1.2.291 () > #Author: root > #To cite this work: Wessa P. (2012), Standard Deviation-Mean Plot (v1.0.6) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_smp.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > # > par1 <- as.numeric(par1) > (n <- length(x)) [1] 60 > (np <- floor(n / par1)) [1] 15 > arr <- array(NA,dim=c(par1,np)) > j <- 0 > k <- 1 > for (i in 1:(np*par1)) + { + j = j + 1 + arr[j,k] <- x[i] + if (j == par1) { + j = 0 + k=k+1 + } + } > arr [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [1,] 45564.6 47452.8 49030.7 50524.9 52505.2 54236.4 56963.5 59449.3 62679.4 [2,] 47295.5 49415.4 50820.8 52095.0 54318.3 56586.4 59152.8 61704.7 65526.5 [3,] 46465.5 48165.3 49729.5 51290.3 53039.6 55614.0 57804.6 60399.0 64274.8 [4,] 50679.5 51814.0 53501.6 55064.0 57607.6 60085.9 62541.5 65724.7 68769.1 [,10] [,11] [,12] [,13] [,14] [,15] [1,] 63542.8 66087.2 68485.3 71204.7 72714.4 73944.5 [2,] 66198.0 69005.8 71457.0 73783.9 75258.0 76401.2 [3,] 64544.9 66897.0 69774.6 71651.0 73168.1 73948.1 [4,] 71041.8 73702.0 76479.7 78541.6 79701.6 80583.3 > arr.mean <- array(NA,dim=np) > arr.sd <- array(NA,dim=np) > arr.range <- array(NA,dim=np) > for (j in 1:np) + { + arr.mean[j] <- mean(arr[,j],na.rm=TRUE) + arr.sd[j] <- sd(arr[,j],na.rm=TRUE) + arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE) + } > arr.mean [1] 47501.28 49211.88 50770.65 52243.55 54367.68 56630.68 59115.60 61819.43 [9] 65312.45 66331.88 68923.00 71549.15 73795.30 75210.52 76219.27 > arr.sd [1] 2233.607 1915.041 1964.011 1986.576 2289.989 2497.113 2455.499 2762.815 [9] 2582.242 3325.334 3415.266 3504.997 3358.409 3192.395 3131.062 > arr.range [1] 5114.9 4361.2 4470.9 4539.1 5102.4 5849.5 5578.0 6275.4 6089.7 7499.0 [11] 7614.8 7994.4 7336.9 6987.2 6638.8 > (lm1 <- lm(arr.sd~arr.mean)) Call: lm(formula = arr.sd ~ arr.mean) Coefficients: (Intercept) arr.mean -548.89850 0.05258 > (lnlm1 <- lm(log(arr.sd)~log(arr.mean))) Call: lm(formula = log(arr.sd) ~ log(arr.mean)) Coefficients: (Intercept) log(arr.mean) -5.610 1.224 > (lm2 <- lm(arr.range~arr.mean)) Call: lm(formula = arr.range ~ arr.mean) Coefficients: (Intercept) arr.mean -616.1313 0.1084 > postscript(file="/var/wessaorg/rcomp/tmp/1c8sm1463824964.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation') > dev.off() null device 1 > postscript(file="/var/wessaorg/rcomp/tmp/20xr81463824964.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range') > dev.off() null device 1 > > #Note: the /var/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/wessaorg/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Section',header=TRUE) > a<-table.element(a,'Mean',header=TRUE) > a<-table.element(a,'Standard Deviation',header=TRUE) > a<-table.element(a,'Range',header=TRUE) > a<-table.row.end(a) > for (j in 1:np) { + a<-table.row.start(a) + a<-table.element(a,j,header=TRUE) + a<-table.element(a,arr.mean[j]) + a<-table.element(a,arr.sd[j] ) + a<-table.element(a,arr.range[j] ) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/3dhoy1463824964.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'alpha',header=TRUE) > a<-table.element(a,lm1$coefficients[[1]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'beta',header=TRUE) > a<-table.element(a,lm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'T-STAT',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'p-value',header=TRUE) > a<-table.element(a,summary(lm1)$coefficients[2,4]) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/4bd1y1463824964.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'alpha',header=TRUE) > a<-table.element(a,lnlm1$coefficients[[1]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'beta',header=TRUE) > a<-table.element(a,lnlm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'S.D.',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,2]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'T-STAT',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,3]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'p-value',header=TRUE) > a<-table.element(a,summary(lnlm1)$coefficients[2,4]) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'Lambda',header=TRUE) > a<-table.element(a,1-lnlm1$coefficients[[2]]) > a<-table.row.end(a) > a<-table.end(a) > table.save(a,file="/var/wessaorg/rcomp/tmp/5mi4c1463824964.tab") > > try(system("convert tmp/1c8sm1463824964.ps tmp/1c8sm1463824964.png",intern=TRUE)) character(0) > try(system("convert tmp/20xr81463824964.ps tmp/20xr81463824964.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.882 0.165 1.050