Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_smp.wasp
Title produced by softwareStandard Deviation-Mean Plot
Date of computationFri, 10 Dec 2010 14:31:08 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Dec/10/t1291991514ay8jfac7yfp343f.htm/, Retrieved Thu, 31 Oct 2024 23:16:30 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=107724, Retrieved Thu, 31 Oct 2024 23:16:30 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsKDGP2W83
Estimated Impact178
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Standard Deviation-Mean Plot] [Opgave 8; Opdrach...] [2010-12-10 14:31:08] [516d1a4ad1f0b8513272cbee80fe4619] [Current]
Feedback Forum

Post a new message
Dataseries X:
13,81
13,9
13,91
13,94
13,96
14,01
14,01
14,06
14,09
14,13
14,12
14,13
14,14
14,16
14,21
14,26
14,29
14,32
14,33
14,39
14,48
14,44
14,46
14,48
14,53
14,58
14,62
14,62
14,61
14,65
14,68
14,7
14,78
14,84
14,89
14,89
15,13
15,25
15,33
15,36
15,4
15,4
15,41
15,47
15,54
15,55
15,59
15,65
15,75
15,86
15,89
15,94
15,93
15,95
15,99
15,99
16,06
16,08
16,07
16,11
16,15
16,18
16,3
16,42
16,49
16,5
16,58
16,64
16,66
16,81
16,91
16,92
16,95
17,11
17,16
17,16
17,27
17,34
17,39
17,43
17,45
17,5
17,56
17,65




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=107724&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=107724&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=107724&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
114.00583333333330.1040505413321580.32
214.330.1219537915471560.34
314.69916666666670.1225826869974520.360000000000001
415.42333333333330.1480376692438500.52
515.96833333333330.1046060430492630.359999999999999
616.54666666666670.2589255187161440.770000000000003
717.33083333333330.2059328369477130.700

\begin{tabular}{lllllllll}
\hline
Standard Deviation-Mean Plot \tabularnewline
Section & Mean & Standard Deviation & Range \tabularnewline
1 & 14.0058333333333 & 0.104050541332158 & 0.32 \tabularnewline
2 & 14.33 & 0.121953791547156 & 0.34 \tabularnewline
3 & 14.6991666666667 & 0.122582686997452 & 0.360000000000001 \tabularnewline
4 & 15.4233333333333 & 0.148037669243850 & 0.52 \tabularnewline
5 & 15.9683333333333 & 0.104606043049263 & 0.359999999999999 \tabularnewline
6 & 16.5466666666667 & 0.258925518716144 & 0.770000000000003 \tabularnewline
7 & 17.3308333333333 & 0.205932836947713 & 0.700 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=107724&T=1

[TABLE]
[ROW][C]Standard Deviation-Mean Plot[/C][/ROW]
[ROW][C]Section[/C][C]Mean[/C][C]Standard Deviation[/C][C]Range[/C][/ROW]
[ROW][C]1[/C][C]14.0058333333333[/C][C]0.104050541332158[/C][C]0.32[/C][/ROW]
[ROW][C]2[/C][C]14.33[/C][C]0.121953791547156[/C][C]0.34[/C][/ROW]
[ROW][C]3[/C][C]14.6991666666667[/C][C]0.122582686997452[/C][C]0.360000000000001[/C][/ROW]
[ROW][C]4[/C][C]15.4233333333333[/C][C]0.148037669243850[/C][C]0.52[/C][/ROW]
[ROW][C]5[/C][C]15.9683333333333[/C][C]0.104606043049263[/C][C]0.359999999999999[/C][/ROW]
[ROW][C]6[/C][C]16.5466666666667[/C][C]0.258925518716144[/C][C]0.770000000000003[/C][/ROW]
[ROW][C]7[/C][C]17.3308333333333[/C][C]0.205932836947713[/C][C]0.700[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=107724&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=107724&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
114.00583333333330.1040505413321580.32
214.330.1219537915471560.34
314.69916666666670.1225826869974520.360000000000001
415.42333333333330.1480376692438500.52
515.96833333333330.1046060430492630.359999999999999
616.54666666666670.2589255187161440.770000000000003
717.33083333333330.2059328369477130.700







Regression: S.E.(k) = alpha + beta * Mean(k)
alpha-0.401953606871987
beta0.0358228538693123
S.D.0.0143988939391447
T-STAT2.48788927960116
p-value0.0553038625176709

\begin{tabular}{lllllllll}
\hline
Regression: S.E.(k) = alpha + beta * Mean(k) \tabularnewline
alpha & -0.401953606871987 \tabularnewline
beta & 0.0358228538693123 \tabularnewline
S.D. & 0.0143988939391447 \tabularnewline
T-STAT & 2.48788927960116 \tabularnewline
p-value & 0.0553038625176709 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=107724&T=2

[TABLE]
[ROW][C]Regression: S.E.(k) = alpha + beta * Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]-0.401953606871987[/C][/ROW]
[ROW][C]beta[/C][C]0.0358228538693123[/C][/ROW]
[ROW][C]S.D.[/C][C]0.0143988939391447[/C][/ROW]
[ROW][C]T-STAT[/C][C]2.48788927960116[/C][/ROW]
[ROW][C]p-value[/C][C]0.0553038625176709[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=107724&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=107724&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: S.E.(k) = alpha + beta * Mean(k)
alpha-0.401953606871987
beta0.0358228538693123
S.D.0.0143988939391447
T-STAT2.48788927960116
p-value0.0553038625176709







Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha-11.1060919438674
beta3.35046484193553
S.D.1.32293612285712
T-STAT2.53259759412994
p-value0.0523639063551824
Lambda-2.35046484193553

\begin{tabular}{lllllllll}
\hline
Regression: ln S.E.(k) = alpha + beta * ln Mean(k) \tabularnewline
alpha & -11.1060919438674 \tabularnewline
beta & 3.35046484193553 \tabularnewline
S.D. & 1.32293612285712 \tabularnewline
T-STAT & 2.53259759412994 \tabularnewline
p-value & 0.0523639063551824 \tabularnewline
Lambda & -2.35046484193553 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=107724&T=3

[TABLE]
[ROW][C]Regression: ln S.E.(k) = alpha + beta * ln Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]-11.1060919438674[/C][/ROW]
[ROW][C]beta[/C][C]3.35046484193553[/C][/ROW]
[ROW][C]S.D.[/C][C]1.32293612285712[/C][/ROW]
[ROW][C]T-STAT[/C][C]2.53259759412994[/C][/ROW]
[ROW][C]p-value[/C][C]0.0523639063551824[/C][/ROW]
[ROW][C]Lambda[/C][C]-2.35046484193553[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=107724&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=107724&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha-11.1060919438674
beta3.35046484193553
S.D.1.32293612285712
T-STAT2.53259759412994
p-value0.0523639063551824
Lambda-2.35046484193553



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
(n <- length(x))
(np <- floor(n / par1))
arr <- array(NA,dim=c(par1,np))
j <- 0
k <- 1
for (i in 1:(np*par1))
{
j = j + 1
arr[j,k] <- x[i]
if (j == par1) {
j = 0
k=k+1
}
}
arr
arr.mean <- array(NA,dim=np)
arr.sd <- array(NA,dim=np)
arr.range <- array(NA,dim=np)
for (j in 1:np)
{
arr.mean[j] <- mean(arr[,j],na.rm=TRUE)
arr.sd[j] <- sd(arr[,j],na.rm=TRUE)
arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE)
}
arr.mean
arr.sd
arr.range
(lm1 <- lm(arr.sd~arr.mean))
(lnlm1 <- lm(log(arr.sd)~log(arr.mean)))
(lm2 <- lm(arr.range~arr.mean))
bitmap(file='test1.png')
plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation')
dev.off()
bitmap(file='test2.png')
plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range')
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Section',header=TRUE)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,'Standard Deviation',header=TRUE)
a<-table.element(a,'Range',header=TRUE)
a<-table.row.end(a)
for (j in 1:np) {
a<-table.row.start(a)
a<-table.element(a,j,header=TRUE)
a<-table.element(a,arr.mean[j])
a<-table.element(a,arr.sd[j] )
a<-table.element(a,arr.range[j] )
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Lambda',header=TRUE)
a<-table.element(a,1-lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')