Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_surveyscores.wasp
Title produced by softwareSurvey Scores
Date of computationSun, 16 Oct 2011 15:24:42 -0400
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Oct/16/t1318793094faseoeontz8ij76.htm/, Retrieved Thu, 31 Oct 2024 22:57:32 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=130223, Retrieved Thu, 31 Oct 2024 22:57:32 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact170
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Survey Scores] [Intrinsic Motivat...] [2010-10-12 11:18:40] [b98453cac15ba1066b407e146608df68]
- R PD  [Survey Scores] [Extrinsic Motivat...] [2011-10-14 09:58:23] [25b6caf3839c2bdc14961e5bff2d6373]
-           [Survey Scores] [W3] [2011-10-16 19:24:42] [d14d64ba86ecc27fb5997ae1bd82937b] [Current]
Feedback Forum

Post a new message
Dataseries X:
4	7	5	7
5	5	5	5
4	6	5	5
3	6	6	6
6	6	6	6
5	5	5	7
5	7	5	6
1	6	6	7
4	7	7	7
5	6	6	6
6	7	7	7
7	7	6	7
5	6	6	5
6	6	6	6
5	7	6	7
4	6	6	6
7	7	7	7
7	7	7	7
6	7	7	7
6	7	6	6
2	5	5	4
7	7	7	7
5	5	5	6
4	6	7	7
7	7	6	7
1	6	2	5
1	6	2	5
7	6	7	7
4	6	4	6
5	6	4	6
5	6	5	6
5	5	5	6
4	3	4	1
5	3	7	5
5	5	7	7
4	6	4	5
7	7	7	7
7	7	4	5
7	7	6	7
4	6	6	6
7	7	6	7
7	7	6	6
4	6	6	6
3	6	7	5
2	5	6	6
6	6	6	6
4	6	4	5
5	7	7	7
4	6	6	6
7	7	7	7
4	6	6	5
6	5	7	5
7	7	7	7
1	4	2	3
5	7	6	6
4	5	6	6
5	6	5	5
5	7	6	6
5	7	6	6
5	7	6	7
5	7	6	7
5	6	6	6
6	6	4	5
3	6	3	4
4	4	4	5
6	6	7	6
6	6	6	6
3	7	6	7
5	7	7	6
2	7	7	7
7	7	7	7
7	7	5	7
4	6	6	6
6	5	3	5
6	7	6	7
3	5	5	5
3	5	5	5
6	7	6	6
7	7	6	7
3	2	4	3
1	6	4	4
5	6	5	5
5	6	6	6
5	6	5	6
5	5	5	6
6	6	6	6
6	7	7	7
5	5	5	7
7	7	7	7
6	6	7	7
1	5	2	2
3	6	5	5
5	7	4	6
1	7	7	6
6	6	6	6
4	7	7	7
5	6	5	5
5	5	5	5
6	5	4	6
5	6	7	6
5	6	5	7
4	6	4	4
6	6	6	6
6	6	6	6
4	5	5	5
5	5	5	5
5	5	3	5
2	7	5	6
7	7	6	7
5	6	6	6
5	7	7	7
2	7	7	7
3	4	5	5
5	5	5	6
5	7	6	7
5	7	4	7
6	7	7	7
6	6	5	7
4	5	6	5
6	7	7	7
3	4	7	7
6	6	6	6
4	6	6	5
3	3	4	5
4	7	7	7
6	6	6	7
4	7	5	6
6	6	6	6
5	5	5	6
5	6	5	6
5	6	6	6
3	7	6	6
5	6	4	5
4	7	6	6
5	6	7	7
5	6	6	6
1	7	7	7
4	7	7	7
7	7	6	6
4	7	5	6
6	6	5	7
7	7	5	5
6	7	7	5
5	6	3	6
6	7	6	7
5	6	5	5
5	7	7	7
6	6	4	5
5	5	6	6
3	4	4	5
6	7	6	7
7	7	7	7
4	5	4	5
5	7	6	7
4	6	7	6
5	5	5	6
2	6	6	6
7	7	4	7
5	7	4	6
4	6	6	5
2	5	4	5
4	6	3	5




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'George Udny Yule' @ yule.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'George Udny Yule' @ yule.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=130223&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ yule.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=130223&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=130223&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'George Udny Yule' @ yule.wessa.net







Summary of survey scores (median of Likert score was subtracted)
QuestionmeanSum ofpositives (Ps)Sum ofnegatives (Ns)(Ps-Ns)/(Ps+Ns)Count ofpositives (Pc)Count ofnegatives (Nc)(Pc-Nc)/(Pc+Nc)
10.79179510.56104280.58
22.0834250.9715340.95
31.56266130.9113190.87
41.9632570.9615440.95

\begin{tabular}{lllllllll}
\hline
Summary of survey scores (median of Likert score was subtracted) \tabularnewline
Question & mean & Sum ofpositives (Ps) & Sum ofnegatives (Ns) & (Ps-Ns)/(Ps+Ns) & Count ofpositives (Pc) & Count ofnegatives (Nc) & (Pc-Nc)/(Pc+Nc) \tabularnewline
1 & 0.79 & 179 & 51 & 0.56 & 104 & 28 & 0.58 \tabularnewline
2 & 2.08 & 342 & 5 & 0.97 & 153 & 4 & 0.95 \tabularnewline
3 & 1.56 & 266 & 13 & 0.91 & 131 & 9 & 0.87 \tabularnewline
4 & 1.96 & 325 & 7 & 0.96 & 154 & 4 & 0.95 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=130223&T=1

[TABLE]
[ROW][C]Summary of survey scores (median of Likert score was subtracted)[/C][/ROW]
[ROW][C]Question[/C][C]mean[/C][C]Sum ofpositives (Ps)[/C][C]Sum ofnegatives (Ns)[/C][C](Ps-Ns)/(Ps+Ns)[/C][C]Count ofpositives (Pc)[/C][C]Count ofnegatives (Nc)[/C][C](Pc-Nc)/(Pc+Nc)[/C][/ROW]
[ROW][C]1[/C][C]0.79[/C][C]179[/C][C]51[/C][C]0.56[/C][C]104[/C][C]28[/C][C]0.58[/C][/ROW]
[ROW][C]2[/C][C]2.08[/C][C]342[/C][C]5[/C][C]0.97[/C][C]153[/C][C]4[/C][C]0.95[/C][/ROW]
[ROW][C]3[/C][C]1.56[/C][C]266[/C][C]13[/C][C]0.91[/C][C]131[/C][C]9[/C][C]0.87[/C][/ROW]
[ROW][C]4[/C][C]1.96[/C][C]325[/C][C]7[/C][C]0.96[/C][C]154[/C][C]4[/C][C]0.95[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=130223&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=130223&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of survey scores (median of Likert score was subtracted)
QuestionmeanSum ofpositives (Ps)Sum ofnegatives (Ns)(Ps-Ns)/(Ps+Ns)Count ofpositives (Pc)Count ofnegatives (Nc)(Pc-Nc)/(Pc+Nc)
10.79179510.56104280.58
22.0834250.9715340.95
31.56266130.9113190.87
41.9632570.9615440.95







Pearson correlations of survey scores (and p-values)
mean(Ps-Ns)/(Ps+Ns)(Pc-Nc)/(Pc+Nc)
mean1 (0)0.967 (0.033)0.983 (0.017)
(Ps-Ns)/(Ps+Ns)0.967 (0.033)1 (0)0.996 (0.004)
(Pc-Nc)/(Pc+Nc)0.983 (0.017)0.996 (0.004)1 (0)

\begin{tabular}{lllllllll}
\hline
Pearson correlations of survey scores (and p-values) \tabularnewline
 & mean & (Ps-Ns)/(Ps+Ns) & (Pc-Nc)/(Pc+Nc) \tabularnewline
mean & 1 (0) & 0.967 (0.033) & 0.983 (0.017) \tabularnewline
(Ps-Ns)/(Ps+Ns) & 0.967 (0.033) & 1 (0) & 0.996 (0.004) \tabularnewline
(Pc-Nc)/(Pc+Nc) & 0.983 (0.017) & 0.996 (0.004) & 1 (0) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=130223&T=2

[TABLE]
[ROW][C]Pearson correlations of survey scores (and p-values)[/C][/ROW]
[ROW][C][/C][C]mean[/C][C](Ps-Ns)/(Ps+Ns)[/C][C](Pc-Nc)/(Pc+Nc)[/C][/ROW]
[ROW][C]mean[/C][C]1 (0)[/C][C]0.967 (0.033)[/C][C]0.983 (0.017)[/C][/ROW]
[ROW][C](Ps-Ns)/(Ps+Ns)[/C][C]0.967 (0.033)[/C][C]1 (0)[/C][C]0.996 (0.004)[/C][/ROW]
[ROW][C](Pc-Nc)/(Pc+Nc)[/C][C]0.983 (0.017)[/C][C]0.996 (0.004)[/C][C]1 (0)[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=130223&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=130223&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Pearson correlations of survey scores (and p-values)
mean(Ps-Ns)/(Ps+Ns)(Pc-Nc)/(Pc+Nc)
mean1 (0)0.967 (0.033)0.983 (0.017)
(Ps-Ns)/(Ps+Ns)0.967 (0.033)1 (0)0.996 (0.004)
(Pc-Nc)/(Pc+Nc)0.983 (0.017)0.996 (0.004)1 (0)







Kendall tau rank correlations of survey scores (and p-values)
mean(Ps-Ns)/(Ps+Ns)(Pc-Nc)/(Pc+Nc)
mean1 (0.083)1 (0.083)0.913 (0.071)
(Ps-Ns)/(Ps+Ns)1 (0.083)1 (0.083)0.913 (0.071)
(Pc-Nc)/(Pc+Nc)0.913 (0.071)0.913 (0.071)1 (0.056)

\begin{tabular}{lllllllll}
\hline
Kendall tau rank correlations of survey scores (and p-values) \tabularnewline
 & mean & (Ps-Ns)/(Ps+Ns) & (Pc-Nc)/(Pc+Nc) \tabularnewline
mean & 1 (0.083) & 1 (0.083) & 0.913 (0.071) \tabularnewline
(Ps-Ns)/(Ps+Ns) & 1 (0.083) & 1 (0.083) & 0.913 (0.071) \tabularnewline
(Pc-Nc)/(Pc+Nc) & 0.913 (0.071) & 0.913 (0.071) & 1 (0.056) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=130223&T=3

[TABLE]
[ROW][C]Kendall tau rank correlations of survey scores (and p-values)[/C][/ROW]
[ROW][C][/C][C]mean[/C][C](Ps-Ns)/(Ps+Ns)[/C][C](Pc-Nc)/(Pc+Nc)[/C][/ROW]
[ROW][C]mean[/C][C]1 (0.083)[/C][C]1 (0.083)[/C][C]0.913 (0.071)[/C][/ROW]
[ROW][C](Ps-Ns)/(Ps+Ns)[/C][C]1 (0.083)[/C][C]1 (0.083)[/C][C]0.913 (0.071)[/C][/ROW]
[ROW][C](Pc-Nc)/(Pc+Nc)[/C][C]0.913 (0.071)[/C][C]0.913 (0.071)[/C][C]1 (0.056)[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=130223&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=130223&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Kendall tau rank correlations of survey scores (and p-values)
mean(Ps-Ns)/(Ps+Ns)(Pc-Nc)/(Pc+Nc)
mean1 (0.083)1 (0.083)0.913 (0.071)
(Ps-Ns)/(Ps+Ns)1 (0.083)1 (0.083)0.913 (0.071)
(Pc-Nc)/(Pc+Nc)0.913 (0.071)0.913 (0.071)1 (0.056)



Parameters (Session):
par1 = 1 2 3 4 5 6 7 ;
Parameters (R input):
par1 = 1 2 3 4 5 6 7 ;
R code (references can be found in the software module):
docor <- function(x,y,method) {
r <- cor.test(x,y,method=method)
paste(round(r$estimate,3),' (',round(r$p.value,3),')',sep='')
}
x <- t(x)
nx <- length(x[,1])
cx <- length(x[1,])
mymedian <- median(as.numeric(strsplit(par1,' ')[[1]]))
myresult <- array(NA, dim = c(cx,7))
rownames(myresult) <- paste('Q',1:cx,sep='')
colnames(myresult) <- c('mean','Sum of
positives (Ps)','Sum of
negatives (Ns)', '(Ps-Ns)/(Ps+Ns)', 'Count of
positives (Pc)', 'Count of
negatives (Nc)', '(Pc-Nc)/(Pc+Nc)')
for (i in 1:cx) {
spos <- 0
sneg <- 0
cpos <- 0
cneg <- 0
for (j in 1:nx) {
if (!is.na(x[j,i])) {
myx <- as.numeric(x[j,i]) - mymedian
if (myx > 0) {
spos = spos + myx
cpos = cpos + 1
}
if (myx < 0) {
sneg = sneg + abs(myx)
cneg = cneg + 1
}
}
}
myresult[i,1] <- round(mean(as.numeric(x[,i]),na.rm=T)-mymedian,2)
myresult[i,2] <- spos
myresult[i,3] <- sneg
myresult[i,4] <- round((spos - sneg) / (spos + sneg),2)
myresult[i,5] <- cpos
myresult[i,6] <- cneg
myresult[i,7] <- round((cpos - cneg) / (cpos + cneg),2)
}
myresult
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Summary of survey scores (median of Likert score was subtracted)',8,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Question',header=TRUE)
for (i in 1:7) {
a<-table.element(a,colnames(myresult)[i],header=TRUE)
}
a<-table.row.end(a)
for (i in 1:cx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
for (j in 1:7) {
a<-table.element(a,myresult[i,j],align='right')
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Pearson correlations of survey scores (and p-values)',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'',header=TRUE)
a<-table.element(a,'mean',header=TRUE)
a<-table.element(a,'(Ps-Ns)/(Ps+Ns)',header=TRUE)
a<-table.element(a,'(Pc-Nc)/(Pc+Nc)',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mean',header=TRUE)
a<-table.element(a,docor(myresult[,1],myresult[,1],method='pearson'),align='right')
a<-table.element(a,docor(myresult[,1],myresult[,4],method='pearson'),align='right')
a<-table.element(a,docor(myresult[,1],myresult[,7],method='pearson'),align='right')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(Ps-Ns)/(Ps+Ns)',header=TRUE)
a<-table.element(a,docor(myresult[,4],myresult[,1],method='pearson'),align='right')
a<-table.element(a,docor(myresult[,4],myresult[,4],method='pearson'),align='right')
a<-table.element(a,docor(myresult[,4],myresult[,7],method='pearson'),align='right')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(Pc-Nc)/(Pc+Nc)',header=TRUE)
a<-table.element(a,docor(myresult[,7],myresult[,1],method='pearson'),align='right')
a<-table.element(a,docor(myresult[,7],myresult[,4],method='pearson'),align='right')
a<-table.element(a,docor(myresult[,7],myresult[,7],method='pearson'),align='right')
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Kendall tau rank correlations of survey scores (and p-values)',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'',header=TRUE)
a<-table.element(a,'mean',header=TRUE)
a<-table.element(a,'(Ps-Ns)/(Ps+Ns)',header=TRUE)
a<-table.element(a,'(Pc-Nc)/(Pc+Nc)',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mean',header=TRUE)
a<-table.element(a,docor(myresult[,1],myresult[,1],method='kendall'),align='right')
a<-table.element(a,docor(myresult[,1],myresult[,4],method='kendall'),align='right')
a<-table.element(a,docor(myresult[,1],myresult[,7],method='kendall'),align='right')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(Ps-Ns)/(Ps+Ns)',header=TRUE)
a<-table.element(a,docor(myresult[,4],myresult[,1],method='kendall'),align='right')
a<-table.element(a,docor(myresult[,4],myresult[,4],method='kendall'),align='right')
a<-table.element(a,docor(myresult[,4],myresult[,7],method='kendall'),align='right')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(Pc-Nc)/(Pc+Nc)',header=TRUE)
a<-table.element(a,docor(myresult[,7],myresult[,1],method='kendall'),align='right')
a<-table.element(a,docor(myresult[,7],myresult[,4],method='kendall'),align='right')
a<-table.element(a,docor(myresult[,7],myresult[,7],method='kendall'),align='right')
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')