Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 22 Nov 2011 14:01:15 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Nov/22/t1321988495d5nxmegomm565a7.htm/, Retrieved Fri, 01 Nov 2024 00:30:37 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=146367, Retrieved Fri, 01 Nov 2024 00:30:37 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact169
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Competence to learn] [2010-11-17 07:43:53] [b98453cac15ba1066b407e146608df68]
-   PD  [Multiple Regression] [Nyrstar] [2011-11-19 10:08:04] [25b6caf3839c2bdc14961e5bff2d6373]
-   PD    [Multiple Regression] [test] [2011-11-22 18:44:21] [25b6caf3839c2bdc14961e5bff2d6373]
-   PD        [Multiple Regression] [jill] [2011-11-22 19:01:15] [2adf2d2c11e011c12275478b9efd18e5] [Current]
Feedback Forum

Post a new message
Dataseries X:
6654000	5712000	3,3	38,6	645	3	5	3
1000	6600	8,3	4,5	42	3	1	3
3385	44500	12,5	14	60	1	1	1
0,92	5700	16,5	0	25	5	2	3
2547000	4603000	3,9	69	624	3	5	4
10550	179500	9,8	27	180	4	4	4
0,023	0,3	19,7	19	35	1	1	1
160000	169000	6,2	30,4	392	4	5	4
3300	25600	14,5	28	63	1	2	1
52160	440000	9,7	50	230	1	1	1
0,425	6400	12,5	7	112	5	4	4
465000	423000	3,9	30	281	5	5	5
0,55	2400	10,3	0	0	2	1	2
187100	419000	3,1	40	365	5	5	5
0,075	1200	8,4	3,5	42	1	1	1
3000	25000	8,6	50	28	2	2	2
0,785	3500	10,7	6	42	2	2	2
0,2	5000	10,7	10,4	120	2	2	2
1410	17500	6,1	34	0	1	2	1
60000	81000	18,1	7	0	1	1	1
27660	115000	3,8	20	148	5	5	5
0,12	1000	14,4	3,9	16	3	1	2
207000	406000	12	39,3	252	1	4	1
85000	325000	6,2	41	310	1	3	1
36330	119500	13	16,2	63	1	1	1
0,101	4000	13,8	9	28	5	1	3
1040	5500	8,2	7,6	68	5	3	4
521000	655000	2,9	46	336	5	5	5
100000	157000	10,8	22,4	100	1	1	1
0,005	0,14	9,1	2,6	21,5	5	2	4
0,01	0,25	19,9	24	50	1	1	1
62000	1320000	8	100	267	1	1	1
0,122	3000	10,6	0	30	2	1	1
1350	8100	11,2	0	45	3	1	3
0,023	0,4	13,2	3,2	19	4	1	3
0,048	0,33	12,8	2	30	4	1	3
1700	6300	19,4	5	12	2	1	1
3500	10800	17,4	6,5	120	2	1	1
0,48	15500	17	12	140	2	2	2
10000	115000	10,9	20,2	170	4	4	4
1620	11400	13,7	13	17	2	1	2
192000	180000	8,4	27	115	4	4	4
2500	12100	8,4	18	31	5	5	5
4288	39200	12,5	13,7	63	2	2	2
0,28	1900	13,2	4,7	21	3	1	3
4235	50400	9,8	9,8	52	1	1	1
6800	179000	9,6	29	164	2	3	2
0,75	12300	6,6	7	225	2	2	2
3600	21000	5,4	6	225	3	2	3
14830	98200	2,6	17	150	5	5	5
55500	175000	3,8	20	151	5	5	5
1400	12500	11	12,7	90	2	2	2
0,06	1000	10,3	3,5	0	3	1	2
0,9	2600	13,3	4,5	60	2	1	2
2000	12300	5,4	7,5	200	3	1	3
0,104	2500	15,8	2,3	46	3	2	2
4190	58000	10,3	24	210	4	3	4
3500	3900	19,4	3	14	2	1	1




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'Gertrude Mary Cox' @ cox.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=146367&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gertrude Mary Cox' @ cox.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=146367&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=146367&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net







Multiple Linear Regression - Estimated Regression Equation
totaleslaap[t] = + 15.9045939067489 -1.6117594600388e-06gewicht[t] + 2.07321499875609e-06brein[t] -0.0477119610443166levensduur[t] -0.0119939929006805drachttijd[t] + 2.07493347685895`jager?`[t] + 0.313113835483447blootgesteldheidslaap[t] -3.84823801074653algemeengevaar[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
totaleslaap[t] =  +  15.9045939067489 -1.6117594600388e-06gewicht[t] +  2.07321499875609e-06brein[t] -0.0477119610443166levensduur[t] -0.0119939929006805drachttijd[t] +  2.07493347685895`jager?`[t] +  0.313113835483447blootgesteldheidslaap[t] -3.84823801074653algemeengevaar[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=146367&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]totaleslaap[t] =  +  15.9045939067489 -1.6117594600388e-06gewicht[t] +  2.07321499875609e-06brein[t] -0.0477119610443166levensduur[t] -0.0119939929006805drachttijd[t] +  2.07493347685895`jager?`[t] +  0.313113835483447blootgesteldheidslaap[t] -3.84823801074653algemeengevaar[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=146367&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=146367&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
totaleslaap[t] = + 15.9045939067489 -1.6117594600388e-06gewicht[t] + 2.07321499875609e-06brein[t] -0.0477119610443166levensduur[t] -0.0119939929006805drachttijd[t] + 2.07493347685895`jager?`[t] + 0.313113835483447blootgesteldheidslaap[t] -3.84823801074653algemeengevaar[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)15.90459390674891.06849514.88500
gewicht-1.6117594600388e-062e-06-1.02570.3099930.154996
brein2.07321499875609e-062e-061.20040.2356470.117823
levensduur-0.04771196104431660.037131-1.2850.2047270.102363
drachttijd-0.01199399290068050.006433-1.86430.068150.034075
`jager?`2.074933476858950.8918922.32640.0240880.012044
blootgesteldheidslaap0.3131138354834470.5801450.53970.5917880.295894
algemeengevaar-3.848238010746531.107553-3.47450.0010670.000533

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 15.9045939067489 & 1.068495 & 14.885 & 0 & 0 \tabularnewline
gewicht & -1.6117594600388e-06 & 2e-06 & -1.0257 & 0.309993 & 0.154996 \tabularnewline
brein & 2.07321499875609e-06 & 2e-06 & 1.2004 & 0.235647 & 0.117823 \tabularnewline
levensduur & -0.0477119610443166 & 0.037131 & -1.285 & 0.204727 & 0.102363 \tabularnewline
drachttijd & -0.0119939929006805 & 0.006433 & -1.8643 & 0.06815 & 0.034075 \tabularnewline
`jager?` & 2.07493347685895 & 0.891892 & 2.3264 & 0.024088 & 0.012044 \tabularnewline
blootgesteldheidslaap & 0.313113835483447 & 0.580145 & 0.5397 & 0.591788 & 0.295894 \tabularnewline
algemeengevaar & -3.84823801074653 & 1.107553 & -3.4745 & 0.001067 & 0.000533 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=146367&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]15.9045939067489[/C][C]1.068495[/C][C]14.885[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]gewicht[/C][C]-1.6117594600388e-06[/C][C]2e-06[/C][C]-1.0257[/C][C]0.309993[/C][C]0.154996[/C][/ROW]
[ROW][C]brein[/C][C]2.07321499875609e-06[/C][C]2e-06[/C][C]1.2004[/C][C]0.235647[/C][C]0.117823[/C][/ROW]
[ROW][C]levensduur[/C][C]-0.0477119610443166[/C][C]0.037131[/C][C]-1.285[/C][C]0.204727[/C][C]0.102363[/C][/ROW]
[ROW][C]drachttijd[/C][C]-0.0119939929006805[/C][C]0.006433[/C][C]-1.8643[/C][C]0.06815[/C][C]0.034075[/C][/ROW]
[ROW][C]`jager?`[/C][C]2.07493347685895[/C][C]0.891892[/C][C]2.3264[/C][C]0.024088[/C][C]0.012044[/C][/ROW]
[ROW][C]blootgesteldheidslaap[/C][C]0.313113835483447[/C][C]0.580145[/C][C]0.5397[/C][C]0.591788[/C][C]0.295894[/C][/ROW]
[ROW][C]algemeengevaar[/C][C]-3.84823801074653[/C][C]1.107553[/C][C]-3.4745[/C][C]0.001067[/C][C]0.000533[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=146367&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=146367&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)15.90459390674891.06849514.88500
gewicht-1.6117594600388e-062e-06-1.02570.3099930.154996
brein2.07321499875609e-062e-061.20040.2356470.117823
levensduur-0.04771196104431660.037131-1.2850.2047270.102363
drachttijd-0.01199399290068050.006433-1.86430.068150.034075
`jager?`2.074933476858950.8918922.32640.0240880.012044
blootgesteldheidslaap0.3131138354834470.5801450.53970.5917880.295894
algemeengevaar-3.848238010746531.107553-3.47450.0010670.000533







Multiple Linear Regression - Regression Statistics
Multiple R0.7741492855136
R-squared0.599307116261218
Adjusted R-squared0.543210112537789
F-TEST (value)10.6834068931013
F-TEST (DF numerator)7
F-TEST (DF denominator)50
p-value3.88024755659799e-08
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation3.11353581179839
Sum Squared Residuals484.705262567553

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.7741492855136 \tabularnewline
R-squared & 0.599307116261218 \tabularnewline
Adjusted R-squared & 0.543210112537789 \tabularnewline
F-TEST (value) & 10.6834068931013 \tabularnewline
F-TEST (DF numerator) & 7 \tabularnewline
F-TEST (DF denominator) & 50 \tabularnewline
p-value & 3.88024755659799e-08 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 3.11353581179839 \tabularnewline
Sum Squared Residuals & 484.705262567553 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=146367&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.7741492855136[/C][/ROW]
[ROW][C]R-squared[/C][C]0.599307116261218[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.543210112537789[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]10.6834068931013[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]7[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]50[/C][/ROW]
[ROW][C]p-value[/C][C]3.88024755659799e-08[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]3.11353581179839[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]484.705262567553[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=146367&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=146367&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.7741492855136
R-squared0.599307116261218
Adjusted R-squared0.543210112537789
F-TEST (value)10.6834068931013
F-TEST (DF numerator)7
F-TEST (DF denominator)50
p-value3.88024755659799e-08
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation3.11353581179839
Sum Squared Residuals484.705262567553







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
13.33.68999899105046-0.389998991050456
28.310.1914140735733-1.89141407357333
312.513.1435984413559-0.643598441355881
416.515.07274094992811.42725905007187
53.92.963491884229810.93650811577019
69.86.971827472786612.82817252721339
719.713.11808678187296.58191321812707
86.24.317347936985381.88265206301462
914.512.71371607959451.78628392040553
109.710.1283320149894-0.428332014989438
1112.510.47472154879912.02527845120087
123.93.92947137386328-0.0294713738632782
1310.312.6760735039865-2.37607350398647
143.12.88447145371270.215528546287296
158.413.7761513799776-5.37615137997759
168.610.3097777530945-1.70977775309451
1710.712.2014480291106-1.50144802911059
1810.711.0590947196399-0.359094719639937
196.113.169319049961-7.06931904996099
2018.114.18164432833143.91835567166857
213.86.06812870273344-2.26812870273344
2214.414.370124638420.0298753615799922
231210.99426951604891.00573048395112
246.29.93309799777611-3.73309799777611
251313.1050418578521-0.105041857852073
2613.814.2907143408769-0.490714340876903
278.210.6571747859795-2.45717478597949
282.92.897137737566020.00286226243397486
2910.812.3405747996848-1.54057479968481
309.111.1306152551359-2.03061525513585
3119.912.69961700043337.20038299956674
3289.10752571126701-1.107525711267
3310.616.1657363465449-5.56573634654488
3411.210.37268162625780.827318373742169
3513.212.59216426918930.607835730810676
3612.812.5174845151160.282515484884019
3719.416.1471702285843.25282977141597
3817.414.78667935421042.61332064578961
391710.76464403014976.23535596985029
4010.97.283372837178033.61662716282197
4113.711.867968902231.83203109776997
428.47.460019864806180.939980135193815
438.47.394067838844281.00593216115572
4412.511.64929589427720.850704105722814
4513.210.4256127299522.77438727004801
469.813.4508025938991-3.65080259389908
479.610.3068101598763-0.706810159876341
486.69.97707971564237-3.37707971564237
495.48.26372298805175-2.86372298805175
502.66.17312546195823-3.57312546195823
513.86.11166824058929-2.31166824058929
521111.3224699678569-0.322469967856933
5310.314.5811134059542-4.28111340595419
5413.311.74214418413021.55785581586985
555.48.16343287816573-2.76343287816572
5615.814.40286767284021.39713232715977
5710.36.200384901232684.09961509876732
5819.416.21072928184623.18927071815378

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 3.3 & 3.68999899105046 & -0.389998991050456 \tabularnewline
2 & 8.3 & 10.1914140735733 & -1.89141407357333 \tabularnewline
3 & 12.5 & 13.1435984413559 & -0.643598441355881 \tabularnewline
4 & 16.5 & 15.0727409499281 & 1.42725905007187 \tabularnewline
5 & 3.9 & 2.96349188422981 & 0.93650811577019 \tabularnewline
6 & 9.8 & 6.97182747278661 & 2.82817252721339 \tabularnewline
7 & 19.7 & 13.1180867818729 & 6.58191321812707 \tabularnewline
8 & 6.2 & 4.31734793698538 & 1.88265206301462 \tabularnewline
9 & 14.5 & 12.7137160795945 & 1.78628392040553 \tabularnewline
10 & 9.7 & 10.1283320149894 & -0.428332014989438 \tabularnewline
11 & 12.5 & 10.4747215487991 & 2.02527845120087 \tabularnewline
12 & 3.9 & 3.92947137386328 & -0.0294713738632782 \tabularnewline
13 & 10.3 & 12.6760735039865 & -2.37607350398647 \tabularnewline
14 & 3.1 & 2.8844714537127 & 0.215528546287296 \tabularnewline
15 & 8.4 & 13.7761513799776 & -5.37615137997759 \tabularnewline
16 & 8.6 & 10.3097777530945 & -1.70977775309451 \tabularnewline
17 & 10.7 & 12.2014480291106 & -1.50144802911059 \tabularnewline
18 & 10.7 & 11.0590947196399 & -0.359094719639937 \tabularnewline
19 & 6.1 & 13.169319049961 & -7.06931904996099 \tabularnewline
20 & 18.1 & 14.1816443283314 & 3.91835567166857 \tabularnewline
21 & 3.8 & 6.06812870273344 & -2.26812870273344 \tabularnewline
22 & 14.4 & 14.37012463842 & 0.0298753615799922 \tabularnewline
23 & 12 & 10.9942695160489 & 1.00573048395112 \tabularnewline
24 & 6.2 & 9.93309799777611 & -3.73309799777611 \tabularnewline
25 & 13 & 13.1050418578521 & -0.105041857852073 \tabularnewline
26 & 13.8 & 14.2907143408769 & -0.490714340876903 \tabularnewline
27 & 8.2 & 10.6571747859795 & -2.45717478597949 \tabularnewline
28 & 2.9 & 2.89713773756602 & 0.00286226243397486 \tabularnewline
29 & 10.8 & 12.3405747996848 & -1.54057479968481 \tabularnewline
30 & 9.1 & 11.1306152551359 & -2.03061525513585 \tabularnewline
31 & 19.9 & 12.6996170004333 & 7.20038299956674 \tabularnewline
32 & 8 & 9.10752571126701 & -1.107525711267 \tabularnewline
33 & 10.6 & 16.1657363465449 & -5.56573634654488 \tabularnewline
34 & 11.2 & 10.3726816262578 & 0.827318373742169 \tabularnewline
35 & 13.2 & 12.5921642691893 & 0.607835730810676 \tabularnewline
36 & 12.8 & 12.517484515116 & 0.282515484884019 \tabularnewline
37 & 19.4 & 16.147170228584 & 3.25282977141597 \tabularnewline
38 & 17.4 & 14.7866793542104 & 2.61332064578961 \tabularnewline
39 & 17 & 10.7646440301497 & 6.23535596985029 \tabularnewline
40 & 10.9 & 7.28337283717803 & 3.61662716282197 \tabularnewline
41 & 13.7 & 11.86796890223 & 1.83203109776997 \tabularnewline
42 & 8.4 & 7.46001986480618 & 0.939980135193815 \tabularnewline
43 & 8.4 & 7.39406783884428 & 1.00593216115572 \tabularnewline
44 & 12.5 & 11.6492958942772 & 0.850704105722814 \tabularnewline
45 & 13.2 & 10.425612729952 & 2.77438727004801 \tabularnewline
46 & 9.8 & 13.4508025938991 & -3.65080259389908 \tabularnewline
47 & 9.6 & 10.3068101598763 & -0.706810159876341 \tabularnewline
48 & 6.6 & 9.97707971564237 & -3.37707971564237 \tabularnewline
49 & 5.4 & 8.26372298805175 & -2.86372298805175 \tabularnewline
50 & 2.6 & 6.17312546195823 & -3.57312546195823 \tabularnewline
51 & 3.8 & 6.11166824058929 & -2.31166824058929 \tabularnewline
52 & 11 & 11.3224699678569 & -0.322469967856933 \tabularnewline
53 & 10.3 & 14.5811134059542 & -4.28111340595419 \tabularnewline
54 & 13.3 & 11.7421441841302 & 1.55785581586985 \tabularnewline
55 & 5.4 & 8.16343287816573 & -2.76343287816572 \tabularnewline
56 & 15.8 & 14.4028676728402 & 1.39713232715977 \tabularnewline
57 & 10.3 & 6.20038490123268 & 4.09961509876732 \tabularnewline
58 & 19.4 & 16.2107292818462 & 3.18927071815378 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=146367&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]3.3[/C][C]3.68999899105046[/C][C]-0.389998991050456[/C][/ROW]
[ROW][C]2[/C][C]8.3[/C][C]10.1914140735733[/C][C]-1.89141407357333[/C][/ROW]
[ROW][C]3[/C][C]12.5[/C][C]13.1435984413559[/C][C]-0.643598441355881[/C][/ROW]
[ROW][C]4[/C][C]16.5[/C][C]15.0727409499281[/C][C]1.42725905007187[/C][/ROW]
[ROW][C]5[/C][C]3.9[/C][C]2.96349188422981[/C][C]0.93650811577019[/C][/ROW]
[ROW][C]6[/C][C]9.8[/C][C]6.97182747278661[/C][C]2.82817252721339[/C][/ROW]
[ROW][C]7[/C][C]19.7[/C][C]13.1180867818729[/C][C]6.58191321812707[/C][/ROW]
[ROW][C]8[/C][C]6.2[/C][C]4.31734793698538[/C][C]1.88265206301462[/C][/ROW]
[ROW][C]9[/C][C]14.5[/C][C]12.7137160795945[/C][C]1.78628392040553[/C][/ROW]
[ROW][C]10[/C][C]9.7[/C][C]10.1283320149894[/C][C]-0.428332014989438[/C][/ROW]
[ROW][C]11[/C][C]12.5[/C][C]10.4747215487991[/C][C]2.02527845120087[/C][/ROW]
[ROW][C]12[/C][C]3.9[/C][C]3.92947137386328[/C][C]-0.0294713738632782[/C][/ROW]
[ROW][C]13[/C][C]10.3[/C][C]12.6760735039865[/C][C]-2.37607350398647[/C][/ROW]
[ROW][C]14[/C][C]3.1[/C][C]2.8844714537127[/C][C]0.215528546287296[/C][/ROW]
[ROW][C]15[/C][C]8.4[/C][C]13.7761513799776[/C][C]-5.37615137997759[/C][/ROW]
[ROW][C]16[/C][C]8.6[/C][C]10.3097777530945[/C][C]-1.70977775309451[/C][/ROW]
[ROW][C]17[/C][C]10.7[/C][C]12.2014480291106[/C][C]-1.50144802911059[/C][/ROW]
[ROW][C]18[/C][C]10.7[/C][C]11.0590947196399[/C][C]-0.359094719639937[/C][/ROW]
[ROW][C]19[/C][C]6.1[/C][C]13.169319049961[/C][C]-7.06931904996099[/C][/ROW]
[ROW][C]20[/C][C]18.1[/C][C]14.1816443283314[/C][C]3.91835567166857[/C][/ROW]
[ROW][C]21[/C][C]3.8[/C][C]6.06812870273344[/C][C]-2.26812870273344[/C][/ROW]
[ROW][C]22[/C][C]14.4[/C][C]14.37012463842[/C][C]0.0298753615799922[/C][/ROW]
[ROW][C]23[/C][C]12[/C][C]10.9942695160489[/C][C]1.00573048395112[/C][/ROW]
[ROW][C]24[/C][C]6.2[/C][C]9.93309799777611[/C][C]-3.73309799777611[/C][/ROW]
[ROW][C]25[/C][C]13[/C][C]13.1050418578521[/C][C]-0.105041857852073[/C][/ROW]
[ROW][C]26[/C][C]13.8[/C][C]14.2907143408769[/C][C]-0.490714340876903[/C][/ROW]
[ROW][C]27[/C][C]8.2[/C][C]10.6571747859795[/C][C]-2.45717478597949[/C][/ROW]
[ROW][C]28[/C][C]2.9[/C][C]2.89713773756602[/C][C]0.00286226243397486[/C][/ROW]
[ROW][C]29[/C][C]10.8[/C][C]12.3405747996848[/C][C]-1.54057479968481[/C][/ROW]
[ROW][C]30[/C][C]9.1[/C][C]11.1306152551359[/C][C]-2.03061525513585[/C][/ROW]
[ROW][C]31[/C][C]19.9[/C][C]12.6996170004333[/C][C]7.20038299956674[/C][/ROW]
[ROW][C]32[/C][C]8[/C][C]9.10752571126701[/C][C]-1.107525711267[/C][/ROW]
[ROW][C]33[/C][C]10.6[/C][C]16.1657363465449[/C][C]-5.56573634654488[/C][/ROW]
[ROW][C]34[/C][C]11.2[/C][C]10.3726816262578[/C][C]0.827318373742169[/C][/ROW]
[ROW][C]35[/C][C]13.2[/C][C]12.5921642691893[/C][C]0.607835730810676[/C][/ROW]
[ROW][C]36[/C][C]12.8[/C][C]12.517484515116[/C][C]0.282515484884019[/C][/ROW]
[ROW][C]37[/C][C]19.4[/C][C]16.147170228584[/C][C]3.25282977141597[/C][/ROW]
[ROW][C]38[/C][C]17.4[/C][C]14.7866793542104[/C][C]2.61332064578961[/C][/ROW]
[ROW][C]39[/C][C]17[/C][C]10.7646440301497[/C][C]6.23535596985029[/C][/ROW]
[ROW][C]40[/C][C]10.9[/C][C]7.28337283717803[/C][C]3.61662716282197[/C][/ROW]
[ROW][C]41[/C][C]13.7[/C][C]11.86796890223[/C][C]1.83203109776997[/C][/ROW]
[ROW][C]42[/C][C]8.4[/C][C]7.46001986480618[/C][C]0.939980135193815[/C][/ROW]
[ROW][C]43[/C][C]8.4[/C][C]7.39406783884428[/C][C]1.00593216115572[/C][/ROW]
[ROW][C]44[/C][C]12.5[/C][C]11.6492958942772[/C][C]0.850704105722814[/C][/ROW]
[ROW][C]45[/C][C]13.2[/C][C]10.425612729952[/C][C]2.77438727004801[/C][/ROW]
[ROW][C]46[/C][C]9.8[/C][C]13.4508025938991[/C][C]-3.65080259389908[/C][/ROW]
[ROW][C]47[/C][C]9.6[/C][C]10.3068101598763[/C][C]-0.706810159876341[/C][/ROW]
[ROW][C]48[/C][C]6.6[/C][C]9.97707971564237[/C][C]-3.37707971564237[/C][/ROW]
[ROW][C]49[/C][C]5.4[/C][C]8.26372298805175[/C][C]-2.86372298805175[/C][/ROW]
[ROW][C]50[/C][C]2.6[/C][C]6.17312546195823[/C][C]-3.57312546195823[/C][/ROW]
[ROW][C]51[/C][C]3.8[/C][C]6.11166824058929[/C][C]-2.31166824058929[/C][/ROW]
[ROW][C]52[/C][C]11[/C][C]11.3224699678569[/C][C]-0.322469967856933[/C][/ROW]
[ROW][C]53[/C][C]10.3[/C][C]14.5811134059542[/C][C]-4.28111340595419[/C][/ROW]
[ROW][C]54[/C][C]13.3[/C][C]11.7421441841302[/C][C]1.55785581586985[/C][/ROW]
[ROW][C]55[/C][C]5.4[/C][C]8.16343287816573[/C][C]-2.76343287816572[/C][/ROW]
[ROW][C]56[/C][C]15.8[/C][C]14.4028676728402[/C][C]1.39713232715977[/C][/ROW]
[ROW][C]57[/C][C]10.3[/C][C]6.20038490123268[/C][C]4.09961509876732[/C][/ROW]
[ROW][C]58[/C][C]19.4[/C][C]16.2107292818462[/C][C]3.18927071815378[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=146367&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=146367&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
13.33.68999899105046-0.389998991050456
28.310.1914140735733-1.89141407357333
312.513.1435984413559-0.643598441355881
416.515.07274094992811.42725905007187
53.92.963491884229810.93650811577019
69.86.971827472786612.82817252721339
719.713.11808678187296.58191321812707
86.24.317347936985381.88265206301462
914.512.71371607959451.78628392040553
109.710.1283320149894-0.428332014989438
1112.510.47472154879912.02527845120087
123.93.92947137386328-0.0294713738632782
1310.312.6760735039865-2.37607350398647
143.12.88447145371270.215528546287296
158.413.7761513799776-5.37615137997759
168.610.3097777530945-1.70977775309451
1710.712.2014480291106-1.50144802911059
1810.711.0590947196399-0.359094719639937
196.113.169319049961-7.06931904996099
2018.114.18164432833143.91835567166857
213.86.06812870273344-2.26812870273344
2214.414.370124638420.0298753615799922
231210.99426951604891.00573048395112
246.29.93309799777611-3.73309799777611
251313.1050418578521-0.105041857852073
2613.814.2907143408769-0.490714340876903
278.210.6571747859795-2.45717478597949
282.92.897137737566020.00286226243397486
2910.812.3405747996848-1.54057479968481
309.111.1306152551359-2.03061525513585
3119.912.69961700043337.20038299956674
3289.10752571126701-1.107525711267
3310.616.1657363465449-5.56573634654488
3411.210.37268162625780.827318373742169
3513.212.59216426918930.607835730810676
3612.812.5174845151160.282515484884019
3719.416.1471702285843.25282977141597
3817.414.78667935421042.61332064578961
391710.76464403014976.23535596985029
4010.97.283372837178033.61662716282197
4113.711.867968902231.83203109776997
428.47.460019864806180.939980135193815
438.47.394067838844281.00593216115572
4412.511.64929589427720.850704105722814
4513.210.4256127299522.77438727004801
469.813.4508025938991-3.65080259389908
479.610.3068101598763-0.706810159876341
486.69.97707971564237-3.37707971564237
495.48.26372298805175-2.86372298805175
502.66.17312546195823-3.57312546195823
513.86.11166824058929-2.31166824058929
521111.3224699678569-0.322469967856933
5310.314.5811134059542-4.28111340595419
5413.311.74214418413021.55785581586985
555.48.16343287816573-2.76343287816572
5615.814.40286767284021.39713232715977
5710.36.200384901232684.09961509876732
5819.416.21072928184623.18927071815378







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
110.6147558946165750.770488210766850.385244105383425
120.4674998278093160.9349996556186330.532500172190684
130.4062865059515060.8125730119030120.593713494048494
140.278116026390830.5562320527816610.721883973609169
150.4495185509074530.8990371018149070.550481449092547
160.5349281783124830.9301436433750350.465071821687517
170.4439300811008370.8878601622016740.556069918899163
180.3392573871330520.6785147742661050.660742612866948
190.8183198865951280.3633602268097450.181680113404872
200.8727105924465130.2545788151069740.127289407553487
210.8305160829511980.3389678340976040.169483917048802
220.7658251565221580.4683496869556830.234174843477842
230.7050570126318020.5898859747363960.294942987368198
240.7772059101439310.4455881797121390.222794089856069
250.7095072084658460.5809855830683070.290492791534154
260.6591560070878610.6816879858242770.340843992912139
270.6346220245674740.7307559508650530.365377975432526
280.6043998942482570.7912002115034850.395600105751743
290.5617940447462330.8764119105075340.438205955253767
300.505717918656370.9885641626872610.49428208134363
310.6624095433543390.6751809132913230.337590456645661
320.5910289949235130.8179420101529740.408971005076487
330.7188638606650850.5622722786698290.281136139334915
340.6858619366615640.6282761266768730.314138063338436
350.6023932448155770.7952135103688460.397606755184423
360.51043306565740.97913386868520.4895669343426
370.4741981794592680.9483963589185360.525801820540732
380.4063456075181140.8126912150362280.593654392481886
390.6313683851766180.7372632296467650.368631614823382
400.731142691823180.5377146163536410.26885730817682
410.6401058792252580.7197882415494830.359894120774742
420.5454031317300190.9091937365399630.454596868269981
430.4529240063744880.9058480127489760.547075993625512
440.3337698717650240.6675397435300470.666230128234977
450.3524589396267520.7049178792535040.647541060373248
460.3026858108434340.6053716216868680.697314189156566
470.1939764464691970.3879528929383940.806023553530803

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
11 & 0.614755894616575 & 0.77048821076685 & 0.385244105383425 \tabularnewline
12 & 0.467499827809316 & 0.934999655618633 & 0.532500172190684 \tabularnewline
13 & 0.406286505951506 & 0.812573011903012 & 0.593713494048494 \tabularnewline
14 & 0.27811602639083 & 0.556232052781661 & 0.721883973609169 \tabularnewline
15 & 0.449518550907453 & 0.899037101814907 & 0.550481449092547 \tabularnewline
16 & 0.534928178312483 & 0.930143643375035 & 0.465071821687517 \tabularnewline
17 & 0.443930081100837 & 0.887860162201674 & 0.556069918899163 \tabularnewline
18 & 0.339257387133052 & 0.678514774266105 & 0.660742612866948 \tabularnewline
19 & 0.818319886595128 & 0.363360226809745 & 0.181680113404872 \tabularnewline
20 & 0.872710592446513 & 0.254578815106974 & 0.127289407553487 \tabularnewline
21 & 0.830516082951198 & 0.338967834097604 & 0.169483917048802 \tabularnewline
22 & 0.765825156522158 & 0.468349686955683 & 0.234174843477842 \tabularnewline
23 & 0.705057012631802 & 0.589885974736396 & 0.294942987368198 \tabularnewline
24 & 0.777205910143931 & 0.445588179712139 & 0.222794089856069 \tabularnewline
25 & 0.709507208465846 & 0.580985583068307 & 0.290492791534154 \tabularnewline
26 & 0.659156007087861 & 0.681687985824277 & 0.340843992912139 \tabularnewline
27 & 0.634622024567474 & 0.730755950865053 & 0.365377975432526 \tabularnewline
28 & 0.604399894248257 & 0.791200211503485 & 0.395600105751743 \tabularnewline
29 & 0.561794044746233 & 0.876411910507534 & 0.438205955253767 \tabularnewline
30 & 0.50571791865637 & 0.988564162687261 & 0.49428208134363 \tabularnewline
31 & 0.662409543354339 & 0.675180913291323 & 0.337590456645661 \tabularnewline
32 & 0.591028994923513 & 0.817942010152974 & 0.408971005076487 \tabularnewline
33 & 0.718863860665085 & 0.562272278669829 & 0.281136139334915 \tabularnewline
34 & 0.685861936661564 & 0.628276126676873 & 0.314138063338436 \tabularnewline
35 & 0.602393244815577 & 0.795213510368846 & 0.397606755184423 \tabularnewline
36 & 0.5104330656574 & 0.9791338686852 & 0.4895669343426 \tabularnewline
37 & 0.474198179459268 & 0.948396358918536 & 0.525801820540732 \tabularnewline
38 & 0.406345607518114 & 0.812691215036228 & 0.593654392481886 \tabularnewline
39 & 0.631368385176618 & 0.737263229646765 & 0.368631614823382 \tabularnewline
40 & 0.73114269182318 & 0.537714616353641 & 0.26885730817682 \tabularnewline
41 & 0.640105879225258 & 0.719788241549483 & 0.359894120774742 \tabularnewline
42 & 0.545403131730019 & 0.909193736539963 & 0.454596868269981 \tabularnewline
43 & 0.452924006374488 & 0.905848012748976 & 0.547075993625512 \tabularnewline
44 & 0.333769871765024 & 0.667539743530047 & 0.666230128234977 \tabularnewline
45 & 0.352458939626752 & 0.704917879253504 & 0.647541060373248 \tabularnewline
46 & 0.302685810843434 & 0.605371621686868 & 0.697314189156566 \tabularnewline
47 & 0.193976446469197 & 0.387952892938394 & 0.806023553530803 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=146367&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]11[/C][C]0.614755894616575[/C][C]0.77048821076685[/C][C]0.385244105383425[/C][/ROW]
[ROW][C]12[/C][C]0.467499827809316[/C][C]0.934999655618633[/C][C]0.532500172190684[/C][/ROW]
[ROW][C]13[/C][C]0.406286505951506[/C][C]0.812573011903012[/C][C]0.593713494048494[/C][/ROW]
[ROW][C]14[/C][C]0.27811602639083[/C][C]0.556232052781661[/C][C]0.721883973609169[/C][/ROW]
[ROW][C]15[/C][C]0.449518550907453[/C][C]0.899037101814907[/C][C]0.550481449092547[/C][/ROW]
[ROW][C]16[/C][C]0.534928178312483[/C][C]0.930143643375035[/C][C]0.465071821687517[/C][/ROW]
[ROW][C]17[/C][C]0.443930081100837[/C][C]0.887860162201674[/C][C]0.556069918899163[/C][/ROW]
[ROW][C]18[/C][C]0.339257387133052[/C][C]0.678514774266105[/C][C]0.660742612866948[/C][/ROW]
[ROW][C]19[/C][C]0.818319886595128[/C][C]0.363360226809745[/C][C]0.181680113404872[/C][/ROW]
[ROW][C]20[/C][C]0.872710592446513[/C][C]0.254578815106974[/C][C]0.127289407553487[/C][/ROW]
[ROW][C]21[/C][C]0.830516082951198[/C][C]0.338967834097604[/C][C]0.169483917048802[/C][/ROW]
[ROW][C]22[/C][C]0.765825156522158[/C][C]0.468349686955683[/C][C]0.234174843477842[/C][/ROW]
[ROW][C]23[/C][C]0.705057012631802[/C][C]0.589885974736396[/C][C]0.294942987368198[/C][/ROW]
[ROW][C]24[/C][C]0.777205910143931[/C][C]0.445588179712139[/C][C]0.222794089856069[/C][/ROW]
[ROW][C]25[/C][C]0.709507208465846[/C][C]0.580985583068307[/C][C]0.290492791534154[/C][/ROW]
[ROW][C]26[/C][C]0.659156007087861[/C][C]0.681687985824277[/C][C]0.340843992912139[/C][/ROW]
[ROW][C]27[/C][C]0.634622024567474[/C][C]0.730755950865053[/C][C]0.365377975432526[/C][/ROW]
[ROW][C]28[/C][C]0.604399894248257[/C][C]0.791200211503485[/C][C]0.395600105751743[/C][/ROW]
[ROW][C]29[/C][C]0.561794044746233[/C][C]0.876411910507534[/C][C]0.438205955253767[/C][/ROW]
[ROW][C]30[/C][C]0.50571791865637[/C][C]0.988564162687261[/C][C]0.49428208134363[/C][/ROW]
[ROW][C]31[/C][C]0.662409543354339[/C][C]0.675180913291323[/C][C]0.337590456645661[/C][/ROW]
[ROW][C]32[/C][C]0.591028994923513[/C][C]0.817942010152974[/C][C]0.408971005076487[/C][/ROW]
[ROW][C]33[/C][C]0.718863860665085[/C][C]0.562272278669829[/C][C]0.281136139334915[/C][/ROW]
[ROW][C]34[/C][C]0.685861936661564[/C][C]0.628276126676873[/C][C]0.314138063338436[/C][/ROW]
[ROW][C]35[/C][C]0.602393244815577[/C][C]0.795213510368846[/C][C]0.397606755184423[/C][/ROW]
[ROW][C]36[/C][C]0.5104330656574[/C][C]0.9791338686852[/C][C]0.4895669343426[/C][/ROW]
[ROW][C]37[/C][C]0.474198179459268[/C][C]0.948396358918536[/C][C]0.525801820540732[/C][/ROW]
[ROW][C]38[/C][C]0.406345607518114[/C][C]0.812691215036228[/C][C]0.593654392481886[/C][/ROW]
[ROW][C]39[/C][C]0.631368385176618[/C][C]0.737263229646765[/C][C]0.368631614823382[/C][/ROW]
[ROW][C]40[/C][C]0.73114269182318[/C][C]0.537714616353641[/C][C]0.26885730817682[/C][/ROW]
[ROW][C]41[/C][C]0.640105879225258[/C][C]0.719788241549483[/C][C]0.359894120774742[/C][/ROW]
[ROW][C]42[/C][C]0.545403131730019[/C][C]0.909193736539963[/C][C]0.454596868269981[/C][/ROW]
[ROW][C]43[/C][C]0.452924006374488[/C][C]0.905848012748976[/C][C]0.547075993625512[/C][/ROW]
[ROW][C]44[/C][C]0.333769871765024[/C][C]0.667539743530047[/C][C]0.666230128234977[/C][/ROW]
[ROW][C]45[/C][C]0.352458939626752[/C][C]0.704917879253504[/C][C]0.647541060373248[/C][/ROW]
[ROW][C]46[/C][C]0.302685810843434[/C][C]0.605371621686868[/C][C]0.697314189156566[/C][/ROW]
[ROW][C]47[/C][C]0.193976446469197[/C][C]0.387952892938394[/C][C]0.806023553530803[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=146367&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=146367&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
110.6147558946165750.770488210766850.385244105383425
120.4674998278093160.9349996556186330.532500172190684
130.4062865059515060.8125730119030120.593713494048494
140.278116026390830.5562320527816610.721883973609169
150.4495185509074530.8990371018149070.550481449092547
160.5349281783124830.9301436433750350.465071821687517
170.4439300811008370.8878601622016740.556069918899163
180.3392573871330520.6785147742661050.660742612866948
190.8183198865951280.3633602268097450.181680113404872
200.8727105924465130.2545788151069740.127289407553487
210.8305160829511980.3389678340976040.169483917048802
220.7658251565221580.4683496869556830.234174843477842
230.7050570126318020.5898859747363960.294942987368198
240.7772059101439310.4455881797121390.222794089856069
250.7095072084658460.5809855830683070.290492791534154
260.6591560070878610.6816879858242770.340843992912139
270.6346220245674740.7307559508650530.365377975432526
280.6043998942482570.7912002115034850.395600105751743
290.5617940447462330.8764119105075340.438205955253767
300.505717918656370.9885641626872610.49428208134363
310.6624095433543390.6751809132913230.337590456645661
320.5910289949235130.8179420101529740.408971005076487
330.7188638606650850.5622722786698290.281136139334915
340.6858619366615640.6282761266768730.314138063338436
350.6023932448155770.7952135103688460.397606755184423
360.51043306565740.97913386868520.4895669343426
370.4741981794592680.9483963589185360.525801820540732
380.4063456075181140.8126912150362280.593654392481886
390.6313683851766180.7372632296467650.368631614823382
400.731142691823180.5377146163536410.26885730817682
410.6401058792252580.7197882415494830.359894120774742
420.5454031317300190.9091937365399630.454596868269981
430.4529240063744880.9058480127489760.547075993625512
440.3337698717650240.6675397435300470.666230128234977
450.3524589396267520.7049178792535040.647541060373248
460.3026858108434340.6053716216868680.697314189156566
470.1939764464691970.3879528929383940.806023553530803







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level00OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 & 0 & OK \tabularnewline
5% type I error level & 0 & 0 & OK \tabularnewline
10% type I error level & 0 & 0 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=146367&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=146367&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=146367&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level00OK



Parameters (Session):
Parameters (R input):
par1 = 3 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}