Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_variability.wasp
Title produced by softwareVariability
Date of computationMon, 28 Nov 2011 10:09:25 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Nov/28/t1322492995l8lttgoa4d2pd5i.htm/, Retrieved Thu, 31 Oct 2024 22:45:37 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=147797, Retrieved Thu, 31 Oct 2024 22:45:37 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsKDGP2W83
Estimated Impact103
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Variability] [] [2011-11-28 15:09:25] [0701895f02f0ec4be946c800149e4a30] [Current]
Feedback Forum

Post a new message
Dataseries X:
369,82
373,10
374,55
375,01
374,81
375,31
375,31
375,39
375,59
376,26
377,18
377,26
377,26
381,87
387,09
387,14
388,78
389,16
389,16
389,42
389,49
388,97
388,97
389,09
389,09
391,76
390,96
391,76
392,80
393,06
393,06
393,26
393,87
394,47
394,57
394,57
394,57
399,57
406,13
407,03
409,46
409,90
409,90
410,14
410,54
410,69
410,79
410,97
410,97
413,80
423,31
423,85
426,60
426,26
426,26
426,32
427,14
427,55
428,29
428,80




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'AstonUniversity' @ aston.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'AstonUniversity' @ aston.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147797&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'AstonUniversity' @ aston.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147797&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147797&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'AstonUniversity' @ aston.wessa.net







Variability - Ungrouped Data
Absolute range58.98
Relative range (unbiased)3.35793364319658
Relative range (biased)3.38627113835945
Variance (unbiased)308.507209152542
Variance (biased)303.365422333333
Standard Deviation (unbiased)17.5643732923365
Standard Deviation (biased)17.4173885049778
Coefficient of Variation (unbiased)0.0442092350443026
Coefficient of Variation (biased)0.0438392767825347
Mean Squared Error (MSE versus 0)158151.450023333
Mean Squared Error (MSE versus Mean)303.365422333333
Mean Absolute Deviation from Mean (MAD Mean)14.8782333333333
Mean Absolute Deviation from Median (MAD Median)14.1203333333333
Median Absolute Deviation from Mean13.039
Median Absolute Deviation from Median16.14
Mean Squared Deviation from Mean303.365422333333
Mean Squared Deviation from Median321.351503333333
Interquartile Difference (Weighted Average at Xnp)23.45
Interquartile Difference (Weighted Average at X(n+1)p)23.55
Interquartile Difference (Empirical Distribution Function)23.45
Interquartile Difference (Empirical Distribution Function - Averaging)23.5
Interquartile Difference (Empirical Distribution Function - Interpolation)23.45
Interquartile Difference (Closest Observation)23.45
Interquartile Difference (True Basic - Statistics Graphics Toolkit)23.45
Interquartile Difference (MS Excel (old versions))23.6
Semi Interquartile Difference (Weighted Average at Xnp)11.725
Semi Interquartile Difference (Weighted Average at X(n+1)p)11.775
Semi Interquartile Difference (Empirical Distribution Function)11.725
Semi Interquartile Difference (Empirical Distribution Function - Averaging)11.75
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)11.725
Semi Interquartile Difference (Closest Observation)11.725
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)11.725
Semi Interquartile Difference (MS Excel (old versions))11.8
Coefficient of Quartile Variation (Weighted Average at Xnp)0.0293995963040508
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.0295203414582171
Coefficient of Quartile Variation (Empirical Distribution Function)0.0293995963040508
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.0294585887455655
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.0293968321622655
Coefficient of Quartile Variation (Closest Observation)0.0293995963040508
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.0293968321622656
Coefficient of Quartile Variation (MS Excel (old versions))0.0295820903005841
Number of all Pairs of Observations1770
Squared Differences between all Pairs of Observations617.014418305084
Mean Absolute Differences between all Pairs of Observations19.962406779661
Gini Mean Difference19.962406779661
Leik Measure of Dispersion0.509634123479819
Index of Diversity0.98330130196352
Index of Qualitative Variation0.999967425725613
Coefficient of Dispersion0.0378523211044963
Observations60

\begin{tabular}{lllllllll}
\hline
Variability - Ungrouped Data \tabularnewline
Absolute range & 58.98 \tabularnewline
Relative range (unbiased) & 3.35793364319658 \tabularnewline
Relative range (biased) & 3.38627113835945 \tabularnewline
Variance (unbiased) & 308.507209152542 \tabularnewline
Variance (biased) & 303.365422333333 \tabularnewline
Standard Deviation (unbiased) & 17.5643732923365 \tabularnewline
Standard Deviation (biased) & 17.4173885049778 \tabularnewline
Coefficient of Variation (unbiased) & 0.0442092350443026 \tabularnewline
Coefficient of Variation (biased) & 0.0438392767825347 \tabularnewline
Mean Squared Error (MSE versus 0) & 158151.450023333 \tabularnewline
Mean Squared Error (MSE versus Mean) & 303.365422333333 \tabularnewline
Mean Absolute Deviation from Mean (MAD Mean) & 14.8782333333333 \tabularnewline
Mean Absolute Deviation from Median (MAD Median) & 14.1203333333333 \tabularnewline
Median Absolute Deviation from Mean & 13.039 \tabularnewline
Median Absolute Deviation from Median & 16.14 \tabularnewline
Mean Squared Deviation from Mean & 303.365422333333 \tabularnewline
Mean Squared Deviation from Median & 321.351503333333 \tabularnewline
Interquartile Difference (Weighted Average at Xnp) & 23.45 \tabularnewline
Interquartile Difference (Weighted Average at X(n+1)p) & 23.55 \tabularnewline
Interquartile Difference (Empirical Distribution Function) & 23.45 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Averaging) & 23.5 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Interpolation) & 23.45 \tabularnewline
Interquartile Difference (Closest Observation) & 23.45 \tabularnewline
Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 23.45 \tabularnewline
Interquartile Difference (MS Excel (old versions)) & 23.6 \tabularnewline
Semi Interquartile Difference (Weighted Average at Xnp) & 11.725 \tabularnewline
Semi Interquartile Difference (Weighted Average at X(n+1)p) & 11.775 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function) & 11.725 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Averaging) & 11.75 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Interpolation) & 11.725 \tabularnewline
Semi Interquartile Difference (Closest Observation) & 11.725 \tabularnewline
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 11.725 \tabularnewline
Semi Interquartile Difference (MS Excel (old versions)) & 11.8 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at Xnp) & 0.0293995963040508 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at X(n+1)p) & 0.0295203414582171 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function) & 0.0293995963040508 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging) & 0.0294585887455655 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation) & 0.0293968321622655 \tabularnewline
Coefficient of Quartile Variation (Closest Observation) & 0.0293995963040508 \tabularnewline
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit) & 0.0293968321622656 \tabularnewline
Coefficient of Quartile Variation (MS Excel (old versions)) & 0.0295820903005841 \tabularnewline
Number of all Pairs of Observations & 1770 \tabularnewline
Squared Differences between all Pairs of Observations & 617.014418305084 \tabularnewline
Mean Absolute Differences between all Pairs of Observations & 19.962406779661 \tabularnewline
Gini Mean Difference & 19.962406779661 \tabularnewline
Leik Measure of Dispersion & 0.509634123479819 \tabularnewline
Index of Diversity & 0.98330130196352 \tabularnewline
Index of Qualitative Variation & 0.999967425725613 \tabularnewline
Coefficient of Dispersion & 0.0378523211044963 \tabularnewline
Observations & 60 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=147797&T=1

[TABLE]
[ROW][C]Variability - Ungrouped Data[/C][/ROW]
[ROW][C]Absolute range[/C][C]58.98[/C][/ROW]
[ROW][C]Relative range (unbiased)[/C][C]3.35793364319658[/C][/ROW]
[ROW][C]Relative range (biased)[/C][C]3.38627113835945[/C][/ROW]
[ROW][C]Variance (unbiased)[/C][C]308.507209152542[/C][/ROW]
[ROW][C]Variance (biased)[/C][C]303.365422333333[/C][/ROW]
[ROW][C]Standard Deviation (unbiased)[/C][C]17.5643732923365[/C][/ROW]
[ROW][C]Standard Deviation (biased)[/C][C]17.4173885049778[/C][/ROW]
[ROW][C]Coefficient of Variation (unbiased)[/C][C]0.0442092350443026[/C][/ROW]
[ROW][C]Coefficient of Variation (biased)[/C][C]0.0438392767825347[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus 0)[/C][C]158151.450023333[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus Mean)[/C][C]303.365422333333[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Mean (MAD Mean)[/C][C]14.8782333333333[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Median (MAD Median)[/C][C]14.1203333333333[/C][/ROW]
[ROW][C]Median Absolute Deviation from Mean[/C][C]13.039[/C][/ROW]
[ROW][C]Median Absolute Deviation from Median[/C][C]16.14[/C][/ROW]
[ROW][C]Mean Squared Deviation from Mean[/C][C]303.365422333333[/C][/ROW]
[ROW][C]Mean Squared Deviation from Median[/C][C]321.351503333333[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at Xnp)[/C][C]23.45[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]23.55[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function)[/C][C]23.45[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]23.5[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]23.45[/C][/ROW]
[ROW][C]Interquartile Difference (Closest Observation)[/C][C]23.45[/C][/ROW]
[ROW][C]Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]23.45[/C][/ROW]
[ROW][C]Interquartile Difference (MS Excel (old versions))[/C][C]23.6[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at Xnp)[/C][C]11.725[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]11.775[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function)[/C][C]11.725[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]11.75[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]11.725[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Closest Observation)[/C][C]11.725[/C][/ROW]
[ROW][C]Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]11.725[/C][/ROW]
[ROW][C]Semi Interquartile Difference (MS Excel (old versions))[/C][C]11.8[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at Xnp)[/C][C]0.0293995963040508[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at X(n+1)p)[/C][C]0.0295203414582171[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function)[/C][C]0.0293995963040508[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)[/C][C]0.0294585887455655[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)[/C][C]0.0293968321622655[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Closest Observation)[/C][C]0.0293995963040508[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)[/C][C]0.0293968321622656[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (MS Excel (old versions))[/C][C]0.0295820903005841[/C][/ROW]
[ROW][C]Number of all Pairs of Observations[/C][C]1770[/C][/ROW]
[ROW][C]Squared Differences between all Pairs of Observations[/C][C]617.014418305084[/C][/ROW]
[ROW][C]Mean Absolute Differences between all Pairs of Observations[/C][C]19.962406779661[/C][/ROW]
[ROW][C]Gini Mean Difference[/C][C]19.962406779661[/C][/ROW]
[ROW][C]Leik Measure of Dispersion[/C][C]0.509634123479819[/C][/ROW]
[ROW][C]Index of Diversity[/C][C]0.98330130196352[/C][/ROW]
[ROW][C]Index of Qualitative Variation[/C][C]0.999967425725613[/C][/ROW]
[ROW][C]Coefficient of Dispersion[/C][C]0.0378523211044963[/C][/ROW]
[ROW][C]Observations[/C][C]60[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=147797&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=147797&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variability - Ungrouped Data
Absolute range58.98
Relative range (unbiased)3.35793364319658
Relative range (biased)3.38627113835945
Variance (unbiased)308.507209152542
Variance (biased)303.365422333333
Standard Deviation (unbiased)17.5643732923365
Standard Deviation (biased)17.4173885049778
Coefficient of Variation (unbiased)0.0442092350443026
Coefficient of Variation (biased)0.0438392767825347
Mean Squared Error (MSE versus 0)158151.450023333
Mean Squared Error (MSE versus Mean)303.365422333333
Mean Absolute Deviation from Mean (MAD Mean)14.8782333333333
Mean Absolute Deviation from Median (MAD Median)14.1203333333333
Median Absolute Deviation from Mean13.039
Median Absolute Deviation from Median16.14
Mean Squared Deviation from Mean303.365422333333
Mean Squared Deviation from Median321.351503333333
Interquartile Difference (Weighted Average at Xnp)23.45
Interquartile Difference (Weighted Average at X(n+1)p)23.55
Interquartile Difference (Empirical Distribution Function)23.45
Interquartile Difference (Empirical Distribution Function - Averaging)23.5
Interquartile Difference (Empirical Distribution Function - Interpolation)23.45
Interquartile Difference (Closest Observation)23.45
Interquartile Difference (True Basic - Statistics Graphics Toolkit)23.45
Interquartile Difference (MS Excel (old versions))23.6
Semi Interquartile Difference (Weighted Average at Xnp)11.725
Semi Interquartile Difference (Weighted Average at X(n+1)p)11.775
Semi Interquartile Difference (Empirical Distribution Function)11.725
Semi Interquartile Difference (Empirical Distribution Function - Averaging)11.75
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)11.725
Semi Interquartile Difference (Closest Observation)11.725
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)11.725
Semi Interquartile Difference (MS Excel (old versions))11.8
Coefficient of Quartile Variation (Weighted Average at Xnp)0.0293995963040508
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.0295203414582171
Coefficient of Quartile Variation (Empirical Distribution Function)0.0293995963040508
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.0294585887455655
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.0293968321622655
Coefficient of Quartile Variation (Closest Observation)0.0293995963040508
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.0293968321622656
Coefficient of Quartile Variation (MS Excel (old versions))0.0295820903005841
Number of all Pairs of Observations1770
Squared Differences between all Pairs of Observations617.014418305084
Mean Absolute Differences between all Pairs of Observations19.962406779661
Gini Mean Difference19.962406779661
Leik Measure of Dispersion0.509634123479819
Index of Diversity0.98330130196352
Index of Qualitative Variation0.999967425725613
Coefficient of Dispersion0.0378523211044963
Observations60



Parameters (Session):
Parameters (R input):
R code (references can be found in the software module):
num <- 50
res <- array(NA,dim=c(num,3))
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
iqd <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
iqdiff <- qvalue3 - qvalue1
return(c(iqdiff,iqdiff/2,iqdiff/(qvalue3 + qvalue1)))
}
range <- max(x) - min(x)
lx <- length(x)
biasf <- (lx-1)/lx
varx <- var(x)
bvarx <- varx*biasf
sdx <- sqrt(varx)
mx <- mean(x)
bsdx <- sqrt(bvarx)
x2 <- x*x
mse0 <- sum(x2)/lx
xmm <- x-mx
xmm2 <- xmm*xmm
msem <- sum(xmm2)/lx
axmm <- abs(x - mx)
medx <- median(x)
axmmed <- abs(x - medx)
xmmed <- x - medx
xmmed2 <- xmmed*xmmed
msemed <- sum(xmmed2)/lx
qarr <- array(NA,dim=c(8,3))
for (j in 1:8) {
qarr[j,] <- iqd(x,j)
}
sdpo <- 0
adpo <- 0
for (i in 1:(lx-1)) {
for (j in (i+1):lx) {
ldi <- x[i]-x[j]
aldi <- abs(ldi)
sdpo = sdpo + ldi * ldi
adpo = adpo + aldi
}
}
denom <- (lx*(lx-1)/2)
sdpo = sdpo / denom
adpo = adpo / denom
gmd <- 0
for (i in 1:lx) {
for (j in 1:lx) {
ldi <- abs(x[i]-x[j])
gmd = gmd + ldi
}
}
gmd <- gmd / (lx*(lx-1))
sumx <- sum(x)
pk <- x / sumx
ck <- cumsum(pk)
dk <- array(NA,dim=lx)
for (i in 1:lx) {
if (ck[i] <= 0.5) dk[i] <- ck[i] else dk[i] <- 1 - ck[i]
}
bigd <- sum(dk) * 2 / (lx-1)
iod <- 1 - sum(pk*pk)
res[1,] <- c('Absolute range','absolute.htm', range)
res[2,] <- c('Relative range (unbiased)','relative.htm', range/sd(x))
res[3,] <- c('Relative range (biased)','relative.htm', range/sqrt(varx*biasf))
res[4,] <- c('Variance (unbiased)','unbiased.htm', varx)
res[5,] <- c('Variance (biased)','biased.htm', bvarx)
res[6,] <- c('Standard Deviation (unbiased)','unbiased1.htm', sdx)
res[7,] <- c('Standard Deviation (biased)','biased1.htm', bsdx)
res[8,] <- c('Coefficient of Variation (unbiased)','variation.htm', sdx/mx)
res[9,] <- c('Coefficient of Variation (biased)','variation.htm', bsdx/mx)
res[10,] <- c('Mean Squared Error (MSE versus 0)','mse.htm', mse0)
res[11,] <- c('Mean Squared Error (MSE versus Mean)','mse.htm', msem)
res[12,] <- c('Mean Absolute Deviation from Mean (MAD Mean)', 'mean2.htm', sum(axmm)/lx)
res[13,] <- c('Mean Absolute Deviation from Median (MAD Median)', 'median1.htm', sum(axmmed)/lx)
res[14,] <- c('Median Absolute Deviation from Mean', 'mean3.htm', median(axmm))
res[15,] <- c('Median Absolute Deviation from Median', 'median2.htm', median(axmmed))
res[16,] <- c('Mean Squared Deviation from Mean', 'mean1.htm', msem)
res[17,] <- c('Mean Squared Deviation from Median', 'median.htm', msemed)
load(file='createtable')
mylink1 <- hyperlink('difference.htm','Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[18,] <- c('', mylink2, qarr[1,1])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[19,] <- c('', mylink2, qarr[2,1])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[20,] <- c('', mylink2, qarr[3,1])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[21,] <- c('', mylink2, qarr[4,1])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[22,] <- c('', mylink2, qarr[5,1])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[23,] <- c('', mylink2, qarr[6,1])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[24,] <- c('', mylink2, qarr[7,1])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[25,] <- c('', mylink2, qarr[8,1])
mylink1 <- hyperlink('deviation.htm','Semi Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[26,] <- c('', mylink2, qarr[1,2])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[27,] <- c('', mylink2, qarr[2,2])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[28,] <- c('', mylink2, qarr[3,2])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[29,] <- c('', mylink2, qarr[4,2])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[30,] <- c('', mylink2, qarr[5,2])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[31,] <- c('', mylink2, qarr[6,2])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[32,] <- c('', mylink2, qarr[7,2])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[33,] <- c('', mylink2, qarr[8,2])
mylink1 <- hyperlink('variation1.htm','Coefficient of Quartile Variation','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[34,] <- c('', mylink2, qarr[1,3])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[35,] <- c('', mylink2, qarr[2,3])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[36,] <- c('', mylink2, qarr[3,3])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[37,] <- c('', mylink2, qarr[4,3])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[38,] <- c('', mylink2, qarr[5,3])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[39,] <- c('', mylink2, qarr[6,3])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[40,] <- c('', mylink2, qarr[7,3])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[41,] <- c('', mylink2, qarr[8,3])
res[42,] <- c('Number of all Pairs of Observations', 'pair_numbers.htm', lx*(lx-1)/2)
res[43,] <- c('Squared Differences between all Pairs of Observations', 'squared_differences.htm', sdpo)
res[44,] <- c('Mean Absolute Differences between all Pairs of Observations', 'mean_abs_differences.htm', adpo)
res[45,] <- c('Gini Mean Difference', 'gini_mean_difference.htm', gmd)
res[46,] <- c('Leik Measure of Dispersion', 'leiks_d.htm', bigd)
res[47,] <- c('Index of Diversity', 'diversity.htm', iod)
res[48,] <- c('Index of Qualitative Variation', 'qualitative_variation.htm', iod*lx/(lx-1))
res[49,] <- c('Coefficient of Dispersion', 'dispersion.htm', sum(axmm)/lx/medx)
res[50,] <- c('Observations', '', lx)
res
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variability - Ungrouped Data',2,TRUE)
a<-table.row.end(a)
for (i in 1:num) {
a<-table.row.start(a)
if (res[i,1] != '') {
a<-table.element(a,hyperlink(res[i,2],res[i,1],''),header=TRUE)
} else {
a<-table.element(a,res[i,2],header=TRUE)
}
a<-table.element(a,res[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')