Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_variability.wasp
Title produced by softwareVariability
Date of computationWed, 30 Nov 2011 15:25:43 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Nov/30/t13226847952vwli3ap0r334xj.htm/, Retrieved Thu, 31 Oct 2024 23:10:18 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=149149, Retrieved Thu, 31 Oct 2024 23:10:18 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsKDGP2W83
Estimated Impact124
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Variability] [Varibility eige data] [2011-11-30 20:25:43] [cbc0158ed4ce90347cf58cee0539a6b2] [Current]
Feedback Forum

Post a new message
Dataseries X:
106,09
106,19
106,2
106,22
106,22
106,23
106,23
106,61
106,95
107,2
107,56
107,72
107,74
107,8
107,8
108,1
108,14
108,16
108,16
108,16
108,95
110,49
110,71
110,72
110,75
110,82
110,82
110,84
110,84
110,84
110,86
110,92
111,46
112,46
113,04
113,15
113,15
113,21
113,37
113,47
113,71
113,71
113,71
113,8
115,46
117
117,94
118,08
118,08
118,45
118,47
118,49
118,54
118,55
118,55
118,55
119,04
121,37
121,73
121,83
121,83
121,91
122
122,03
122,14
122,14
122,23
122,49
123,02
125,98
126,13
126,39




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ wold.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=149149&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ wold.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=149149&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=149149&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net







Variability - Ungrouped Data
Absolute range20.3
Relative range (unbiased)3.38658358198171
Relative range (biased)3.41034937237522
Variance (unbiased)35.9309316901408
Variance (biased)35.4318909722222
Standard Deviation (unbiased)5.99424154419396
Standard Deviation (biased)5.95246931720124
Coefficient of Variation (unbiased)0.0525829880699789
Coefficient of Variation (biased)0.0522165516330384
Mean Squared Error (MSE versus 0)13030.4819083333
Mean Squared Error (MSE versus Mean)35.4318909722222
Mean Absolute Deviation from Mean (MAD Mean)5.18157407407408
Mean Absolute Deviation from Median (MAD Median)5.075
Median Absolute Deviation from Mean5.045
Median Absolute Deviation from Median5.32999999999999
Mean Squared Deviation from Mean35.4318909722222
Mean Squared Deviation from Median36.147325
Interquartile Difference (Weighted Average at Xnp)10.39
Interquartile Difference (Weighted Average at X(n+1)p)10.39
Interquartile Difference (Empirical Distribution Function)10.39
Interquartile Difference (Empirical Distribution Function - Averaging)10.39
Interquartile Difference (Empirical Distribution Function - Interpolation)10.39
Interquartile Difference (Closest Observation)10.39
Interquartile Difference (True Basic - Statistics Graphics Toolkit)10.39
Interquartile Difference (MS Excel (old versions))10.39
Semi Interquartile Difference (Weighted Average at Xnp)5.195
Semi Interquartile Difference (Weighted Average at X(n+1)p)5.195
Semi Interquartile Difference (Empirical Distribution Function)5.195
Semi Interquartile Difference (Empirical Distribution Function - Averaging)5.195
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)5.195
Semi Interquartile Difference (Closest Observation)5.195
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)5.195
Semi Interquartile Difference (MS Excel (old versions))5.195
Coefficient of Quartile Variation (Weighted Average at Xnp)0.045829473777072
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.045829473777072
Coefficient of Quartile Variation (Empirical Distribution Function)0.045829473777072
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.045829473777072
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.045829473777072
Coefficient of Quartile Variation (Closest Observation)0.045829473777072
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.045829473777072
Coefficient of Quartile Variation (MS Excel (old versions))0.045829473777072
Number of all Pairs of Observations2556
Squared Differences between all Pairs of Observations71.8618633802815
Mean Absolute Differences between all Pairs of Observations6.84883411580596
Gini Mean Difference6.84883411580596
Leik Measure of Dispersion0.508041933141792
Index of Diversity0.986073242107438
Index of Qualitative Variation0.999961597630078
Coefficient of Dispersion0.045793849527831
Observations72

\begin{tabular}{lllllllll}
\hline
Variability - Ungrouped Data \tabularnewline
Absolute range & 20.3 \tabularnewline
Relative range (unbiased) & 3.38658358198171 \tabularnewline
Relative range (biased) & 3.41034937237522 \tabularnewline
Variance (unbiased) & 35.9309316901408 \tabularnewline
Variance (biased) & 35.4318909722222 \tabularnewline
Standard Deviation (unbiased) & 5.99424154419396 \tabularnewline
Standard Deviation (biased) & 5.95246931720124 \tabularnewline
Coefficient of Variation (unbiased) & 0.0525829880699789 \tabularnewline
Coefficient of Variation (biased) & 0.0522165516330384 \tabularnewline
Mean Squared Error (MSE versus 0) & 13030.4819083333 \tabularnewline
Mean Squared Error (MSE versus Mean) & 35.4318909722222 \tabularnewline
Mean Absolute Deviation from Mean (MAD Mean) & 5.18157407407408 \tabularnewline
Mean Absolute Deviation from Median (MAD Median) & 5.075 \tabularnewline
Median Absolute Deviation from Mean & 5.045 \tabularnewline
Median Absolute Deviation from Median & 5.32999999999999 \tabularnewline
Mean Squared Deviation from Mean & 35.4318909722222 \tabularnewline
Mean Squared Deviation from Median & 36.147325 \tabularnewline
Interquartile Difference (Weighted Average at Xnp) & 10.39 \tabularnewline
Interquartile Difference (Weighted Average at X(n+1)p) & 10.39 \tabularnewline
Interquartile Difference (Empirical Distribution Function) & 10.39 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Averaging) & 10.39 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Interpolation) & 10.39 \tabularnewline
Interquartile Difference (Closest Observation) & 10.39 \tabularnewline
Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 10.39 \tabularnewline
Interquartile Difference (MS Excel (old versions)) & 10.39 \tabularnewline
Semi Interquartile Difference (Weighted Average at Xnp) & 5.195 \tabularnewline
Semi Interquartile Difference (Weighted Average at X(n+1)p) & 5.195 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function) & 5.195 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Averaging) & 5.195 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Interpolation) & 5.195 \tabularnewline
Semi Interquartile Difference (Closest Observation) & 5.195 \tabularnewline
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 5.195 \tabularnewline
Semi Interquartile Difference (MS Excel (old versions)) & 5.195 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at Xnp) & 0.045829473777072 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at X(n+1)p) & 0.045829473777072 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function) & 0.045829473777072 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging) & 0.045829473777072 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation) & 0.045829473777072 \tabularnewline
Coefficient of Quartile Variation (Closest Observation) & 0.045829473777072 \tabularnewline
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit) & 0.045829473777072 \tabularnewline
Coefficient of Quartile Variation (MS Excel (old versions)) & 0.045829473777072 \tabularnewline
Number of all Pairs of Observations & 2556 \tabularnewline
Squared Differences between all Pairs of Observations & 71.8618633802815 \tabularnewline
Mean Absolute Differences between all Pairs of Observations & 6.84883411580596 \tabularnewline
Gini Mean Difference & 6.84883411580596 \tabularnewline
Leik Measure of Dispersion & 0.508041933141792 \tabularnewline
Index of Diversity & 0.986073242107438 \tabularnewline
Index of Qualitative Variation & 0.999961597630078 \tabularnewline
Coefficient of Dispersion & 0.045793849527831 \tabularnewline
Observations & 72 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=149149&T=1

[TABLE]
[ROW][C]Variability - Ungrouped Data[/C][/ROW]
[ROW][C]Absolute range[/C][C]20.3[/C][/ROW]
[ROW][C]Relative range (unbiased)[/C][C]3.38658358198171[/C][/ROW]
[ROW][C]Relative range (biased)[/C][C]3.41034937237522[/C][/ROW]
[ROW][C]Variance (unbiased)[/C][C]35.9309316901408[/C][/ROW]
[ROW][C]Variance (biased)[/C][C]35.4318909722222[/C][/ROW]
[ROW][C]Standard Deviation (unbiased)[/C][C]5.99424154419396[/C][/ROW]
[ROW][C]Standard Deviation (biased)[/C][C]5.95246931720124[/C][/ROW]
[ROW][C]Coefficient of Variation (unbiased)[/C][C]0.0525829880699789[/C][/ROW]
[ROW][C]Coefficient of Variation (biased)[/C][C]0.0522165516330384[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus 0)[/C][C]13030.4819083333[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus Mean)[/C][C]35.4318909722222[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Mean (MAD Mean)[/C][C]5.18157407407408[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Median (MAD Median)[/C][C]5.075[/C][/ROW]
[ROW][C]Median Absolute Deviation from Mean[/C][C]5.045[/C][/ROW]
[ROW][C]Median Absolute Deviation from Median[/C][C]5.32999999999999[/C][/ROW]
[ROW][C]Mean Squared Deviation from Mean[/C][C]35.4318909722222[/C][/ROW]
[ROW][C]Mean Squared Deviation from Median[/C][C]36.147325[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at Xnp)[/C][C]10.39[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]10.39[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function)[/C][C]10.39[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]10.39[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]10.39[/C][/ROW]
[ROW][C]Interquartile Difference (Closest Observation)[/C][C]10.39[/C][/ROW]
[ROW][C]Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]10.39[/C][/ROW]
[ROW][C]Interquartile Difference (MS Excel (old versions))[/C][C]10.39[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at Xnp)[/C][C]5.195[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]5.195[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function)[/C][C]5.195[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]5.195[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]5.195[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Closest Observation)[/C][C]5.195[/C][/ROW]
[ROW][C]Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]5.195[/C][/ROW]
[ROW][C]Semi Interquartile Difference (MS Excel (old versions))[/C][C]5.195[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at Xnp)[/C][C]0.045829473777072[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at X(n+1)p)[/C][C]0.045829473777072[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function)[/C][C]0.045829473777072[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)[/C][C]0.045829473777072[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)[/C][C]0.045829473777072[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Closest Observation)[/C][C]0.045829473777072[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)[/C][C]0.045829473777072[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (MS Excel (old versions))[/C][C]0.045829473777072[/C][/ROW]
[ROW][C]Number of all Pairs of Observations[/C][C]2556[/C][/ROW]
[ROW][C]Squared Differences between all Pairs of Observations[/C][C]71.8618633802815[/C][/ROW]
[ROW][C]Mean Absolute Differences between all Pairs of Observations[/C][C]6.84883411580596[/C][/ROW]
[ROW][C]Gini Mean Difference[/C][C]6.84883411580596[/C][/ROW]
[ROW][C]Leik Measure of Dispersion[/C][C]0.508041933141792[/C][/ROW]
[ROW][C]Index of Diversity[/C][C]0.986073242107438[/C][/ROW]
[ROW][C]Index of Qualitative Variation[/C][C]0.999961597630078[/C][/ROW]
[ROW][C]Coefficient of Dispersion[/C][C]0.045793849527831[/C][/ROW]
[ROW][C]Observations[/C][C]72[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=149149&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=149149&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variability - Ungrouped Data
Absolute range20.3
Relative range (unbiased)3.38658358198171
Relative range (biased)3.41034937237522
Variance (unbiased)35.9309316901408
Variance (biased)35.4318909722222
Standard Deviation (unbiased)5.99424154419396
Standard Deviation (biased)5.95246931720124
Coefficient of Variation (unbiased)0.0525829880699789
Coefficient of Variation (biased)0.0522165516330384
Mean Squared Error (MSE versus 0)13030.4819083333
Mean Squared Error (MSE versus Mean)35.4318909722222
Mean Absolute Deviation from Mean (MAD Mean)5.18157407407408
Mean Absolute Deviation from Median (MAD Median)5.075
Median Absolute Deviation from Mean5.045
Median Absolute Deviation from Median5.32999999999999
Mean Squared Deviation from Mean35.4318909722222
Mean Squared Deviation from Median36.147325
Interquartile Difference (Weighted Average at Xnp)10.39
Interquartile Difference (Weighted Average at X(n+1)p)10.39
Interquartile Difference (Empirical Distribution Function)10.39
Interquartile Difference (Empirical Distribution Function - Averaging)10.39
Interquartile Difference (Empirical Distribution Function - Interpolation)10.39
Interquartile Difference (Closest Observation)10.39
Interquartile Difference (True Basic - Statistics Graphics Toolkit)10.39
Interquartile Difference (MS Excel (old versions))10.39
Semi Interquartile Difference (Weighted Average at Xnp)5.195
Semi Interquartile Difference (Weighted Average at X(n+1)p)5.195
Semi Interquartile Difference (Empirical Distribution Function)5.195
Semi Interquartile Difference (Empirical Distribution Function - Averaging)5.195
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)5.195
Semi Interquartile Difference (Closest Observation)5.195
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)5.195
Semi Interquartile Difference (MS Excel (old versions))5.195
Coefficient of Quartile Variation (Weighted Average at Xnp)0.045829473777072
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.045829473777072
Coefficient of Quartile Variation (Empirical Distribution Function)0.045829473777072
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.045829473777072
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.045829473777072
Coefficient of Quartile Variation (Closest Observation)0.045829473777072
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.045829473777072
Coefficient of Quartile Variation (MS Excel (old versions))0.045829473777072
Number of all Pairs of Observations2556
Squared Differences between all Pairs of Observations71.8618633802815
Mean Absolute Differences between all Pairs of Observations6.84883411580596
Gini Mean Difference6.84883411580596
Leik Measure of Dispersion0.508041933141792
Index of Diversity0.986073242107438
Index of Qualitative Variation0.999961597630078
Coefficient of Dispersion0.045793849527831
Observations72



Parameters (Session):
Parameters (R input):
R code (references can be found in the software module):
num <- 50
res <- array(NA,dim=c(num,3))
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
iqd <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
iqdiff <- qvalue3 - qvalue1
return(c(iqdiff,iqdiff/2,iqdiff/(qvalue3 + qvalue1)))
}
range <- max(x) - min(x)
lx <- length(x)
biasf <- (lx-1)/lx
varx <- var(x)
bvarx <- varx*biasf
sdx <- sqrt(varx)
mx <- mean(x)
bsdx <- sqrt(bvarx)
x2 <- x*x
mse0 <- sum(x2)/lx
xmm <- x-mx
xmm2 <- xmm*xmm
msem <- sum(xmm2)/lx
axmm <- abs(x - mx)
medx <- median(x)
axmmed <- abs(x - medx)
xmmed <- x - medx
xmmed2 <- xmmed*xmmed
msemed <- sum(xmmed2)/lx
qarr <- array(NA,dim=c(8,3))
for (j in 1:8) {
qarr[j,] <- iqd(x,j)
}
sdpo <- 0
adpo <- 0
for (i in 1:(lx-1)) {
for (j in (i+1):lx) {
ldi <- x[i]-x[j]
aldi <- abs(ldi)
sdpo = sdpo + ldi * ldi
adpo = adpo + aldi
}
}
denom <- (lx*(lx-1)/2)
sdpo = sdpo / denom
adpo = adpo / denom
gmd <- 0
for (i in 1:lx) {
for (j in 1:lx) {
ldi <- abs(x[i]-x[j])
gmd = gmd + ldi
}
}
gmd <- gmd / (lx*(lx-1))
sumx <- sum(x)
pk <- x / sumx
ck <- cumsum(pk)
dk <- array(NA,dim=lx)
for (i in 1:lx) {
if (ck[i] <= 0.5) dk[i] <- ck[i] else dk[i] <- 1 - ck[i]
}
bigd <- sum(dk) * 2 / (lx-1)
iod <- 1 - sum(pk*pk)
res[1,] <- c('Absolute range','absolute.htm', range)
res[2,] <- c('Relative range (unbiased)','relative.htm', range/sd(x))
res[3,] <- c('Relative range (biased)','relative.htm', range/sqrt(varx*biasf))
res[4,] <- c('Variance (unbiased)','unbiased.htm', varx)
res[5,] <- c('Variance (biased)','biased.htm', bvarx)
res[6,] <- c('Standard Deviation (unbiased)','unbiased1.htm', sdx)
res[7,] <- c('Standard Deviation (biased)','biased1.htm', bsdx)
res[8,] <- c('Coefficient of Variation (unbiased)','variation.htm', sdx/mx)
res[9,] <- c('Coefficient of Variation (biased)','variation.htm', bsdx/mx)
res[10,] <- c('Mean Squared Error (MSE versus 0)','mse.htm', mse0)
res[11,] <- c('Mean Squared Error (MSE versus Mean)','mse.htm', msem)
res[12,] <- c('Mean Absolute Deviation from Mean (MAD Mean)', 'mean2.htm', sum(axmm)/lx)
res[13,] <- c('Mean Absolute Deviation from Median (MAD Median)', 'median1.htm', sum(axmmed)/lx)
res[14,] <- c('Median Absolute Deviation from Mean', 'mean3.htm', median(axmm))
res[15,] <- c('Median Absolute Deviation from Median', 'median2.htm', median(axmmed))
res[16,] <- c('Mean Squared Deviation from Mean', 'mean1.htm', msem)
res[17,] <- c('Mean Squared Deviation from Median', 'median.htm', msemed)
load(file='createtable')
mylink1 <- hyperlink('difference.htm','Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[18,] <- c('', mylink2, qarr[1,1])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[19,] <- c('', mylink2, qarr[2,1])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[20,] <- c('', mylink2, qarr[3,1])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[21,] <- c('', mylink2, qarr[4,1])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[22,] <- c('', mylink2, qarr[5,1])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[23,] <- c('', mylink2, qarr[6,1])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[24,] <- c('', mylink2, qarr[7,1])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[25,] <- c('', mylink2, qarr[8,1])
mylink1 <- hyperlink('deviation.htm','Semi Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[26,] <- c('', mylink2, qarr[1,2])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[27,] <- c('', mylink2, qarr[2,2])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[28,] <- c('', mylink2, qarr[3,2])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[29,] <- c('', mylink2, qarr[4,2])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[30,] <- c('', mylink2, qarr[5,2])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[31,] <- c('', mylink2, qarr[6,2])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[32,] <- c('', mylink2, qarr[7,2])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[33,] <- c('', mylink2, qarr[8,2])
mylink1 <- hyperlink('variation1.htm','Coefficient of Quartile Variation','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[34,] <- c('', mylink2, qarr[1,3])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[35,] <- c('', mylink2, qarr[2,3])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[36,] <- c('', mylink2, qarr[3,3])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[37,] <- c('', mylink2, qarr[4,3])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[38,] <- c('', mylink2, qarr[5,3])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[39,] <- c('', mylink2, qarr[6,3])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[40,] <- c('', mylink2, qarr[7,3])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[41,] <- c('', mylink2, qarr[8,3])
res[42,] <- c('Number of all Pairs of Observations', 'pair_numbers.htm', lx*(lx-1)/2)
res[43,] <- c('Squared Differences between all Pairs of Observations', 'squared_differences.htm', sdpo)
res[44,] <- c('Mean Absolute Differences between all Pairs of Observations', 'mean_abs_differences.htm', adpo)
res[45,] <- c('Gini Mean Difference', 'gini_mean_difference.htm', gmd)
res[46,] <- c('Leik Measure of Dispersion', 'leiks_d.htm', bigd)
res[47,] <- c('Index of Diversity', 'diversity.htm', iod)
res[48,] <- c('Index of Qualitative Variation', 'qualitative_variation.htm', iod*lx/(lx-1))
res[49,] <- c('Coefficient of Dispersion', 'dispersion.htm', sum(axmm)/lx/medx)
res[50,] <- c('Observations', '', lx)
res
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variability - Ungrouped Data',2,TRUE)
a<-table.row.end(a)
for (i in 1:num) {
a<-table.row.start(a)
if (res[i,1] != '') {
a<-table.element(a,hyperlink(res[i,2],res[i,1],''),header=TRUE)
} else {
a<-table.element(a,res[i,2],header=TRUE)
}
a<-table.element(a,res[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')