| par2 <- as.numeric(par2)x <- ts(x,freq=par2)
 m <- decompose(x,type=par1)
 m$figure
 bitmap(file='test1.png')
 plot(m)
 dev.off()
 mylagmax <- length(x)/2
 bitmap(file='test2.png')
 op <- par(mfrow = c(2,2))
 acf(as.numeric(x),lag.max = mylagmax,main='Observed')
 acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
 acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
 acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
 par(op)
 dev.off()
 bitmap(file='test3.png')
 op <- par(mfrow = c(2,2))
 spectrum(as.numeric(x),main='Observed')
 spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
 spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
 spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
 par(op)
 dev.off()
 bitmap(file='test4.png')
 op <- par(mfrow = c(2,2))
 cpgram(as.numeric(x),main='Observed')
 cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
 cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
 cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
 par(op)
 dev.off()
 load(file='createtable')
 a<-table.start()
 a<-table.row.start(a)
 a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'t',header=TRUE)
 a<-table.element(a,'Observations',header=TRUE)
 a<-table.element(a,'Fit',header=TRUE)
 a<-table.element(a,'Trend',header=TRUE)
 a<-table.element(a,'Seasonal',header=TRUE)
 a<-table.element(a,'Random',header=TRUE)
 a<-table.row.end(a)
 for (i in 1:length(m$trend)) {
 a<-table.row.start(a)
 a<-table.element(a,i,header=TRUE)
 a<-table.element(a,x[i])
 a<-table.element(a,m$trend[i]+m$seasonal[i])
 a<-table.element(a,m$trend[i])
 a<-table.element(a,m$seasonal[i])
 a<-table.element(a,m$random[i])
 a<-table.row.end(a)
 }
 a<-table.end(a)
 table.save(a,file='mytable.tab')
 
 |