Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_decomposeloess.wasp
Title produced by softwareDecomposition by Loess
Date of computationFri, 23 Nov 2012 10:18:31 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Nov/23/t1353683949duilp5hfivcjv65.htm/, Retrieved Fri, 01 Nov 2024 00:15:14 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=192149, Retrieved Fri, 01 Nov 2024 00:15:14 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact126
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Decomposition by Loess] [HPC Retail Sales] [2008-03-06 11:35:25] [74be16979710d4c4e7c6647856088456]
- RMPD    [Decomposition by Loess] [WS8 Loess-techniek] [2012-11-23 15:18:31] [d41d8cd98f00b204e9800998ecf8427e] [Current]
Feedback Forum

Post a new message
Dataseries X:
37
30
47
35
30
43
82
40
47
19
52
136
80
42
54
66
81
63
137
72
107
58
36
52
79
77
54
84
48
96
83
66
61
53
30
74
69
59
42
65
70
100
63
105
82
81
75
102
121
98
76
77
63
37
35
23
40
29
37
51
20
28
13
22
25
13
16
13
16
17
9
17
25
14
8
7
10
7
10
3




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ fisher.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=192149&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ fisher.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=192149&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=192149&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net







Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal801081
Trend1912
Low-pass1312

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Parameters \tabularnewline
Component & Window & Degree & Jump \tabularnewline
Seasonal & 801 & 0 & 81 \tabularnewline
Trend & 19 & 1 & 2 \tabularnewline
Low-pass & 13 & 1 & 2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=192149&T=1

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Parameters[/C][/ROW]
[ROW][C]Component[/C][C]Window[/C][C]Degree[/C][C]Jump[/C][/ROW]
[ROW][C]Seasonal[/C][C]801[/C][C]0[/C][C]81[/C][/ROW]
[ROW][C]Trend[/C][C]19[/C][C]1[/C][C]2[/C][/ROW]
[ROW][C]Low-pass[/C][C]13[/C][C]1[/C][C]2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=192149&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=192149&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal801081
Trend1912
Low-pass1312







Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
13737.0859701471859.680041718182927.23398813463210.0859701471850336
23030.6041782770756-0.34385414933195529.73967587225640.604178277075583
34771.5003063913587-9.7456700012393532.245363609880724.5003063913587
43532.31587841337572.9160996584636934.7680219281606-2.68412158662428
53020.8072100695261.9021096840335337.2906802464405-9.19278993047403
64351.5009158456274-5.3175615569181739.81664571129088.50091584562738
782125.51300046953-3.8556116456707742.342611176141143.5130004695297
84039.3438979541645-4.2221224058430444.8782244516786-0.656102045835524
94746.42321982220160.1629424505823747.4138377272161-0.576780177798426
1019-5.99526137012592-6.0556587565633550.0509201266893-24.9952613701259
115252.3505459232949-1.0385484494573952.68800252616250.350545923294881
12136200.71915071982915.917832013100155.363017267070664.7191507198293
138092.28192627383859.680041718182958.038032007978612.2819262738385
144223.7949230667188-0.34385414933195560.5489310826132-18.2050769332812
155454.6858398439917-9.7456700012393563.05983015724770.685839843991658
166664.15448707322122.9160996584636964.9294132683151-1.8455129267788
178193.2988939365841.9021096840335366.798996379382512.298893936584
186363.6462977958718-5.3175615569181767.67126376104640.646297795871803
19137209.312080502961-3.8556116456707768.543531142710272.3120805029605
207279.0572895224037-4.2221224058430469.16483288343937.05728952240375
21107144.0509229252490.1629424505823769.786134624168437.0509229252493
225851.8421185559026-6.0556587565633570.2135402006607-6.15788144409736
23362.39760267230435-1.0385484494573970.640945777153-33.6023973276956
245217.415757097227115.917832013100170.6664108896728-34.5842429027729
257977.62808227962459.680041718182970.6918760021926-1.37191772037549
267783.8758710933158-0.34385414933195570.46798305601616.87587109331584
275447.5015798913997-9.7456700012393570.2440901098397-6.49842010860032
288495.41018625479152.9160996584636969.673714086744911.4101862547915
294824.99455225231641.9021096840335369.10333806365-23.0054477476836
3096129.306582434524-5.3175615569181768.010979122393733.3065824345245
3183102.936991464533-3.8556116456707766.918620181137419.9369914645334
326670.4499666189538-4.2221224058430465.77215578688924.44996661895379
336157.21136615677650.1629424505823764.6256913926411-3.78863384322347
345348.5087273141192-6.0556587565633563.5469314424442-4.49127268588082
3530-1.42962304278986-1.0385484494573962.4681714922473-31.4296230427899
367470.213817283877915.917832013100161.868350703022-3.78618271612211
376967.05142836802039.680041718182961.2685299137968-1.9485716319797
385956.3575657534749-0.34385414933195561.9862883958571-2.64243424652513
394231.041623123322-9.7456700012393562.7040468779174-10.958376876678
406562.4704271753052.9160996584636964.6134731662313-2.52957282469495
417071.57499086142131.9021096840335366.52289945454511.57499086142133
42100136.328120275919-5.3175615569181768.989441280998836.3281202759193
436358.3996285382182-3.8556116456707771.4559831074525-4.60037146178176
44105140.502770977625-4.2221224058430473.719351428217935.5027709776252
458287.85433780043450.1629424505823775.98271974898325.85433780043445
468191.92798693792-6.0556587565633576.127671818643410.92798693792
477574.7659245611538-1.0385484494573976.2726238883036-0.234075438846176
48102113.70941489812615.917832013100174.372753088773611.7094148981263
49121159.8470759925749.680041718182972.472882289243638.8470759925735
5098127.353691711272-0.34385414933195568.990162438059929.3536917112721
517696.2382274143632-9.7456700012393565.507442586876120.2382274143632
527789.45224736125552.9160996584636961.631652980280812.4522473612555
536366.3420269422811.9021096840335357.75586337368543.34202694228104
543725.8708890935769-5.3175615569181753.4466724633413-11.1291109064231
553524.7181300926736-3.8556116456707749.1374815529971-10.2818699073264
56235.41698669122034-4.2221224058430444.8051357146227-17.5830133087797
574039.36426767316940.1629424505823740.4727898762482-0.63573232683062
582927.0267864029364-6.0556587565633537.028872353627-1.9732135970636
593741.4535936184517-1.0385484494573933.58495483100564.45359361845174
605154.897788606874515.917832013100131.18437938002543.89778860687455
61201.536154352772029.680041718182928.7838039290451-18.463845647228
622829.3380428662613-0.34385414933195527.00581128307061.33804286626132
631310.5178513641432-9.7456700012393525.2278186370962-2.48214863585683
642217.60697275667212.9160996584636923.4769275848642-4.39302724332794
652526.37185378333421.9021096840335321.72603653263231.37185378333416
661311.11752964782-5.3175615569181720.2000319090981-1.88247035217996
671617.1815843601068-3.8556116456707718.67402728556391.18158436010682
681312.5894926665895-4.2221224058430417.6326297392535-0.4105073334105
691615.24582535647450.1629424505823716.5912321929431-0.754174643525495
701724.3880636151801-6.0556587565633515.66759514138327.38806361518013
7194.29459035963406-1.0385484494573914.7439580898233-4.70540964036594
72174.0332989914043515.917832013100114.0488689954956-12.9667010085956
732526.96617838064939.680041718182913.35377990116781.96617838064931
741415.6744029279771-0.34385414933195512.66945122135481.67440292797712
75813.7605474596975-9.7456700012393511.98512254154195.76054745969748
767-0.2396818800617982.9160996584636911.3235822215981-7.2396818800618
77107.435848414312131.9021096840335310.6620419016543-2.56415158568787
7879.28965206424946-5.3175615569181710.02790949266872.28965206424946
791014.4618345619877-3.855611645670779.393777083683094.46183456198768
8031.43537131615127-4.222122405843048.78675108969177-1.56462868384873

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Time Series Components \tabularnewline
t & Observed & Fitted & Seasonal & Trend & Remainder \tabularnewline
1 & 37 & 37.085970147185 & 9.6800417181829 & 27.2339881346321 & 0.0859701471850336 \tabularnewline
2 & 30 & 30.6041782770756 & -0.343854149331955 & 29.7396758722564 & 0.604178277075583 \tabularnewline
3 & 47 & 71.5003063913587 & -9.74567000123935 & 32.2453636098807 & 24.5003063913587 \tabularnewline
4 & 35 & 32.3158784133757 & 2.91609965846369 & 34.7680219281606 & -2.68412158662428 \tabularnewline
5 & 30 & 20.807210069526 & 1.90210968403353 & 37.2906802464405 & -9.19278993047403 \tabularnewline
6 & 43 & 51.5009158456274 & -5.31756155691817 & 39.8166457112908 & 8.50091584562738 \tabularnewline
7 & 82 & 125.51300046953 & -3.85561164567077 & 42.3426111761411 & 43.5130004695297 \tabularnewline
8 & 40 & 39.3438979541645 & -4.22212240584304 & 44.8782244516786 & -0.656102045835524 \tabularnewline
9 & 47 & 46.4232198222016 & 0.16294245058237 & 47.4138377272161 & -0.576780177798426 \tabularnewline
10 & 19 & -5.99526137012592 & -6.05565875656335 & 50.0509201266893 & -24.9952613701259 \tabularnewline
11 & 52 & 52.3505459232949 & -1.03854844945739 & 52.6880025261625 & 0.350545923294881 \tabularnewline
12 & 136 & 200.719150719829 & 15.9178320131001 & 55.3630172670706 & 64.7191507198293 \tabularnewline
13 & 80 & 92.2819262738385 & 9.6800417181829 & 58.0380320079786 & 12.2819262738385 \tabularnewline
14 & 42 & 23.7949230667188 & -0.343854149331955 & 60.5489310826132 & -18.2050769332812 \tabularnewline
15 & 54 & 54.6858398439917 & -9.74567000123935 & 63.0598301572477 & 0.685839843991658 \tabularnewline
16 & 66 & 64.1544870732212 & 2.91609965846369 & 64.9294132683151 & -1.8455129267788 \tabularnewline
17 & 81 & 93.298893936584 & 1.90210968403353 & 66.7989963793825 & 12.298893936584 \tabularnewline
18 & 63 & 63.6462977958718 & -5.31756155691817 & 67.6712637610464 & 0.646297795871803 \tabularnewline
19 & 137 & 209.312080502961 & -3.85561164567077 & 68.5435311427102 & 72.3120805029605 \tabularnewline
20 & 72 & 79.0572895224037 & -4.22212240584304 & 69.1648328834393 & 7.05728952240375 \tabularnewline
21 & 107 & 144.050922925249 & 0.16294245058237 & 69.7861346241684 & 37.0509229252493 \tabularnewline
22 & 58 & 51.8421185559026 & -6.05565875656335 & 70.2135402006607 & -6.15788144409736 \tabularnewline
23 & 36 & 2.39760267230435 & -1.03854844945739 & 70.640945777153 & -33.6023973276956 \tabularnewline
24 & 52 & 17.4157570972271 & 15.9178320131001 & 70.6664108896728 & -34.5842429027729 \tabularnewline
25 & 79 & 77.6280822796245 & 9.6800417181829 & 70.6918760021926 & -1.37191772037549 \tabularnewline
26 & 77 & 83.8758710933158 & -0.343854149331955 & 70.4679830560161 & 6.87587109331584 \tabularnewline
27 & 54 & 47.5015798913997 & -9.74567000123935 & 70.2440901098397 & -6.49842010860032 \tabularnewline
28 & 84 & 95.4101862547915 & 2.91609965846369 & 69.6737140867449 & 11.4101862547915 \tabularnewline
29 & 48 & 24.9945522523164 & 1.90210968403353 & 69.10333806365 & -23.0054477476836 \tabularnewline
30 & 96 & 129.306582434524 & -5.31756155691817 & 68.0109791223937 & 33.3065824345245 \tabularnewline
31 & 83 & 102.936991464533 & -3.85561164567077 & 66.9186201811374 & 19.9369914645334 \tabularnewline
32 & 66 & 70.4499666189538 & -4.22212240584304 & 65.7721557868892 & 4.44996661895379 \tabularnewline
33 & 61 & 57.2113661567765 & 0.16294245058237 & 64.6256913926411 & -3.78863384322347 \tabularnewline
34 & 53 & 48.5087273141192 & -6.05565875656335 & 63.5469314424442 & -4.49127268588082 \tabularnewline
35 & 30 & -1.42962304278986 & -1.03854844945739 & 62.4681714922473 & -31.4296230427899 \tabularnewline
36 & 74 & 70.2138172838779 & 15.9178320131001 & 61.868350703022 & -3.78618271612211 \tabularnewline
37 & 69 & 67.0514283680203 & 9.6800417181829 & 61.2685299137968 & -1.9485716319797 \tabularnewline
38 & 59 & 56.3575657534749 & -0.343854149331955 & 61.9862883958571 & -2.64243424652513 \tabularnewline
39 & 42 & 31.041623123322 & -9.74567000123935 & 62.7040468779174 & -10.958376876678 \tabularnewline
40 & 65 & 62.470427175305 & 2.91609965846369 & 64.6134731662313 & -2.52957282469495 \tabularnewline
41 & 70 & 71.5749908614213 & 1.90210968403353 & 66.5228994545451 & 1.57499086142133 \tabularnewline
42 & 100 & 136.328120275919 & -5.31756155691817 & 68.9894412809988 & 36.3281202759193 \tabularnewline
43 & 63 & 58.3996285382182 & -3.85561164567077 & 71.4559831074525 & -4.60037146178176 \tabularnewline
44 & 105 & 140.502770977625 & -4.22212240584304 & 73.7193514282179 & 35.5027709776252 \tabularnewline
45 & 82 & 87.8543378004345 & 0.16294245058237 & 75.9827197489832 & 5.85433780043445 \tabularnewline
46 & 81 & 91.92798693792 & -6.05565875656335 & 76.1276718186434 & 10.92798693792 \tabularnewline
47 & 75 & 74.7659245611538 & -1.03854844945739 & 76.2726238883036 & -0.234075438846176 \tabularnewline
48 & 102 & 113.709414898126 & 15.9178320131001 & 74.3727530887736 & 11.7094148981263 \tabularnewline
49 & 121 & 159.847075992574 & 9.6800417181829 & 72.4728822892436 & 38.8470759925735 \tabularnewline
50 & 98 & 127.353691711272 & -0.343854149331955 & 68.9901624380599 & 29.3536917112721 \tabularnewline
51 & 76 & 96.2382274143632 & -9.74567000123935 & 65.5074425868761 & 20.2382274143632 \tabularnewline
52 & 77 & 89.4522473612555 & 2.91609965846369 & 61.6316529802808 & 12.4522473612555 \tabularnewline
53 & 63 & 66.342026942281 & 1.90210968403353 & 57.7558633736854 & 3.34202694228104 \tabularnewline
54 & 37 & 25.8708890935769 & -5.31756155691817 & 53.4466724633413 & -11.1291109064231 \tabularnewline
55 & 35 & 24.7181300926736 & -3.85561164567077 & 49.1374815529971 & -10.2818699073264 \tabularnewline
56 & 23 & 5.41698669122034 & -4.22212240584304 & 44.8051357146227 & -17.5830133087797 \tabularnewline
57 & 40 & 39.3642676731694 & 0.16294245058237 & 40.4727898762482 & -0.63573232683062 \tabularnewline
58 & 29 & 27.0267864029364 & -6.05565875656335 & 37.028872353627 & -1.9732135970636 \tabularnewline
59 & 37 & 41.4535936184517 & -1.03854844945739 & 33.5849548310056 & 4.45359361845174 \tabularnewline
60 & 51 & 54.8977886068745 & 15.9178320131001 & 31.1843793800254 & 3.89778860687455 \tabularnewline
61 & 20 & 1.53615435277202 & 9.6800417181829 & 28.7838039290451 & -18.463845647228 \tabularnewline
62 & 28 & 29.3380428662613 & -0.343854149331955 & 27.0058112830706 & 1.33804286626132 \tabularnewline
63 & 13 & 10.5178513641432 & -9.74567000123935 & 25.2278186370962 & -2.48214863585683 \tabularnewline
64 & 22 & 17.6069727566721 & 2.91609965846369 & 23.4769275848642 & -4.39302724332794 \tabularnewline
65 & 25 & 26.3718537833342 & 1.90210968403353 & 21.7260365326323 & 1.37185378333416 \tabularnewline
66 & 13 & 11.11752964782 & -5.31756155691817 & 20.2000319090981 & -1.88247035217996 \tabularnewline
67 & 16 & 17.1815843601068 & -3.85561164567077 & 18.6740272855639 & 1.18158436010682 \tabularnewline
68 & 13 & 12.5894926665895 & -4.22212240584304 & 17.6326297392535 & -0.4105073334105 \tabularnewline
69 & 16 & 15.2458253564745 & 0.16294245058237 & 16.5912321929431 & -0.754174643525495 \tabularnewline
70 & 17 & 24.3880636151801 & -6.05565875656335 & 15.6675951413832 & 7.38806361518013 \tabularnewline
71 & 9 & 4.29459035963406 & -1.03854844945739 & 14.7439580898233 & -4.70540964036594 \tabularnewline
72 & 17 & 4.03329899140435 & 15.9178320131001 & 14.0488689954956 & -12.9667010085956 \tabularnewline
73 & 25 & 26.9661783806493 & 9.6800417181829 & 13.3537799011678 & 1.96617838064931 \tabularnewline
74 & 14 & 15.6744029279771 & -0.343854149331955 & 12.6694512213548 & 1.67440292797712 \tabularnewline
75 & 8 & 13.7605474596975 & -9.74567000123935 & 11.9851225415419 & 5.76054745969748 \tabularnewline
76 & 7 & -0.239681880061798 & 2.91609965846369 & 11.3235822215981 & -7.2396818800618 \tabularnewline
77 & 10 & 7.43584841431213 & 1.90210968403353 & 10.6620419016543 & -2.56415158568787 \tabularnewline
78 & 7 & 9.28965206424946 & -5.31756155691817 & 10.0279094926687 & 2.28965206424946 \tabularnewline
79 & 10 & 14.4618345619877 & -3.85561164567077 & 9.39377708368309 & 4.46183456198768 \tabularnewline
80 & 3 & 1.43537131615127 & -4.22212240584304 & 8.78675108969177 & -1.56462868384873 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=192149&T=2

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Time Series Components[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Seasonal[/C][C]Trend[/C][C]Remainder[/C][/ROW]
[ROW][C]1[/C][C]37[/C][C]37.085970147185[/C][C]9.6800417181829[/C][C]27.2339881346321[/C][C]0.0859701471850336[/C][/ROW]
[ROW][C]2[/C][C]30[/C][C]30.6041782770756[/C][C]-0.343854149331955[/C][C]29.7396758722564[/C][C]0.604178277075583[/C][/ROW]
[ROW][C]3[/C][C]47[/C][C]71.5003063913587[/C][C]-9.74567000123935[/C][C]32.2453636098807[/C][C]24.5003063913587[/C][/ROW]
[ROW][C]4[/C][C]35[/C][C]32.3158784133757[/C][C]2.91609965846369[/C][C]34.7680219281606[/C][C]-2.68412158662428[/C][/ROW]
[ROW][C]5[/C][C]30[/C][C]20.807210069526[/C][C]1.90210968403353[/C][C]37.2906802464405[/C][C]-9.19278993047403[/C][/ROW]
[ROW][C]6[/C][C]43[/C][C]51.5009158456274[/C][C]-5.31756155691817[/C][C]39.8166457112908[/C][C]8.50091584562738[/C][/ROW]
[ROW][C]7[/C][C]82[/C][C]125.51300046953[/C][C]-3.85561164567077[/C][C]42.3426111761411[/C][C]43.5130004695297[/C][/ROW]
[ROW][C]8[/C][C]40[/C][C]39.3438979541645[/C][C]-4.22212240584304[/C][C]44.8782244516786[/C][C]-0.656102045835524[/C][/ROW]
[ROW][C]9[/C][C]47[/C][C]46.4232198222016[/C][C]0.16294245058237[/C][C]47.4138377272161[/C][C]-0.576780177798426[/C][/ROW]
[ROW][C]10[/C][C]19[/C][C]-5.99526137012592[/C][C]-6.05565875656335[/C][C]50.0509201266893[/C][C]-24.9952613701259[/C][/ROW]
[ROW][C]11[/C][C]52[/C][C]52.3505459232949[/C][C]-1.03854844945739[/C][C]52.6880025261625[/C][C]0.350545923294881[/C][/ROW]
[ROW][C]12[/C][C]136[/C][C]200.719150719829[/C][C]15.9178320131001[/C][C]55.3630172670706[/C][C]64.7191507198293[/C][/ROW]
[ROW][C]13[/C][C]80[/C][C]92.2819262738385[/C][C]9.6800417181829[/C][C]58.0380320079786[/C][C]12.2819262738385[/C][/ROW]
[ROW][C]14[/C][C]42[/C][C]23.7949230667188[/C][C]-0.343854149331955[/C][C]60.5489310826132[/C][C]-18.2050769332812[/C][/ROW]
[ROW][C]15[/C][C]54[/C][C]54.6858398439917[/C][C]-9.74567000123935[/C][C]63.0598301572477[/C][C]0.685839843991658[/C][/ROW]
[ROW][C]16[/C][C]66[/C][C]64.1544870732212[/C][C]2.91609965846369[/C][C]64.9294132683151[/C][C]-1.8455129267788[/C][/ROW]
[ROW][C]17[/C][C]81[/C][C]93.298893936584[/C][C]1.90210968403353[/C][C]66.7989963793825[/C][C]12.298893936584[/C][/ROW]
[ROW][C]18[/C][C]63[/C][C]63.6462977958718[/C][C]-5.31756155691817[/C][C]67.6712637610464[/C][C]0.646297795871803[/C][/ROW]
[ROW][C]19[/C][C]137[/C][C]209.312080502961[/C][C]-3.85561164567077[/C][C]68.5435311427102[/C][C]72.3120805029605[/C][/ROW]
[ROW][C]20[/C][C]72[/C][C]79.0572895224037[/C][C]-4.22212240584304[/C][C]69.1648328834393[/C][C]7.05728952240375[/C][/ROW]
[ROW][C]21[/C][C]107[/C][C]144.050922925249[/C][C]0.16294245058237[/C][C]69.7861346241684[/C][C]37.0509229252493[/C][/ROW]
[ROW][C]22[/C][C]58[/C][C]51.8421185559026[/C][C]-6.05565875656335[/C][C]70.2135402006607[/C][C]-6.15788144409736[/C][/ROW]
[ROW][C]23[/C][C]36[/C][C]2.39760267230435[/C][C]-1.03854844945739[/C][C]70.640945777153[/C][C]-33.6023973276956[/C][/ROW]
[ROW][C]24[/C][C]52[/C][C]17.4157570972271[/C][C]15.9178320131001[/C][C]70.6664108896728[/C][C]-34.5842429027729[/C][/ROW]
[ROW][C]25[/C][C]79[/C][C]77.6280822796245[/C][C]9.6800417181829[/C][C]70.6918760021926[/C][C]-1.37191772037549[/C][/ROW]
[ROW][C]26[/C][C]77[/C][C]83.8758710933158[/C][C]-0.343854149331955[/C][C]70.4679830560161[/C][C]6.87587109331584[/C][/ROW]
[ROW][C]27[/C][C]54[/C][C]47.5015798913997[/C][C]-9.74567000123935[/C][C]70.2440901098397[/C][C]-6.49842010860032[/C][/ROW]
[ROW][C]28[/C][C]84[/C][C]95.4101862547915[/C][C]2.91609965846369[/C][C]69.6737140867449[/C][C]11.4101862547915[/C][/ROW]
[ROW][C]29[/C][C]48[/C][C]24.9945522523164[/C][C]1.90210968403353[/C][C]69.10333806365[/C][C]-23.0054477476836[/C][/ROW]
[ROW][C]30[/C][C]96[/C][C]129.306582434524[/C][C]-5.31756155691817[/C][C]68.0109791223937[/C][C]33.3065824345245[/C][/ROW]
[ROW][C]31[/C][C]83[/C][C]102.936991464533[/C][C]-3.85561164567077[/C][C]66.9186201811374[/C][C]19.9369914645334[/C][/ROW]
[ROW][C]32[/C][C]66[/C][C]70.4499666189538[/C][C]-4.22212240584304[/C][C]65.7721557868892[/C][C]4.44996661895379[/C][/ROW]
[ROW][C]33[/C][C]61[/C][C]57.2113661567765[/C][C]0.16294245058237[/C][C]64.6256913926411[/C][C]-3.78863384322347[/C][/ROW]
[ROW][C]34[/C][C]53[/C][C]48.5087273141192[/C][C]-6.05565875656335[/C][C]63.5469314424442[/C][C]-4.49127268588082[/C][/ROW]
[ROW][C]35[/C][C]30[/C][C]-1.42962304278986[/C][C]-1.03854844945739[/C][C]62.4681714922473[/C][C]-31.4296230427899[/C][/ROW]
[ROW][C]36[/C][C]74[/C][C]70.2138172838779[/C][C]15.9178320131001[/C][C]61.868350703022[/C][C]-3.78618271612211[/C][/ROW]
[ROW][C]37[/C][C]69[/C][C]67.0514283680203[/C][C]9.6800417181829[/C][C]61.2685299137968[/C][C]-1.9485716319797[/C][/ROW]
[ROW][C]38[/C][C]59[/C][C]56.3575657534749[/C][C]-0.343854149331955[/C][C]61.9862883958571[/C][C]-2.64243424652513[/C][/ROW]
[ROW][C]39[/C][C]42[/C][C]31.041623123322[/C][C]-9.74567000123935[/C][C]62.7040468779174[/C][C]-10.958376876678[/C][/ROW]
[ROW][C]40[/C][C]65[/C][C]62.470427175305[/C][C]2.91609965846369[/C][C]64.6134731662313[/C][C]-2.52957282469495[/C][/ROW]
[ROW][C]41[/C][C]70[/C][C]71.5749908614213[/C][C]1.90210968403353[/C][C]66.5228994545451[/C][C]1.57499086142133[/C][/ROW]
[ROW][C]42[/C][C]100[/C][C]136.328120275919[/C][C]-5.31756155691817[/C][C]68.9894412809988[/C][C]36.3281202759193[/C][/ROW]
[ROW][C]43[/C][C]63[/C][C]58.3996285382182[/C][C]-3.85561164567077[/C][C]71.4559831074525[/C][C]-4.60037146178176[/C][/ROW]
[ROW][C]44[/C][C]105[/C][C]140.502770977625[/C][C]-4.22212240584304[/C][C]73.7193514282179[/C][C]35.5027709776252[/C][/ROW]
[ROW][C]45[/C][C]82[/C][C]87.8543378004345[/C][C]0.16294245058237[/C][C]75.9827197489832[/C][C]5.85433780043445[/C][/ROW]
[ROW][C]46[/C][C]81[/C][C]91.92798693792[/C][C]-6.05565875656335[/C][C]76.1276718186434[/C][C]10.92798693792[/C][/ROW]
[ROW][C]47[/C][C]75[/C][C]74.7659245611538[/C][C]-1.03854844945739[/C][C]76.2726238883036[/C][C]-0.234075438846176[/C][/ROW]
[ROW][C]48[/C][C]102[/C][C]113.709414898126[/C][C]15.9178320131001[/C][C]74.3727530887736[/C][C]11.7094148981263[/C][/ROW]
[ROW][C]49[/C][C]121[/C][C]159.847075992574[/C][C]9.6800417181829[/C][C]72.4728822892436[/C][C]38.8470759925735[/C][/ROW]
[ROW][C]50[/C][C]98[/C][C]127.353691711272[/C][C]-0.343854149331955[/C][C]68.9901624380599[/C][C]29.3536917112721[/C][/ROW]
[ROW][C]51[/C][C]76[/C][C]96.2382274143632[/C][C]-9.74567000123935[/C][C]65.5074425868761[/C][C]20.2382274143632[/C][/ROW]
[ROW][C]52[/C][C]77[/C][C]89.4522473612555[/C][C]2.91609965846369[/C][C]61.6316529802808[/C][C]12.4522473612555[/C][/ROW]
[ROW][C]53[/C][C]63[/C][C]66.342026942281[/C][C]1.90210968403353[/C][C]57.7558633736854[/C][C]3.34202694228104[/C][/ROW]
[ROW][C]54[/C][C]37[/C][C]25.8708890935769[/C][C]-5.31756155691817[/C][C]53.4466724633413[/C][C]-11.1291109064231[/C][/ROW]
[ROW][C]55[/C][C]35[/C][C]24.7181300926736[/C][C]-3.85561164567077[/C][C]49.1374815529971[/C][C]-10.2818699073264[/C][/ROW]
[ROW][C]56[/C][C]23[/C][C]5.41698669122034[/C][C]-4.22212240584304[/C][C]44.8051357146227[/C][C]-17.5830133087797[/C][/ROW]
[ROW][C]57[/C][C]40[/C][C]39.3642676731694[/C][C]0.16294245058237[/C][C]40.4727898762482[/C][C]-0.63573232683062[/C][/ROW]
[ROW][C]58[/C][C]29[/C][C]27.0267864029364[/C][C]-6.05565875656335[/C][C]37.028872353627[/C][C]-1.9732135970636[/C][/ROW]
[ROW][C]59[/C][C]37[/C][C]41.4535936184517[/C][C]-1.03854844945739[/C][C]33.5849548310056[/C][C]4.45359361845174[/C][/ROW]
[ROW][C]60[/C][C]51[/C][C]54.8977886068745[/C][C]15.9178320131001[/C][C]31.1843793800254[/C][C]3.89778860687455[/C][/ROW]
[ROW][C]61[/C][C]20[/C][C]1.53615435277202[/C][C]9.6800417181829[/C][C]28.7838039290451[/C][C]-18.463845647228[/C][/ROW]
[ROW][C]62[/C][C]28[/C][C]29.3380428662613[/C][C]-0.343854149331955[/C][C]27.0058112830706[/C][C]1.33804286626132[/C][/ROW]
[ROW][C]63[/C][C]13[/C][C]10.5178513641432[/C][C]-9.74567000123935[/C][C]25.2278186370962[/C][C]-2.48214863585683[/C][/ROW]
[ROW][C]64[/C][C]22[/C][C]17.6069727566721[/C][C]2.91609965846369[/C][C]23.4769275848642[/C][C]-4.39302724332794[/C][/ROW]
[ROW][C]65[/C][C]25[/C][C]26.3718537833342[/C][C]1.90210968403353[/C][C]21.7260365326323[/C][C]1.37185378333416[/C][/ROW]
[ROW][C]66[/C][C]13[/C][C]11.11752964782[/C][C]-5.31756155691817[/C][C]20.2000319090981[/C][C]-1.88247035217996[/C][/ROW]
[ROW][C]67[/C][C]16[/C][C]17.1815843601068[/C][C]-3.85561164567077[/C][C]18.6740272855639[/C][C]1.18158436010682[/C][/ROW]
[ROW][C]68[/C][C]13[/C][C]12.5894926665895[/C][C]-4.22212240584304[/C][C]17.6326297392535[/C][C]-0.4105073334105[/C][/ROW]
[ROW][C]69[/C][C]16[/C][C]15.2458253564745[/C][C]0.16294245058237[/C][C]16.5912321929431[/C][C]-0.754174643525495[/C][/ROW]
[ROW][C]70[/C][C]17[/C][C]24.3880636151801[/C][C]-6.05565875656335[/C][C]15.6675951413832[/C][C]7.38806361518013[/C][/ROW]
[ROW][C]71[/C][C]9[/C][C]4.29459035963406[/C][C]-1.03854844945739[/C][C]14.7439580898233[/C][C]-4.70540964036594[/C][/ROW]
[ROW][C]72[/C][C]17[/C][C]4.03329899140435[/C][C]15.9178320131001[/C][C]14.0488689954956[/C][C]-12.9667010085956[/C][/ROW]
[ROW][C]73[/C][C]25[/C][C]26.9661783806493[/C][C]9.6800417181829[/C][C]13.3537799011678[/C][C]1.96617838064931[/C][/ROW]
[ROW][C]74[/C][C]14[/C][C]15.6744029279771[/C][C]-0.343854149331955[/C][C]12.6694512213548[/C][C]1.67440292797712[/C][/ROW]
[ROW][C]75[/C][C]8[/C][C]13.7605474596975[/C][C]-9.74567000123935[/C][C]11.9851225415419[/C][C]5.76054745969748[/C][/ROW]
[ROW][C]76[/C][C]7[/C][C]-0.239681880061798[/C][C]2.91609965846369[/C][C]11.3235822215981[/C][C]-7.2396818800618[/C][/ROW]
[ROW][C]77[/C][C]10[/C][C]7.43584841431213[/C][C]1.90210968403353[/C][C]10.6620419016543[/C][C]-2.56415158568787[/C][/ROW]
[ROW][C]78[/C][C]7[/C][C]9.28965206424946[/C][C]-5.31756155691817[/C][C]10.0279094926687[/C][C]2.28965206424946[/C][/ROW]
[ROW][C]79[/C][C]10[/C][C]14.4618345619877[/C][C]-3.85561164567077[/C][C]9.39377708368309[/C][C]4.46183456198768[/C][/ROW]
[ROW][C]80[/C][C]3[/C][C]1.43537131615127[/C][C]-4.22212240584304[/C][C]8.78675108969177[/C][C]-1.56462868384873[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=192149&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=192149&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
13737.0859701471859.680041718182927.23398813463210.0859701471850336
23030.6041782770756-0.34385414933195529.73967587225640.604178277075583
34771.5003063913587-9.7456700012393532.245363609880724.5003063913587
43532.31587841337572.9160996584636934.7680219281606-2.68412158662428
53020.8072100695261.9021096840335337.2906802464405-9.19278993047403
64351.5009158456274-5.3175615569181739.81664571129088.50091584562738
782125.51300046953-3.8556116456707742.342611176141143.5130004695297
84039.3438979541645-4.2221224058430444.8782244516786-0.656102045835524
94746.42321982220160.1629424505823747.4138377272161-0.576780177798426
1019-5.99526137012592-6.0556587565633550.0509201266893-24.9952613701259
115252.3505459232949-1.0385484494573952.68800252616250.350545923294881
12136200.71915071982915.917832013100155.363017267070664.7191507198293
138092.28192627383859.680041718182958.038032007978612.2819262738385
144223.7949230667188-0.34385414933195560.5489310826132-18.2050769332812
155454.6858398439917-9.7456700012393563.05983015724770.685839843991658
166664.15448707322122.9160996584636964.9294132683151-1.8455129267788
178193.2988939365841.9021096840335366.798996379382512.298893936584
186363.6462977958718-5.3175615569181767.67126376104640.646297795871803
19137209.312080502961-3.8556116456707768.543531142710272.3120805029605
207279.0572895224037-4.2221224058430469.16483288343937.05728952240375
21107144.0509229252490.1629424505823769.786134624168437.0509229252493
225851.8421185559026-6.0556587565633570.2135402006607-6.15788144409736
23362.39760267230435-1.0385484494573970.640945777153-33.6023973276956
245217.415757097227115.917832013100170.6664108896728-34.5842429027729
257977.62808227962459.680041718182970.6918760021926-1.37191772037549
267783.8758710933158-0.34385414933195570.46798305601616.87587109331584
275447.5015798913997-9.7456700012393570.2440901098397-6.49842010860032
288495.41018625479152.9160996584636969.673714086744911.4101862547915
294824.99455225231641.9021096840335369.10333806365-23.0054477476836
3096129.306582434524-5.3175615569181768.010979122393733.3065824345245
3183102.936991464533-3.8556116456707766.918620181137419.9369914645334
326670.4499666189538-4.2221224058430465.77215578688924.44996661895379
336157.21136615677650.1629424505823764.6256913926411-3.78863384322347
345348.5087273141192-6.0556587565633563.5469314424442-4.49127268588082
3530-1.42962304278986-1.0385484494573962.4681714922473-31.4296230427899
367470.213817283877915.917832013100161.868350703022-3.78618271612211
376967.05142836802039.680041718182961.2685299137968-1.9485716319797
385956.3575657534749-0.34385414933195561.9862883958571-2.64243424652513
394231.041623123322-9.7456700012393562.7040468779174-10.958376876678
406562.4704271753052.9160996584636964.6134731662313-2.52957282469495
417071.57499086142131.9021096840335366.52289945454511.57499086142133
42100136.328120275919-5.3175615569181768.989441280998836.3281202759193
436358.3996285382182-3.8556116456707771.4559831074525-4.60037146178176
44105140.502770977625-4.2221224058430473.719351428217935.5027709776252
458287.85433780043450.1629424505823775.98271974898325.85433780043445
468191.92798693792-6.0556587565633576.127671818643410.92798693792
477574.7659245611538-1.0385484494573976.2726238883036-0.234075438846176
48102113.70941489812615.917832013100174.372753088773611.7094148981263
49121159.8470759925749.680041718182972.472882289243638.8470759925735
5098127.353691711272-0.34385414933195568.990162438059929.3536917112721
517696.2382274143632-9.7456700012393565.507442586876120.2382274143632
527789.45224736125552.9160996584636961.631652980280812.4522473612555
536366.3420269422811.9021096840335357.75586337368543.34202694228104
543725.8708890935769-5.3175615569181753.4466724633413-11.1291109064231
553524.7181300926736-3.8556116456707749.1374815529971-10.2818699073264
56235.41698669122034-4.2221224058430444.8051357146227-17.5830133087797
574039.36426767316940.1629424505823740.4727898762482-0.63573232683062
582927.0267864029364-6.0556587565633537.028872353627-1.9732135970636
593741.4535936184517-1.0385484494573933.58495483100564.45359361845174
605154.897788606874515.917832013100131.18437938002543.89778860687455
61201.536154352772029.680041718182928.7838039290451-18.463845647228
622829.3380428662613-0.34385414933195527.00581128307061.33804286626132
631310.5178513641432-9.7456700012393525.2278186370962-2.48214863585683
642217.60697275667212.9160996584636923.4769275848642-4.39302724332794
652526.37185378333421.9021096840335321.72603653263231.37185378333416
661311.11752964782-5.3175615569181720.2000319090981-1.88247035217996
671617.1815843601068-3.8556116456707718.67402728556391.18158436010682
681312.5894926665895-4.2221224058430417.6326297392535-0.4105073334105
691615.24582535647450.1629424505823716.5912321929431-0.754174643525495
701724.3880636151801-6.0556587565633515.66759514138327.38806361518013
7194.29459035963406-1.0385484494573914.7439580898233-4.70540964036594
72174.0332989914043515.917832013100114.0488689954956-12.9667010085956
732526.96617838064939.680041718182913.35377990116781.96617838064931
741415.6744029279771-0.34385414933195512.66945122135481.67440292797712
75813.7605474596975-9.7456700012393511.98512254154195.76054745969748
767-0.2396818800617982.9160996584636911.3235822215981-7.2396818800618
77107.435848414312131.9021096840335310.6620419016543-2.56415158568787
7879.28965206424946-5.3175615569181710.02790949266872.28965206424946
791014.4618345619877-3.855611645670779.393777083683094.46183456198768
8031.43537131615127-4.222122405843048.78675108969177-1.56462868384873



Parameters (Session):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par5 = 1 ; par7 = 1 ; par8 = TRUE ;
Parameters (R input):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par4 = ; par5 = 1 ; par6 = ; par7 = 1 ; par8 = TRUE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #seasonal period
if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window
par3 <- as.numeric(par3) #s.degree
if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window
par5 <- as.numeric(par5)#t.degree
if (par6 != '') par6 <- as.numeric(par6)#l.window
par7 <- as.numeric(par7)#l.degree
if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust
nx <- length(x)
x <- ts(x,frequency=par1)
if (par6 != '') {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8)
} else {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8)
}
m$time.series
m$win
m$deg
m$jump
m$inner
m$outer
bitmap(file='test1.png')
plot(m,main=main)
dev.off()
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Component',header=TRUE)
a<-table.element(a,'Window',header=TRUE)
a<-table.element(a,'Degree',header=TRUE)
a<-table.element(a,'Jump',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,m$win['s'])
a<-table.element(a,m$deg['s'])
a<-table.element(a,m$jump['s'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,m$win['t'])
a<-table.element(a,m$deg['t'])
a<-table.element(a,m$jump['t'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Low-pass',header=TRUE)
a<-table.element(a,m$win['l'])
a<-table.element(a,m$deg['l'])
a<-table.element(a,m$jump['l'])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Remainder',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]+m$time.series[i,'remainder'])
a<-table.element(a,m$time.series[i,'seasonal'])
a<-table.element(a,m$time.series[i,'trend'])
a<-table.element(a,m$time.series[i,'remainder'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')