Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 19 Dec 2012 10:24:36 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Dec/19/t1355930755lfdyjd20k3po9u4.htm/, Retrieved Fri, 01 Nov 2024 00:01:02 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=202069, Retrieved Fri, 01 Nov 2024 00:01:02 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact147
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [multiple regression] [2012-12-19 15:24:36] [0d750c380655c9fc6c0776885d6cbda7] [Current]
Feedback Forum

Post a new message
Dataseries X:
3	1
4	0
4	0
4	0
4	0
4	1
4	0
3	0
4	1
4	0
3	0
4	0
4	0
3	0
4	1
3	1
3	0
3	0
4	1
3	1
4	0
4	1
4	1
4	1
3	1
4	0
4	1
4	0
4	1
4	0
4	0
4	0
4	0
3	1
4	0
4	0
3	0
4	1
4	1
3	0
4	1
4	1
4	1
3	0
4	0
4	1
4	0
4	1
4	1
4	0
3	0
3	0
4	1
4	0
4	0
3	1
4	1
4	1
4	1
3	1
3	1
4	0
4	0
3	1
4	0
4	0
3	0
4	0
4	1
4	0
4	0
4	1
4	1
4	0
4	1
3	1
4	1
4	1
3	1
3	0
4	0
4	1
4	0
4	0
4	1
4	0
2	1
1	1
2	0
2	1
2	0
1	0
2	0
2	0
1	0
2	1
1	0
2	0
2	0
2	1
2	1
2	0
2	0
2	0
1	0
2	0
2	0
1	0
2	0
2	0
1	0
1	0
2	0
1	0
2	0
2	0
2	1
2	0
2	0
2	1
2	0
2	0
1	0
2	1
2	1
1	0
2	0
2	1
2	0
2	1
2	0
2	1
2	0
2	0
2	0
2	0
2	1
1	1
1	0
2	0
2	1
1	1
2	0
2	1
2	0
1	1
1	0
1	0
2	0
2	1
2	1
2	0
2	0
2	0




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 9 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ wold.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=202069&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]9 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ wold.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=202069&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=202069&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net







Multiple Linear Regression - Estimated Regression Equation
T[t] = + 2.72043010752688 + 0.345143662964922outcome[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
T[t] =  +  2.72043010752688 +  0.345143662964922outcome[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=202069&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]T[t] =  +  2.72043010752688 +  0.345143662964922outcome[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=202069&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=202069&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
T[t] = + 2.72043010752688 + 0.345143662964922outcome[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)2.720430107526880.11109524.487400
outcome0.3451436629649220.1765191.95530.0523840.026192

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 2.72043010752688 & 0.111095 & 24.4874 & 0 & 0 \tabularnewline
outcome & 0.345143662964922 & 0.176519 & 1.9553 & 0.052384 & 0.026192 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=202069&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]2.72043010752688[/C][C]0.111095[/C][C]24.4874[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]outcome[/C][C]0.345143662964922[/C][C]0.176519[/C][C]1.9553[/C][C]0.052384[/C][C]0.026192[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=202069&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=202069&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)2.720430107526880.11109524.487400
outcome0.3451436629649220.1765191.95530.0523840.026192







Multiple Linear Regression - Regression Statistics
Multiple R0.156636435245916
R-squared0.0245349728465479
Adjusted R-squared0.01811743977317
F-TEST (value)3.82311591791042
F-TEST (DF numerator)1
F-TEST (DF denominator)152
p-value0.0523842858070618
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation1.07136437764917
Sum Squared Residuals174.468887713732

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.156636435245916 \tabularnewline
R-squared & 0.0245349728465479 \tabularnewline
Adjusted R-squared & 0.01811743977317 \tabularnewline
F-TEST (value) & 3.82311591791042 \tabularnewline
F-TEST (DF numerator) & 1 \tabularnewline
F-TEST (DF denominator) & 152 \tabularnewline
p-value & 0.0523842858070618 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 1.07136437764917 \tabularnewline
Sum Squared Residuals & 174.468887713732 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=202069&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.156636435245916[/C][/ROW]
[ROW][C]R-squared[/C][C]0.0245349728465479[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.01811743977317[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]3.82311591791042[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]1[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]152[/C][/ROW]
[ROW][C]p-value[/C][C]0.0523842858070618[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]1.07136437764917[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]174.468887713732[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=202069&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=202069&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.156636435245916
R-squared0.0245349728465479
Adjusted R-squared0.01811743977317
F-TEST (value)3.82311591791042
F-TEST (DF numerator)1
F-TEST (DF denominator)152
p-value0.0523842858070618
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation1.07136437764917
Sum Squared Residuals174.468887713732







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
133.0655737704918-0.065573770491802
242.720430107526881.27956989247312
342.720430107526881.27956989247312
442.720430107526881.27956989247312
542.720430107526881.27956989247312
643.06557377049180.934426229508197
742.720430107526881.27956989247312
832.720430107526880.279569892473118
943.06557377049180.934426229508197
1042.720430107526881.27956989247312
1132.720430107526880.279569892473118
1242.720430107526881.27956989247312
1342.720430107526881.27956989247312
1432.720430107526880.279569892473118
1543.06557377049180.934426229508197
1633.0655737704918-0.0655737704918034
1732.720430107526880.279569892473118
1832.720430107526880.279569892473118
1943.06557377049180.934426229508197
2033.0655737704918-0.0655737704918034
2142.720430107526881.27956989247312
2243.06557377049180.934426229508197
2343.06557377049180.934426229508197
2443.06557377049180.934426229508197
2533.0655737704918-0.0655737704918034
2642.720430107526881.27956989247312
2743.06557377049180.934426229508197
2842.720430107526881.27956989247312
2943.06557377049180.934426229508197
3042.720430107526881.27956989247312
3142.720430107526881.27956989247312
3242.720430107526881.27956989247312
3342.720430107526881.27956989247312
3433.0655737704918-0.0655737704918034
3542.720430107526881.27956989247312
3642.720430107526881.27956989247312
3732.720430107526880.279569892473118
3843.06557377049180.934426229508197
3943.06557377049180.934426229508197
4032.720430107526880.279569892473118
4143.06557377049180.934426229508197
4243.06557377049180.934426229508197
4343.06557377049180.934426229508197
4432.720430107526880.279569892473118
4542.720430107526881.27956989247312
4643.06557377049180.934426229508197
4742.720430107526881.27956989247312
4843.06557377049180.934426229508197
4943.06557377049180.934426229508197
5042.720430107526881.27956989247312
5132.720430107526880.279569892473118
5232.720430107526880.279569892473118
5343.06557377049180.934426229508197
5442.720430107526881.27956989247312
5542.720430107526881.27956989247312
5633.0655737704918-0.0655737704918034
5743.06557377049180.934426229508197
5843.06557377049180.934426229508197
5943.06557377049180.934426229508197
6033.0655737704918-0.0655737704918034
6133.0655737704918-0.0655737704918034
6242.720430107526881.27956989247312
6342.720430107526881.27956989247312
6433.0655737704918-0.0655737704918034
6542.720430107526881.27956989247312
6642.720430107526881.27956989247312
6732.720430107526880.279569892473118
6842.720430107526881.27956989247312
6943.06557377049180.934426229508197
7042.720430107526881.27956989247312
7142.720430107526881.27956989247312
7243.06557377049180.934426229508197
7343.06557377049180.934426229508197
7442.720430107526881.27956989247312
7543.06557377049180.934426229508197
7633.0655737704918-0.0655737704918034
7743.06557377049180.934426229508197
7843.06557377049180.934426229508197
7933.0655737704918-0.0655737704918034
8032.720430107526880.279569892473118
8142.720430107526881.27956989247312
8243.06557377049180.934426229508197
8342.720430107526881.27956989247312
8442.720430107526881.27956989247312
8543.06557377049180.934426229508197
8642.720430107526881.27956989247312
8723.0655737704918-1.0655737704918
8813.0655737704918-2.0655737704918
8922.72043010752688-0.720430107526882
9023.0655737704918-1.0655737704918
9122.72043010752688-0.720430107526882
9212.72043010752688-1.72043010752688
9322.72043010752688-0.720430107526882
9422.72043010752688-0.720430107526882
9512.72043010752688-1.72043010752688
9623.0655737704918-1.0655737704918
9712.72043010752688-1.72043010752688
9822.72043010752688-0.720430107526882
9922.72043010752688-0.720430107526882
10023.0655737704918-1.0655737704918
10123.0655737704918-1.0655737704918
10222.72043010752688-0.720430107526882
10322.72043010752688-0.720430107526882
10422.72043010752688-0.720430107526882
10512.72043010752688-1.72043010752688
10622.72043010752688-0.720430107526882
10722.72043010752688-0.720430107526882
10812.72043010752688-1.72043010752688
10922.72043010752688-0.720430107526882
11022.72043010752688-0.720430107526882
11112.72043010752688-1.72043010752688
11212.72043010752688-1.72043010752688
11322.72043010752688-0.720430107526882
11412.72043010752688-1.72043010752688
11522.72043010752688-0.720430107526882
11622.72043010752688-0.720430107526882
11723.0655737704918-1.0655737704918
11822.72043010752688-0.720430107526882
11922.72043010752688-0.720430107526882
12023.0655737704918-1.0655737704918
12122.72043010752688-0.720430107526882
12222.72043010752688-0.720430107526882
12312.72043010752688-1.72043010752688
12423.0655737704918-1.0655737704918
12523.0655737704918-1.0655737704918
12612.72043010752688-1.72043010752688
12722.72043010752688-0.720430107526882
12823.0655737704918-1.0655737704918
12922.72043010752688-0.720430107526882
13023.0655737704918-1.0655737704918
13122.72043010752688-0.720430107526882
13223.0655737704918-1.0655737704918
13322.72043010752688-0.720430107526882
13422.72043010752688-0.720430107526882
13522.72043010752688-0.720430107526882
13622.72043010752688-0.720430107526882
13723.0655737704918-1.0655737704918
13813.0655737704918-2.0655737704918
13912.72043010752688-1.72043010752688
14022.72043010752688-0.720430107526882
14123.0655737704918-1.0655737704918
14213.0655737704918-2.0655737704918
14322.72043010752688-0.720430107526882
14423.0655737704918-1.0655737704918
14522.72043010752688-0.720430107526882
14613.0655737704918-2.0655737704918
14712.72043010752688-1.72043010752688
14812.72043010752688-1.72043010752688
14922.72043010752688-0.720430107526882
15023.0655737704918-1.0655737704918
15123.0655737704918-1.0655737704918
15222.72043010752688-0.720430107526882
15322.72043010752688-0.720430107526882
15422.72043010752688-0.720430107526882

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 3 & 3.0655737704918 & -0.065573770491802 \tabularnewline
2 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
3 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
4 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
5 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
6 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
7 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
8 & 3 & 2.72043010752688 & 0.279569892473118 \tabularnewline
9 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
10 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
11 & 3 & 2.72043010752688 & 0.279569892473118 \tabularnewline
12 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
13 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
14 & 3 & 2.72043010752688 & 0.279569892473118 \tabularnewline
15 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
16 & 3 & 3.0655737704918 & -0.0655737704918034 \tabularnewline
17 & 3 & 2.72043010752688 & 0.279569892473118 \tabularnewline
18 & 3 & 2.72043010752688 & 0.279569892473118 \tabularnewline
19 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
20 & 3 & 3.0655737704918 & -0.0655737704918034 \tabularnewline
21 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
22 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
23 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
24 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
25 & 3 & 3.0655737704918 & -0.0655737704918034 \tabularnewline
26 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
27 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
28 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
29 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
30 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
31 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
32 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
33 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
34 & 3 & 3.0655737704918 & -0.0655737704918034 \tabularnewline
35 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
36 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
37 & 3 & 2.72043010752688 & 0.279569892473118 \tabularnewline
38 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
39 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
40 & 3 & 2.72043010752688 & 0.279569892473118 \tabularnewline
41 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
42 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
43 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
44 & 3 & 2.72043010752688 & 0.279569892473118 \tabularnewline
45 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
46 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
47 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
48 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
49 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
50 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
51 & 3 & 2.72043010752688 & 0.279569892473118 \tabularnewline
52 & 3 & 2.72043010752688 & 0.279569892473118 \tabularnewline
53 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
54 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
55 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
56 & 3 & 3.0655737704918 & -0.0655737704918034 \tabularnewline
57 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
58 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
59 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
60 & 3 & 3.0655737704918 & -0.0655737704918034 \tabularnewline
61 & 3 & 3.0655737704918 & -0.0655737704918034 \tabularnewline
62 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
63 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
64 & 3 & 3.0655737704918 & -0.0655737704918034 \tabularnewline
65 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
66 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
67 & 3 & 2.72043010752688 & 0.279569892473118 \tabularnewline
68 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
69 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
70 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
71 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
72 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
73 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
74 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
75 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
76 & 3 & 3.0655737704918 & -0.0655737704918034 \tabularnewline
77 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
78 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
79 & 3 & 3.0655737704918 & -0.0655737704918034 \tabularnewline
80 & 3 & 2.72043010752688 & 0.279569892473118 \tabularnewline
81 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
82 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
83 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
84 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
85 & 4 & 3.0655737704918 & 0.934426229508197 \tabularnewline
86 & 4 & 2.72043010752688 & 1.27956989247312 \tabularnewline
87 & 2 & 3.0655737704918 & -1.0655737704918 \tabularnewline
88 & 1 & 3.0655737704918 & -2.0655737704918 \tabularnewline
89 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
90 & 2 & 3.0655737704918 & -1.0655737704918 \tabularnewline
91 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
92 & 1 & 2.72043010752688 & -1.72043010752688 \tabularnewline
93 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
94 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
95 & 1 & 2.72043010752688 & -1.72043010752688 \tabularnewline
96 & 2 & 3.0655737704918 & -1.0655737704918 \tabularnewline
97 & 1 & 2.72043010752688 & -1.72043010752688 \tabularnewline
98 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
99 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
100 & 2 & 3.0655737704918 & -1.0655737704918 \tabularnewline
101 & 2 & 3.0655737704918 & -1.0655737704918 \tabularnewline
102 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
103 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
104 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
105 & 1 & 2.72043010752688 & -1.72043010752688 \tabularnewline
106 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
107 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
108 & 1 & 2.72043010752688 & -1.72043010752688 \tabularnewline
109 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
110 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
111 & 1 & 2.72043010752688 & -1.72043010752688 \tabularnewline
112 & 1 & 2.72043010752688 & -1.72043010752688 \tabularnewline
113 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
114 & 1 & 2.72043010752688 & -1.72043010752688 \tabularnewline
115 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
116 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
117 & 2 & 3.0655737704918 & -1.0655737704918 \tabularnewline
118 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
119 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
120 & 2 & 3.0655737704918 & -1.0655737704918 \tabularnewline
121 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
122 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
123 & 1 & 2.72043010752688 & -1.72043010752688 \tabularnewline
124 & 2 & 3.0655737704918 & -1.0655737704918 \tabularnewline
125 & 2 & 3.0655737704918 & -1.0655737704918 \tabularnewline
126 & 1 & 2.72043010752688 & -1.72043010752688 \tabularnewline
127 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
128 & 2 & 3.0655737704918 & -1.0655737704918 \tabularnewline
129 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
130 & 2 & 3.0655737704918 & -1.0655737704918 \tabularnewline
131 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
132 & 2 & 3.0655737704918 & -1.0655737704918 \tabularnewline
133 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
134 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
135 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
136 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
137 & 2 & 3.0655737704918 & -1.0655737704918 \tabularnewline
138 & 1 & 3.0655737704918 & -2.0655737704918 \tabularnewline
139 & 1 & 2.72043010752688 & -1.72043010752688 \tabularnewline
140 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
141 & 2 & 3.0655737704918 & -1.0655737704918 \tabularnewline
142 & 1 & 3.0655737704918 & -2.0655737704918 \tabularnewline
143 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
144 & 2 & 3.0655737704918 & -1.0655737704918 \tabularnewline
145 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
146 & 1 & 3.0655737704918 & -2.0655737704918 \tabularnewline
147 & 1 & 2.72043010752688 & -1.72043010752688 \tabularnewline
148 & 1 & 2.72043010752688 & -1.72043010752688 \tabularnewline
149 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
150 & 2 & 3.0655737704918 & -1.0655737704918 \tabularnewline
151 & 2 & 3.0655737704918 & -1.0655737704918 \tabularnewline
152 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
153 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
154 & 2 & 2.72043010752688 & -0.720430107526882 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=202069&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]3[/C][C]3.0655737704918[/C][C]-0.065573770491802[/C][/ROW]
[ROW][C]2[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]3[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]4[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]5[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]6[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]7[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]8[/C][C]3[/C][C]2.72043010752688[/C][C]0.279569892473118[/C][/ROW]
[ROW][C]9[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]10[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]11[/C][C]3[/C][C]2.72043010752688[/C][C]0.279569892473118[/C][/ROW]
[ROW][C]12[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]13[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]14[/C][C]3[/C][C]2.72043010752688[/C][C]0.279569892473118[/C][/ROW]
[ROW][C]15[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]16[/C][C]3[/C][C]3.0655737704918[/C][C]-0.0655737704918034[/C][/ROW]
[ROW][C]17[/C][C]3[/C][C]2.72043010752688[/C][C]0.279569892473118[/C][/ROW]
[ROW][C]18[/C][C]3[/C][C]2.72043010752688[/C][C]0.279569892473118[/C][/ROW]
[ROW][C]19[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]20[/C][C]3[/C][C]3.0655737704918[/C][C]-0.0655737704918034[/C][/ROW]
[ROW][C]21[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]22[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]23[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]24[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]25[/C][C]3[/C][C]3.0655737704918[/C][C]-0.0655737704918034[/C][/ROW]
[ROW][C]26[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]27[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]28[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]29[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]30[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]31[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]32[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]33[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]34[/C][C]3[/C][C]3.0655737704918[/C][C]-0.0655737704918034[/C][/ROW]
[ROW][C]35[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]36[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]37[/C][C]3[/C][C]2.72043010752688[/C][C]0.279569892473118[/C][/ROW]
[ROW][C]38[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]39[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]40[/C][C]3[/C][C]2.72043010752688[/C][C]0.279569892473118[/C][/ROW]
[ROW][C]41[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]42[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]43[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]44[/C][C]3[/C][C]2.72043010752688[/C][C]0.279569892473118[/C][/ROW]
[ROW][C]45[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]46[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]47[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]48[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]49[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]50[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]51[/C][C]3[/C][C]2.72043010752688[/C][C]0.279569892473118[/C][/ROW]
[ROW][C]52[/C][C]3[/C][C]2.72043010752688[/C][C]0.279569892473118[/C][/ROW]
[ROW][C]53[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]54[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]55[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]56[/C][C]3[/C][C]3.0655737704918[/C][C]-0.0655737704918034[/C][/ROW]
[ROW][C]57[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]58[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]59[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]60[/C][C]3[/C][C]3.0655737704918[/C][C]-0.0655737704918034[/C][/ROW]
[ROW][C]61[/C][C]3[/C][C]3.0655737704918[/C][C]-0.0655737704918034[/C][/ROW]
[ROW][C]62[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]63[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]64[/C][C]3[/C][C]3.0655737704918[/C][C]-0.0655737704918034[/C][/ROW]
[ROW][C]65[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]66[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]67[/C][C]3[/C][C]2.72043010752688[/C][C]0.279569892473118[/C][/ROW]
[ROW][C]68[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]69[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]70[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]71[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]72[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]73[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]74[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]75[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]76[/C][C]3[/C][C]3.0655737704918[/C][C]-0.0655737704918034[/C][/ROW]
[ROW][C]77[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]78[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]79[/C][C]3[/C][C]3.0655737704918[/C][C]-0.0655737704918034[/C][/ROW]
[ROW][C]80[/C][C]3[/C][C]2.72043010752688[/C][C]0.279569892473118[/C][/ROW]
[ROW][C]81[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]82[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]83[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]84[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]85[/C][C]4[/C][C]3.0655737704918[/C][C]0.934426229508197[/C][/ROW]
[ROW][C]86[/C][C]4[/C][C]2.72043010752688[/C][C]1.27956989247312[/C][/ROW]
[ROW][C]87[/C][C]2[/C][C]3.0655737704918[/C][C]-1.0655737704918[/C][/ROW]
[ROW][C]88[/C][C]1[/C][C]3.0655737704918[/C][C]-2.0655737704918[/C][/ROW]
[ROW][C]89[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]90[/C][C]2[/C][C]3.0655737704918[/C][C]-1.0655737704918[/C][/ROW]
[ROW][C]91[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]92[/C][C]1[/C][C]2.72043010752688[/C][C]-1.72043010752688[/C][/ROW]
[ROW][C]93[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]94[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]95[/C][C]1[/C][C]2.72043010752688[/C][C]-1.72043010752688[/C][/ROW]
[ROW][C]96[/C][C]2[/C][C]3.0655737704918[/C][C]-1.0655737704918[/C][/ROW]
[ROW][C]97[/C][C]1[/C][C]2.72043010752688[/C][C]-1.72043010752688[/C][/ROW]
[ROW][C]98[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]99[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]100[/C][C]2[/C][C]3.0655737704918[/C][C]-1.0655737704918[/C][/ROW]
[ROW][C]101[/C][C]2[/C][C]3.0655737704918[/C][C]-1.0655737704918[/C][/ROW]
[ROW][C]102[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]103[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]104[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]105[/C][C]1[/C][C]2.72043010752688[/C][C]-1.72043010752688[/C][/ROW]
[ROW][C]106[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]107[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]108[/C][C]1[/C][C]2.72043010752688[/C][C]-1.72043010752688[/C][/ROW]
[ROW][C]109[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]110[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]111[/C][C]1[/C][C]2.72043010752688[/C][C]-1.72043010752688[/C][/ROW]
[ROW][C]112[/C][C]1[/C][C]2.72043010752688[/C][C]-1.72043010752688[/C][/ROW]
[ROW][C]113[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]114[/C][C]1[/C][C]2.72043010752688[/C][C]-1.72043010752688[/C][/ROW]
[ROW][C]115[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]116[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]117[/C][C]2[/C][C]3.0655737704918[/C][C]-1.0655737704918[/C][/ROW]
[ROW][C]118[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]119[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]120[/C][C]2[/C][C]3.0655737704918[/C][C]-1.0655737704918[/C][/ROW]
[ROW][C]121[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]122[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]123[/C][C]1[/C][C]2.72043010752688[/C][C]-1.72043010752688[/C][/ROW]
[ROW][C]124[/C][C]2[/C][C]3.0655737704918[/C][C]-1.0655737704918[/C][/ROW]
[ROW][C]125[/C][C]2[/C][C]3.0655737704918[/C][C]-1.0655737704918[/C][/ROW]
[ROW][C]126[/C][C]1[/C][C]2.72043010752688[/C][C]-1.72043010752688[/C][/ROW]
[ROW][C]127[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]128[/C][C]2[/C][C]3.0655737704918[/C][C]-1.0655737704918[/C][/ROW]
[ROW][C]129[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]130[/C][C]2[/C][C]3.0655737704918[/C][C]-1.0655737704918[/C][/ROW]
[ROW][C]131[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]132[/C][C]2[/C][C]3.0655737704918[/C][C]-1.0655737704918[/C][/ROW]
[ROW][C]133[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]134[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]135[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]136[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]137[/C][C]2[/C][C]3.0655737704918[/C][C]-1.0655737704918[/C][/ROW]
[ROW][C]138[/C][C]1[/C][C]3.0655737704918[/C][C]-2.0655737704918[/C][/ROW]
[ROW][C]139[/C][C]1[/C][C]2.72043010752688[/C][C]-1.72043010752688[/C][/ROW]
[ROW][C]140[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]141[/C][C]2[/C][C]3.0655737704918[/C][C]-1.0655737704918[/C][/ROW]
[ROW][C]142[/C][C]1[/C][C]3.0655737704918[/C][C]-2.0655737704918[/C][/ROW]
[ROW][C]143[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]144[/C][C]2[/C][C]3.0655737704918[/C][C]-1.0655737704918[/C][/ROW]
[ROW][C]145[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]146[/C][C]1[/C][C]3.0655737704918[/C][C]-2.0655737704918[/C][/ROW]
[ROW][C]147[/C][C]1[/C][C]2.72043010752688[/C][C]-1.72043010752688[/C][/ROW]
[ROW][C]148[/C][C]1[/C][C]2.72043010752688[/C][C]-1.72043010752688[/C][/ROW]
[ROW][C]149[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]150[/C][C]2[/C][C]3.0655737704918[/C][C]-1.0655737704918[/C][/ROW]
[ROW][C]151[/C][C]2[/C][C]3.0655737704918[/C][C]-1.0655737704918[/C][/ROW]
[ROW][C]152[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]153[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[ROW][C]154[/C][C]2[/C][C]2.72043010752688[/C][C]-0.720430107526882[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=202069&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=202069&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
133.0655737704918-0.065573770491802
242.720430107526881.27956989247312
342.720430107526881.27956989247312
442.720430107526881.27956989247312
542.720430107526881.27956989247312
643.06557377049180.934426229508197
742.720430107526881.27956989247312
832.720430107526880.279569892473118
943.06557377049180.934426229508197
1042.720430107526881.27956989247312
1132.720430107526880.279569892473118
1242.720430107526881.27956989247312
1342.720430107526881.27956989247312
1432.720430107526880.279569892473118
1543.06557377049180.934426229508197
1633.0655737704918-0.0655737704918034
1732.720430107526880.279569892473118
1832.720430107526880.279569892473118
1943.06557377049180.934426229508197
2033.0655737704918-0.0655737704918034
2142.720430107526881.27956989247312
2243.06557377049180.934426229508197
2343.06557377049180.934426229508197
2443.06557377049180.934426229508197
2533.0655737704918-0.0655737704918034
2642.720430107526881.27956989247312
2743.06557377049180.934426229508197
2842.720430107526881.27956989247312
2943.06557377049180.934426229508197
3042.720430107526881.27956989247312
3142.720430107526881.27956989247312
3242.720430107526881.27956989247312
3342.720430107526881.27956989247312
3433.0655737704918-0.0655737704918034
3542.720430107526881.27956989247312
3642.720430107526881.27956989247312
3732.720430107526880.279569892473118
3843.06557377049180.934426229508197
3943.06557377049180.934426229508197
4032.720430107526880.279569892473118
4143.06557377049180.934426229508197
4243.06557377049180.934426229508197
4343.06557377049180.934426229508197
4432.720430107526880.279569892473118
4542.720430107526881.27956989247312
4643.06557377049180.934426229508197
4742.720430107526881.27956989247312
4843.06557377049180.934426229508197
4943.06557377049180.934426229508197
5042.720430107526881.27956989247312
5132.720430107526880.279569892473118
5232.720430107526880.279569892473118
5343.06557377049180.934426229508197
5442.720430107526881.27956989247312
5542.720430107526881.27956989247312
5633.0655737704918-0.0655737704918034
5743.06557377049180.934426229508197
5843.06557377049180.934426229508197
5943.06557377049180.934426229508197
6033.0655737704918-0.0655737704918034
6133.0655737704918-0.0655737704918034
6242.720430107526881.27956989247312
6342.720430107526881.27956989247312
6433.0655737704918-0.0655737704918034
6542.720430107526881.27956989247312
6642.720430107526881.27956989247312
6732.720430107526880.279569892473118
6842.720430107526881.27956989247312
6943.06557377049180.934426229508197
7042.720430107526881.27956989247312
7142.720430107526881.27956989247312
7243.06557377049180.934426229508197
7343.06557377049180.934426229508197
7442.720430107526881.27956989247312
7543.06557377049180.934426229508197
7633.0655737704918-0.0655737704918034
7743.06557377049180.934426229508197
7843.06557377049180.934426229508197
7933.0655737704918-0.0655737704918034
8032.720430107526880.279569892473118
8142.720430107526881.27956989247312
8243.06557377049180.934426229508197
8342.720430107526881.27956989247312
8442.720430107526881.27956989247312
8543.06557377049180.934426229508197
8642.720430107526881.27956989247312
8723.0655737704918-1.0655737704918
8813.0655737704918-2.0655737704918
8922.72043010752688-0.720430107526882
9023.0655737704918-1.0655737704918
9122.72043010752688-0.720430107526882
9212.72043010752688-1.72043010752688
9322.72043010752688-0.720430107526882
9422.72043010752688-0.720430107526882
9512.72043010752688-1.72043010752688
9623.0655737704918-1.0655737704918
9712.72043010752688-1.72043010752688
9822.72043010752688-0.720430107526882
9922.72043010752688-0.720430107526882
10023.0655737704918-1.0655737704918
10123.0655737704918-1.0655737704918
10222.72043010752688-0.720430107526882
10322.72043010752688-0.720430107526882
10422.72043010752688-0.720430107526882
10512.72043010752688-1.72043010752688
10622.72043010752688-0.720430107526882
10722.72043010752688-0.720430107526882
10812.72043010752688-1.72043010752688
10922.72043010752688-0.720430107526882
11022.72043010752688-0.720430107526882
11112.72043010752688-1.72043010752688
11212.72043010752688-1.72043010752688
11322.72043010752688-0.720430107526882
11412.72043010752688-1.72043010752688
11522.72043010752688-0.720430107526882
11622.72043010752688-0.720430107526882
11723.0655737704918-1.0655737704918
11822.72043010752688-0.720430107526882
11922.72043010752688-0.720430107526882
12023.0655737704918-1.0655737704918
12122.72043010752688-0.720430107526882
12222.72043010752688-0.720430107526882
12312.72043010752688-1.72043010752688
12423.0655737704918-1.0655737704918
12523.0655737704918-1.0655737704918
12612.72043010752688-1.72043010752688
12722.72043010752688-0.720430107526882
12823.0655737704918-1.0655737704918
12922.72043010752688-0.720430107526882
13023.0655737704918-1.0655737704918
13122.72043010752688-0.720430107526882
13223.0655737704918-1.0655737704918
13322.72043010752688-0.720430107526882
13422.72043010752688-0.720430107526882
13522.72043010752688-0.720430107526882
13622.72043010752688-0.720430107526882
13723.0655737704918-1.0655737704918
13813.0655737704918-2.0655737704918
13912.72043010752688-1.72043010752688
14022.72043010752688-0.720430107526882
14123.0655737704918-1.0655737704918
14213.0655737704918-2.0655737704918
14322.72043010752688-0.720430107526882
14423.0655737704918-1.0655737704918
14522.72043010752688-0.720430107526882
14613.0655737704918-2.0655737704918
14712.72043010752688-1.72043010752688
14812.72043010752688-1.72043010752688
14922.72043010752688-0.720430107526882
15023.0655737704918-1.0655737704918
15123.0655737704918-1.0655737704918
15222.72043010752688-0.720430107526882
15322.72043010752688-0.720430107526882
15422.72043010752688-0.720430107526882







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
5001
60.02094017154585580.04188034309171170.979059828454144
70.005951915860501780.01190383172100360.994048084139498
80.02196479767139980.04392959534279970.9780352023286
90.01225626157476120.02451252314952240.987743738425239
100.005166364488758570.01033272897751710.994833635511241
110.007341373505575560.01468274701115110.992658626494424
120.003555184395191910.007110368790383810.996444815604808
130.001662592447619060.003325184895238120.998337407552381
140.002054403312249440.004108806624498890.997945596687751
150.001042188848039720.002084377696079440.99895781115196
160.0009746404373111290.001949280874622260.999025359562689
170.000940116984384940.001880233968769880.999059883015615
180.0007913565711787020.00158271314235740.999208643428821
190.0004551077851789770.0009102155703579540.999544892214821
200.0003631620283395530.0007263240566791060.99963683797166
210.0002220535616743590.0004441071233487170.999777946438326
220.0001340571699239850.0002681143398479690.999865942830076
237.66805065284728e-050.0001533610130569460.999923319493472
244.21344387429999e-058.42688774859998e-050.999957865561257
253.78164194508935e-057.56328389017869e-050.999962183580549
262.29848244796181e-054.59696489592362e-050.99997701517552
271.3219515224728e-052.6439030449456e-050.999986780484775
287.93349394541533e-061.58669878908307e-050.999992066506055
294.44509209400427e-068.89018418800854e-060.999995554907906
302.64584497988024e-065.29168995976048e-060.99999735415502
311.56437447500693e-063.12874895001385e-060.999998435625525
329.21872556631259e-071.84374511326252e-060.999999078127443
335.43140152212078e-071.08628030442416e-060.999999456859848
345.21532345169542e-071.04306469033908e-060.999999478467655
353.1242637574576e-076.2485275149152e-070.999999687573624
361.88350362248773e-073.76700724497546e-070.999999811649638
372.36874912977628e-074.73749825955256e-070.999999763125087
381.43670308923963e-072.87340617847927e-070.999999856329691
398.55881638075205e-081.71176327615041e-070.999999914411836
409.74193074100039e-081.94838614820008e-070.999999902580693
415.79210069697155e-081.15842013939431e-070.999999942078993
423.41766154548872e-086.83532309097745e-080.999999965823385
432.00905446269995e-084.01810892539989e-080.999999979909455
442.14161173781943e-084.28322347563886e-080.999999978583883
451.57723233496714e-083.15446466993427e-080.999999984227677
469.48067982749078e-091.89613596549816e-080.99999999051932
477.1901204232797e-091.43802408465594e-080.99999999280988
484.40022338718272e-098.80044677436543e-090.999999995599777
492.71909572502418e-095.43819145004836e-090.999999997280904
502.17168049923564e-094.34336099847127e-090.999999997828319
512.53058172610585e-095.0611634522117e-090.999999997469418
522.73165060036823e-095.46330120073645e-090.999999997268349
531.78448842173089e-093.56897684346178e-090.999999998215512
541.64247257302093e-093.28494514604186e-090.999999998357527
551.56999591394952e-093.13999182789904e-090.999999998430004
561.99798634182385e-093.99597268364769e-090.999999998002014
571.45417401587038e-092.90834803174077e-090.999999998545826
581.09046544933962e-092.18093089867925e-090.999999998909535
598.47800328093423e-101.69560065618685e-090.9999999991522
601.1010087811582e-092.20201756231641e-090.999999998898991
611.30348734833596e-092.60697469667192e-090.999999998696513
621.4572663460054e-092.91453269201081e-090.999999998542734
631.72870288649986e-093.45740577299973e-090.999999998271297
641.93874305390957e-093.87748610781915e-090.999999998061257
652.48977504173646e-094.97955008347292e-090.999999997510225
663.45480317560695e-096.9096063512139e-090.999999996545197
674.55010694044934e-099.10021388089868e-090.999999995449893
687.28845007976646e-091.45769001595329e-080.99999999271155
698.40419604601706e-091.68083920920341e-080.999999991595804
701.57421406442861e-083.14842812885721e-080.999999984257859
713.33456532135541e-086.66913064271081e-080.999999966654347
724.71577769614657e-089.43155539229315e-080.999999952842223
737.44046552012702e-081.4880931040254e-070.999999925595345
742.10593164815143e-074.21186329630285e-070.999999789406835
754.12789121866699e-078.25578243733398e-070.999999587210878
765.87427686968311e-071.17485537393662e-060.999999412572313
771.46793429468911e-062.93586858937823e-060.999998532065705
784.50904224191878e-069.01808448383755e-060.999995490957758
797.4734109180979e-061.49468218361958e-050.999992526589082
801.35840202444047e-052.71680404888094e-050.999986415979756
817.06218195065438e-050.0001412436390130880.999929378180493
820.0003567428313864010.0007134856627728030.999643257168614
830.002491648755751090.004983297511502190.997508351244249
840.01970444325198150.03940888650396290.980295556748018
850.1219108444988520.2438216889977040.878089155501148
860.5740813924967580.8518372150064830.425918607503242
870.776086152475410.447827695049180.22391384752459
880.9838188810537410.03236223789251710.0161811189462586
890.993318937438260.01336212512348040.00668106256174019
900.9964739634221110.007052073155777070.00352603657788854
910.9983305805627950.003338838874409690.00166941943720485
920.9998870111303530.0002259777392941910.000112988869647095
930.9999310694031090.0001378611937813116.89305968906553e-05
940.999954477881889.10442362395886e-054.55221181197943e-05
950.9999952605707439.47885851471341e-064.7394292573567e-06
960.9999961045641567.79087168704368e-063.89543584352184e-06
970.9999995087228339.82554334427297e-074.91277167213649e-07
980.9999995188526699.62294661744698e-074.81147330872349e-07
990.9999995081462259.83707549538516e-074.91853774769258e-07
1000.9999994965078811.00698423774624e-065.03492118873121e-07
1010.9999994593325951.0813348095673e-065.40667404783649e-07
1020.9999993954240681.2091518635029e-066.04575931751452e-07
1030.9999993039520341.39209593215365e-066.96047966076824e-07
1040.999999178141751.64371650017177e-068.21858250085883e-07
1050.9999997778418074.44316385259609e-072.22158192629805e-07
1060.9999997061945455.87610909480417e-072.93805454740209e-07
1070.9999996058111067.88377788447543e-073.94188894223772e-07
1080.9999998735014652.52997070554484e-071.26498535277242e-07
1090.9999998134235243.7315295229495e-071.86576476147475e-07
1100.9999997230828355.53834329289113e-072.76917164644557e-07
1110.9999998993377582.01324483481281e-071.00662241740641e-07
1120.999999966042576.79148589707324e-083.39574294853662e-08
1130.9999999406499991.1870000120426e-075.93500006021302e-08
1140.9999999807183513.85632969428222e-081.92816484714111e-08
1150.9999999634314297.31371421258422e-083.65685710629211e-08
1160.9999999309868141.38026371757578e-076.90131858787888e-08
1170.9999998853834632.29233074830297e-071.14616537415148e-07
1180.9999997843069944.31386011251613e-072.15693005625807e-07
1190.9999995975440148.04911971963082e-074.02455985981541e-07
1200.9999993238539561.35229208859647e-066.76146044298233e-07
1210.9999987485140252.50297195039483e-061.25148597519741e-06
1220.9999977118870884.57622582450908e-062.28811291225454e-06
1230.9999988528324522.29433509620146e-061.14716754810073e-06
1240.9999979857692284.02846154482328e-062.01423077241164e-06
1250.9999964966893157.006621369854e-063.503310684927e-06
1260.9999984343808893.13123822245595e-061.56561911122797e-06
1270.9999966446616946.71067661199718e-063.35533830599859e-06
1280.999994027280411.19454391797008e-055.97271958985041e-06
1290.9999874496006362.51007987281216e-051.25503993640608e-05
1300.9999783287076334.33425847333488e-052.16712923666744e-05
1310.9999554495537178.91008925660843e-054.45504462830421e-05
1320.9999262049258130.0001475901483740427.37950741870208e-05
1330.9998518577876830.000296284424633910.000148142212316955
1340.9997100030047510.0005799939904986710.000289996995249335
1350.9994479820997730.001104035800453620.000552017900226811
1360.9989818690007230.002036261998554620.00101813099927731
1370.9984082595743920.003183480851216690.00159174042560835
1380.9984355271947630.003128945610473680.00156447280523684
1390.9987638733754760.00247225324904760.0012361266245238
1400.9974662802397290.005067439520540990.00253371976027049
1410.9956052105743440.008789578851311540.00439478942565577
1420.9959075636853910.008184872629217110.00409243631460856
1430.9916524492554280.01669510148914370.00834755074457187
1440.9838280962997430.03234380740051360.0161719037002568
1450.9692893529061940.06142129418761120.0307106470938056
1460.9776427692122840.04471446157543250.0223572307877163
1470.9829279906390070.03414401872198630.0170720093609932
14813.37849521932786e-631.68924760966393e-63
14911.57459057864381e-497.87295289321903e-50

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
5 & 0 & 0 & 1 \tabularnewline
6 & 0.0209401715458558 & 0.0418803430917117 & 0.979059828454144 \tabularnewline
7 & 0.00595191586050178 & 0.0119038317210036 & 0.994048084139498 \tabularnewline
8 & 0.0219647976713998 & 0.0439295953427997 & 0.9780352023286 \tabularnewline
9 & 0.0122562615747612 & 0.0245125231495224 & 0.987743738425239 \tabularnewline
10 & 0.00516636448875857 & 0.0103327289775171 & 0.994833635511241 \tabularnewline
11 & 0.00734137350557556 & 0.0146827470111511 & 0.992658626494424 \tabularnewline
12 & 0.00355518439519191 & 0.00711036879038381 & 0.996444815604808 \tabularnewline
13 & 0.00166259244761906 & 0.00332518489523812 & 0.998337407552381 \tabularnewline
14 & 0.00205440331224944 & 0.00410880662449889 & 0.997945596687751 \tabularnewline
15 & 0.00104218884803972 & 0.00208437769607944 & 0.99895781115196 \tabularnewline
16 & 0.000974640437311129 & 0.00194928087462226 & 0.999025359562689 \tabularnewline
17 & 0.00094011698438494 & 0.00188023396876988 & 0.999059883015615 \tabularnewline
18 & 0.000791356571178702 & 0.0015827131423574 & 0.999208643428821 \tabularnewline
19 & 0.000455107785178977 & 0.000910215570357954 & 0.999544892214821 \tabularnewline
20 & 0.000363162028339553 & 0.000726324056679106 & 0.99963683797166 \tabularnewline
21 & 0.000222053561674359 & 0.000444107123348717 & 0.999777946438326 \tabularnewline
22 & 0.000134057169923985 & 0.000268114339847969 & 0.999865942830076 \tabularnewline
23 & 7.66805065284728e-05 & 0.000153361013056946 & 0.999923319493472 \tabularnewline
24 & 4.21344387429999e-05 & 8.42688774859998e-05 & 0.999957865561257 \tabularnewline
25 & 3.78164194508935e-05 & 7.56328389017869e-05 & 0.999962183580549 \tabularnewline
26 & 2.29848244796181e-05 & 4.59696489592362e-05 & 0.99997701517552 \tabularnewline
27 & 1.3219515224728e-05 & 2.6439030449456e-05 & 0.999986780484775 \tabularnewline
28 & 7.93349394541533e-06 & 1.58669878908307e-05 & 0.999992066506055 \tabularnewline
29 & 4.44509209400427e-06 & 8.89018418800854e-06 & 0.999995554907906 \tabularnewline
30 & 2.64584497988024e-06 & 5.29168995976048e-06 & 0.99999735415502 \tabularnewline
31 & 1.56437447500693e-06 & 3.12874895001385e-06 & 0.999998435625525 \tabularnewline
32 & 9.21872556631259e-07 & 1.84374511326252e-06 & 0.999999078127443 \tabularnewline
33 & 5.43140152212078e-07 & 1.08628030442416e-06 & 0.999999456859848 \tabularnewline
34 & 5.21532345169542e-07 & 1.04306469033908e-06 & 0.999999478467655 \tabularnewline
35 & 3.1242637574576e-07 & 6.2485275149152e-07 & 0.999999687573624 \tabularnewline
36 & 1.88350362248773e-07 & 3.76700724497546e-07 & 0.999999811649638 \tabularnewline
37 & 2.36874912977628e-07 & 4.73749825955256e-07 & 0.999999763125087 \tabularnewline
38 & 1.43670308923963e-07 & 2.87340617847927e-07 & 0.999999856329691 \tabularnewline
39 & 8.55881638075205e-08 & 1.71176327615041e-07 & 0.999999914411836 \tabularnewline
40 & 9.74193074100039e-08 & 1.94838614820008e-07 & 0.999999902580693 \tabularnewline
41 & 5.79210069697155e-08 & 1.15842013939431e-07 & 0.999999942078993 \tabularnewline
42 & 3.41766154548872e-08 & 6.83532309097745e-08 & 0.999999965823385 \tabularnewline
43 & 2.00905446269995e-08 & 4.01810892539989e-08 & 0.999999979909455 \tabularnewline
44 & 2.14161173781943e-08 & 4.28322347563886e-08 & 0.999999978583883 \tabularnewline
45 & 1.57723233496714e-08 & 3.15446466993427e-08 & 0.999999984227677 \tabularnewline
46 & 9.48067982749078e-09 & 1.89613596549816e-08 & 0.99999999051932 \tabularnewline
47 & 7.1901204232797e-09 & 1.43802408465594e-08 & 0.99999999280988 \tabularnewline
48 & 4.40022338718272e-09 & 8.80044677436543e-09 & 0.999999995599777 \tabularnewline
49 & 2.71909572502418e-09 & 5.43819145004836e-09 & 0.999999997280904 \tabularnewline
50 & 2.17168049923564e-09 & 4.34336099847127e-09 & 0.999999997828319 \tabularnewline
51 & 2.53058172610585e-09 & 5.0611634522117e-09 & 0.999999997469418 \tabularnewline
52 & 2.73165060036823e-09 & 5.46330120073645e-09 & 0.999999997268349 \tabularnewline
53 & 1.78448842173089e-09 & 3.56897684346178e-09 & 0.999999998215512 \tabularnewline
54 & 1.64247257302093e-09 & 3.28494514604186e-09 & 0.999999998357527 \tabularnewline
55 & 1.56999591394952e-09 & 3.13999182789904e-09 & 0.999999998430004 \tabularnewline
56 & 1.99798634182385e-09 & 3.99597268364769e-09 & 0.999999998002014 \tabularnewline
57 & 1.45417401587038e-09 & 2.90834803174077e-09 & 0.999999998545826 \tabularnewline
58 & 1.09046544933962e-09 & 2.18093089867925e-09 & 0.999999998909535 \tabularnewline
59 & 8.47800328093423e-10 & 1.69560065618685e-09 & 0.9999999991522 \tabularnewline
60 & 1.1010087811582e-09 & 2.20201756231641e-09 & 0.999999998898991 \tabularnewline
61 & 1.30348734833596e-09 & 2.60697469667192e-09 & 0.999999998696513 \tabularnewline
62 & 1.4572663460054e-09 & 2.91453269201081e-09 & 0.999999998542734 \tabularnewline
63 & 1.72870288649986e-09 & 3.45740577299973e-09 & 0.999999998271297 \tabularnewline
64 & 1.93874305390957e-09 & 3.87748610781915e-09 & 0.999999998061257 \tabularnewline
65 & 2.48977504173646e-09 & 4.97955008347292e-09 & 0.999999997510225 \tabularnewline
66 & 3.45480317560695e-09 & 6.9096063512139e-09 & 0.999999996545197 \tabularnewline
67 & 4.55010694044934e-09 & 9.10021388089868e-09 & 0.999999995449893 \tabularnewline
68 & 7.28845007976646e-09 & 1.45769001595329e-08 & 0.99999999271155 \tabularnewline
69 & 8.40419604601706e-09 & 1.68083920920341e-08 & 0.999999991595804 \tabularnewline
70 & 1.57421406442861e-08 & 3.14842812885721e-08 & 0.999999984257859 \tabularnewline
71 & 3.33456532135541e-08 & 6.66913064271081e-08 & 0.999999966654347 \tabularnewline
72 & 4.71577769614657e-08 & 9.43155539229315e-08 & 0.999999952842223 \tabularnewline
73 & 7.44046552012702e-08 & 1.4880931040254e-07 & 0.999999925595345 \tabularnewline
74 & 2.10593164815143e-07 & 4.21186329630285e-07 & 0.999999789406835 \tabularnewline
75 & 4.12789121866699e-07 & 8.25578243733398e-07 & 0.999999587210878 \tabularnewline
76 & 5.87427686968311e-07 & 1.17485537393662e-06 & 0.999999412572313 \tabularnewline
77 & 1.46793429468911e-06 & 2.93586858937823e-06 & 0.999998532065705 \tabularnewline
78 & 4.50904224191878e-06 & 9.01808448383755e-06 & 0.999995490957758 \tabularnewline
79 & 7.4734109180979e-06 & 1.49468218361958e-05 & 0.999992526589082 \tabularnewline
80 & 1.35840202444047e-05 & 2.71680404888094e-05 & 0.999986415979756 \tabularnewline
81 & 7.06218195065438e-05 & 0.000141243639013088 & 0.999929378180493 \tabularnewline
82 & 0.000356742831386401 & 0.000713485662772803 & 0.999643257168614 \tabularnewline
83 & 0.00249164875575109 & 0.00498329751150219 & 0.997508351244249 \tabularnewline
84 & 0.0197044432519815 & 0.0394088865039629 & 0.980295556748018 \tabularnewline
85 & 0.121910844498852 & 0.243821688997704 & 0.878089155501148 \tabularnewline
86 & 0.574081392496758 & 0.851837215006483 & 0.425918607503242 \tabularnewline
87 & 0.77608615247541 & 0.44782769504918 & 0.22391384752459 \tabularnewline
88 & 0.983818881053741 & 0.0323622378925171 & 0.0161811189462586 \tabularnewline
89 & 0.99331893743826 & 0.0133621251234804 & 0.00668106256174019 \tabularnewline
90 & 0.996473963422111 & 0.00705207315577707 & 0.00352603657788854 \tabularnewline
91 & 0.998330580562795 & 0.00333883887440969 & 0.00166941943720485 \tabularnewline
92 & 0.999887011130353 & 0.000225977739294191 & 0.000112988869647095 \tabularnewline
93 & 0.999931069403109 & 0.000137861193781311 & 6.89305968906553e-05 \tabularnewline
94 & 0.99995447788188 & 9.10442362395886e-05 & 4.55221181197943e-05 \tabularnewline
95 & 0.999995260570743 & 9.47885851471341e-06 & 4.7394292573567e-06 \tabularnewline
96 & 0.999996104564156 & 7.79087168704368e-06 & 3.89543584352184e-06 \tabularnewline
97 & 0.999999508722833 & 9.82554334427297e-07 & 4.91277167213649e-07 \tabularnewline
98 & 0.999999518852669 & 9.62294661744698e-07 & 4.81147330872349e-07 \tabularnewline
99 & 0.999999508146225 & 9.83707549538516e-07 & 4.91853774769258e-07 \tabularnewline
100 & 0.999999496507881 & 1.00698423774624e-06 & 5.03492118873121e-07 \tabularnewline
101 & 0.999999459332595 & 1.0813348095673e-06 & 5.40667404783649e-07 \tabularnewline
102 & 0.999999395424068 & 1.2091518635029e-06 & 6.04575931751452e-07 \tabularnewline
103 & 0.999999303952034 & 1.39209593215365e-06 & 6.96047966076824e-07 \tabularnewline
104 & 0.99999917814175 & 1.64371650017177e-06 & 8.21858250085883e-07 \tabularnewline
105 & 0.999999777841807 & 4.44316385259609e-07 & 2.22158192629805e-07 \tabularnewline
106 & 0.999999706194545 & 5.87610909480417e-07 & 2.93805454740209e-07 \tabularnewline
107 & 0.999999605811106 & 7.88377788447543e-07 & 3.94188894223772e-07 \tabularnewline
108 & 0.999999873501465 & 2.52997070554484e-07 & 1.26498535277242e-07 \tabularnewline
109 & 0.999999813423524 & 3.7315295229495e-07 & 1.86576476147475e-07 \tabularnewline
110 & 0.999999723082835 & 5.53834329289113e-07 & 2.76917164644557e-07 \tabularnewline
111 & 0.999999899337758 & 2.01324483481281e-07 & 1.00662241740641e-07 \tabularnewline
112 & 0.99999996604257 & 6.79148589707324e-08 & 3.39574294853662e-08 \tabularnewline
113 & 0.999999940649999 & 1.1870000120426e-07 & 5.93500006021302e-08 \tabularnewline
114 & 0.999999980718351 & 3.85632969428222e-08 & 1.92816484714111e-08 \tabularnewline
115 & 0.999999963431429 & 7.31371421258422e-08 & 3.65685710629211e-08 \tabularnewline
116 & 0.999999930986814 & 1.38026371757578e-07 & 6.90131858787888e-08 \tabularnewline
117 & 0.999999885383463 & 2.29233074830297e-07 & 1.14616537415148e-07 \tabularnewline
118 & 0.999999784306994 & 4.31386011251613e-07 & 2.15693005625807e-07 \tabularnewline
119 & 0.999999597544014 & 8.04911971963082e-07 & 4.02455985981541e-07 \tabularnewline
120 & 0.999999323853956 & 1.35229208859647e-06 & 6.76146044298233e-07 \tabularnewline
121 & 0.999998748514025 & 2.50297195039483e-06 & 1.25148597519741e-06 \tabularnewline
122 & 0.999997711887088 & 4.57622582450908e-06 & 2.28811291225454e-06 \tabularnewline
123 & 0.999998852832452 & 2.29433509620146e-06 & 1.14716754810073e-06 \tabularnewline
124 & 0.999997985769228 & 4.02846154482328e-06 & 2.01423077241164e-06 \tabularnewline
125 & 0.999996496689315 & 7.006621369854e-06 & 3.503310684927e-06 \tabularnewline
126 & 0.999998434380889 & 3.13123822245595e-06 & 1.56561911122797e-06 \tabularnewline
127 & 0.999996644661694 & 6.71067661199718e-06 & 3.35533830599859e-06 \tabularnewline
128 & 0.99999402728041 & 1.19454391797008e-05 & 5.97271958985041e-06 \tabularnewline
129 & 0.999987449600636 & 2.51007987281216e-05 & 1.25503993640608e-05 \tabularnewline
130 & 0.999978328707633 & 4.33425847333488e-05 & 2.16712923666744e-05 \tabularnewline
131 & 0.999955449553717 & 8.91008925660843e-05 & 4.45504462830421e-05 \tabularnewline
132 & 0.999926204925813 & 0.000147590148374042 & 7.37950741870208e-05 \tabularnewline
133 & 0.999851857787683 & 0.00029628442463391 & 0.000148142212316955 \tabularnewline
134 & 0.999710003004751 & 0.000579993990498671 & 0.000289996995249335 \tabularnewline
135 & 0.999447982099773 & 0.00110403580045362 & 0.000552017900226811 \tabularnewline
136 & 0.998981869000723 & 0.00203626199855462 & 0.00101813099927731 \tabularnewline
137 & 0.998408259574392 & 0.00318348085121669 & 0.00159174042560835 \tabularnewline
138 & 0.998435527194763 & 0.00312894561047368 & 0.00156447280523684 \tabularnewline
139 & 0.998763873375476 & 0.0024722532490476 & 0.0012361266245238 \tabularnewline
140 & 0.997466280239729 & 0.00506743952054099 & 0.00253371976027049 \tabularnewline
141 & 0.995605210574344 & 0.00878957885131154 & 0.00439478942565577 \tabularnewline
142 & 0.995907563685391 & 0.00818487262921711 & 0.00409243631460856 \tabularnewline
143 & 0.991652449255428 & 0.0166951014891437 & 0.00834755074457187 \tabularnewline
144 & 0.983828096299743 & 0.0323438074005136 & 0.0161719037002568 \tabularnewline
145 & 0.969289352906194 & 0.0614212941876112 & 0.0307106470938056 \tabularnewline
146 & 0.977642769212284 & 0.0447144615754325 & 0.0223572307877163 \tabularnewline
147 & 0.982927990639007 & 0.0341440187219863 & 0.0170720093609932 \tabularnewline
148 & 1 & 3.37849521932786e-63 & 1.68924760966393e-63 \tabularnewline
149 & 1 & 1.57459057864381e-49 & 7.87295289321903e-50 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=202069&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]5[/C][C]0[/C][C]0[/C][C]1[/C][/ROW]
[ROW][C]6[/C][C]0.0209401715458558[/C][C]0.0418803430917117[/C][C]0.979059828454144[/C][/ROW]
[ROW][C]7[/C][C]0.00595191586050178[/C][C]0.0119038317210036[/C][C]0.994048084139498[/C][/ROW]
[ROW][C]8[/C][C]0.0219647976713998[/C][C]0.0439295953427997[/C][C]0.9780352023286[/C][/ROW]
[ROW][C]9[/C][C]0.0122562615747612[/C][C]0.0245125231495224[/C][C]0.987743738425239[/C][/ROW]
[ROW][C]10[/C][C]0.00516636448875857[/C][C]0.0103327289775171[/C][C]0.994833635511241[/C][/ROW]
[ROW][C]11[/C][C]0.00734137350557556[/C][C]0.0146827470111511[/C][C]0.992658626494424[/C][/ROW]
[ROW][C]12[/C][C]0.00355518439519191[/C][C]0.00711036879038381[/C][C]0.996444815604808[/C][/ROW]
[ROW][C]13[/C][C]0.00166259244761906[/C][C]0.00332518489523812[/C][C]0.998337407552381[/C][/ROW]
[ROW][C]14[/C][C]0.00205440331224944[/C][C]0.00410880662449889[/C][C]0.997945596687751[/C][/ROW]
[ROW][C]15[/C][C]0.00104218884803972[/C][C]0.00208437769607944[/C][C]0.99895781115196[/C][/ROW]
[ROW][C]16[/C][C]0.000974640437311129[/C][C]0.00194928087462226[/C][C]0.999025359562689[/C][/ROW]
[ROW][C]17[/C][C]0.00094011698438494[/C][C]0.00188023396876988[/C][C]0.999059883015615[/C][/ROW]
[ROW][C]18[/C][C]0.000791356571178702[/C][C]0.0015827131423574[/C][C]0.999208643428821[/C][/ROW]
[ROW][C]19[/C][C]0.000455107785178977[/C][C]0.000910215570357954[/C][C]0.999544892214821[/C][/ROW]
[ROW][C]20[/C][C]0.000363162028339553[/C][C]0.000726324056679106[/C][C]0.99963683797166[/C][/ROW]
[ROW][C]21[/C][C]0.000222053561674359[/C][C]0.000444107123348717[/C][C]0.999777946438326[/C][/ROW]
[ROW][C]22[/C][C]0.000134057169923985[/C][C]0.000268114339847969[/C][C]0.999865942830076[/C][/ROW]
[ROW][C]23[/C][C]7.66805065284728e-05[/C][C]0.000153361013056946[/C][C]0.999923319493472[/C][/ROW]
[ROW][C]24[/C][C]4.21344387429999e-05[/C][C]8.42688774859998e-05[/C][C]0.999957865561257[/C][/ROW]
[ROW][C]25[/C][C]3.78164194508935e-05[/C][C]7.56328389017869e-05[/C][C]0.999962183580549[/C][/ROW]
[ROW][C]26[/C][C]2.29848244796181e-05[/C][C]4.59696489592362e-05[/C][C]0.99997701517552[/C][/ROW]
[ROW][C]27[/C][C]1.3219515224728e-05[/C][C]2.6439030449456e-05[/C][C]0.999986780484775[/C][/ROW]
[ROW][C]28[/C][C]7.93349394541533e-06[/C][C]1.58669878908307e-05[/C][C]0.999992066506055[/C][/ROW]
[ROW][C]29[/C][C]4.44509209400427e-06[/C][C]8.89018418800854e-06[/C][C]0.999995554907906[/C][/ROW]
[ROW][C]30[/C][C]2.64584497988024e-06[/C][C]5.29168995976048e-06[/C][C]0.99999735415502[/C][/ROW]
[ROW][C]31[/C][C]1.56437447500693e-06[/C][C]3.12874895001385e-06[/C][C]0.999998435625525[/C][/ROW]
[ROW][C]32[/C][C]9.21872556631259e-07[/C][C]1.84374511326252e-06[/C][C]0.999999078127443[/C][/ROW]
[ROW][C]33[/C][C]5.43140152212078e-07[/C][C]1.08628030442416e-06[/C][C]0.999999456859848[/C][/ROW]
[ROW][C]34[/C][C]5.21532345169542e-07[/C][C]1.04306469033908e-06[/C][C]0.999999478467655[/C][/ROW]
[ROW][C]35[/C][C]3.1242637574576e-07[/C][C]6.2485275149152e-07[/C][C]0.999999687573624[/C][/ROW]
[ROW][C]36[/C][C]1.88350362248773e-07[/C][C]3.76700724497546e-07[/C][C]0.999999811649638[/C][/ROW]
[ROW][C]37[/C][C]2.36874912977628e-07[/C][C]4.73749825955256e-07[/C][C]0.999999763125087[/C][/ROW]
[ROW][C]38[/C][C]1.43670308923963e-07[/C][C]2.87340617847927e-07[/C][C]0.999999856329691[/C][/ROW]
[ROW][C]39[/C][C]8.55881638075205e-08[/C][C]1.71176327615041e-07[/C][C]0.999999914411836[/C][/ROW]
[ROW][C]40[/C][C]9.74193074100039e-08[/C][C]1.94838614820008e-07[/C][C]0.999999902580693[/C][/ROW]
[ROW][C]41[/C][C]5.79210069697155e-08[/C][C]1.15842013939431e-07[/C][C]0.999999942078993[/C][/ROW]
[ROW][C]42[/C][C]3.41766154548872e-08[/C][C]6.83532309097745e-08[/C][C]0.999999965823385[/C][/ROW]
[ROW][C]43[/C][C]2.00905446269995e-08[/C][C]4.01810892539989e-08[/C][C]0.999999979909455[/C][/ROW]
[ROW][C]44[/C][C]2.14161173781943e-08[/C][C]4.28322347563886e-08[/C][C]0.999999978583883[/C][/ROW]
[ROW][C]45[/C][C]1.57723233496714e-08[/C][C]3.15446466993427e-08[/C][C]0.999999984227677[/C][/ROW]
[ROW][C]46[/C][C]9.48067982749078e-09[/C][C]1.89613596549816e-08[/C][C]0.99999999051932[/C][/ROW]
[ROW][C]47[/C][C]7.1901204232797e-09[/C][C]1.43802408465594e-08[/C][C]0.99999999280988[/C][/ROW]
[ROW][C]48[/C][C]4.40022338718272e-09[/C][C]8.80044677436543e-09[/C][C]0.999999995599777[/C][/ROW]
[ROW][C]49[/C][C]2.71909572502418e-09[/C][C]5.43819145004836e-09[/C][C]0.999999997280904[/C][/ROW]
[ROW][C]50[/C][C]2.17168049923564e-09[/C][C]4.34336099847127e-09[/C][C]0.999999997828319[/C][/ROW]
[ROW][C]51[/C][C]2.53058172610585e-09[/C][C]5.0611634522117e-09[/C][C]0.999999997469418[/C][/ROW]
[ROW][C]52[/C][C]2.73165060036823e-09[/C][C]5.46330120073645e-09[/C][C]0.999999997268349[/C][/ROW]
[ROW][C]53[/C][C]1.78448842173089e-09[/C][C]3.56897684346178e-09[/C][C]0.999999998215512[/C][/ROW]
[ROW][C]54[/C][C]1.64247257302093e-09[/C][C]3.28494514604186e-09[/C][C]0.999999998357527[/C][/ROW]
[ROW][C]55[/C][C]1.56999591394952e-09[/C][C]3.13999182789904e-09[/C][C]0.999999998430004[/C][/ROW]
[ROW][C]56[/C][C]1.99798634182385e-09[/C][C]3.99597268364769e-09[/C][C]0.999999998002014[/C][/ROW]
[ROW][C]57[/C][C]1.45417401587038e-09[/C][C]2.90834803174077e-09[/C][C]0.999999998545826[/C][/ROW]
[ROW][C]58[/C][C]1.09046544933962e-09[/C][C]2.18093089867925e-09[/C][C]0.999999998909535[/C][/ROW]
[ROW][C]59[/C][C]8.47800328093423e-10[/C][C]1.69560065618685e-09[/C][C]0.9999999991522[/C][/ROW]
[ROW][C]60[/C][C]1.1010087811582e-09[/C][C]2.20201756231641e-09[/C][C]0.999999998898991[/C][/ROW]
[ROW][C]61[/C][C]1.30348734833596e-09[/C][C]2.60697469667192e-09[/C][C]0.999999998696513[/C][/ROW]
[ROW][C]62[/C][C]1.4572663460054e-09[/C][C]2.91453269201081e-09[/C][C]0.999999998542734[/C][/ROW]
[ROW][C]63[/C][C]1.72870288649986e-09[/C][C]3.45740577299973e-09[/C][C]0.999999998271297[/C][/ROW]
[ROW][C]64[/C][C]1.93874305390957e-09[/C][C]3.87748610781915e-09[/C][C]0.999999998061257[/C][/ROW]
[ROW][C]65[/C][C]2.48977504173646e-09[/C][C]4.97955008347292e-09[/C][C]0.999999997510225[/C][/ROW]
[ROW][C]66[/C][C]3.45480317560695e-09[/C][C]6.9096063512139e-09[/C][C]0.999999996545197[/C][/ROW]
[ROW][C]67[/C][C]4.55010694044934e-09[/C][C]9.10021388089868e-09[/C][C]0.999999995449893[/C][/ROW]
[ROW][C]68[/C][C]7.28845007976646e-09[/C][C]1.45769001595329e-08[/C][C]0.99999999271155[/C][/ROW]
[ROW][C]69[/C][C]8.40419604601706e-09[/C][C]1.68083920920341e-08[/C][C]0.999999991595804[/C][/ROW]
[ROW][C]70[/C][C]1.57421406442861e-08[/C][C]3.14842812885721e-08[/C][C]0.999999984257859[/C][/ROW]
[ROW][C]71[/C][C]3.33456532135541e-08[/C][C]6.66913064271081e-08[/C][C]0.999999966654347[/C][/ROW]
[ROW][C]72[/C][C]4.71577769614657e-08[/C][C]9.43155539229315e-08[/C][C]0.999999952842223[/C][/ROW]
[ROW][C]73[/C][C]7.44046552012702e-08[/C][C]1.4880931040254e-07[/C][C]0.999999925595345[/C][/ROW]
[ROW][C]74[/C][C]2.10593164815143e-07[/C][C]4.21186329630285e-07[/C][C]0.999999789406835[/C][/ROW]
[ROW][C]75[/C][C]4.12789121866699e-07[/C][C]8.25578243733398e-07[/C][C]0.999999587210878[/C][/ROW]
[ROW][C]76[/C][C]5.87427686968311e-07[/C][C]1.17485537393662e-06[/C][C]0.999999412572313[/C][/ROW]
[ROW][C]77[/C][C]1.46793429468911e-06[/C][C]2.93586858937823e-06[/C][C]0.999998532065705[/C][/ROW]
[ROW][C]78[/C][C]4.50904224191878e-06[/C][C]9.01808448383755e-06[/C][C]0.999995490957758[/C][/ROW]
[ROW][C]79[/C][C]7.4734109180979e-06[/C][C]1.49468218361958e-05[/C][C]0.999992526589082[/C][/ROW]
[ROW][C]80[/C][C]1.35840202444047e-05[/C][C]2.71680404888094e-05[/C][C]0.999986415979756[/C][/ROW]
[ROW][C]81[/C][C]7.06218195065438e-05[/C][C]0.000141243639013088[/C][C]0.999929378180493[/C][/ROW]
[ROW][C]82[/C][C]0.000356742831386401[/C][C]0.000713485662772803[/C][C]0.999643257168614[/C][/ROW]
[ROW][C]83[/C][C]0.00249164875575109[/C][C]0.00498329751150219[/C][C]0.997508351244249[/C][/ROW]
[ROW][C]84[/C][C]0.0197044432519815[/C][C]0.0394088865039629[/C][C]0.980295556748018[/C][/ROW]
[ROW][C]85[/C][C]0.121910844498852[/C][C]0.243821688997704[/C][C]0.878089155501148[/C][/ROW]
[ROW][C]86[/C][C]0.574081392496758[/C][C]0.851837215006483[/C][C]0.425918607503242[/C][/ROW]
[ROW][C]87[/C][C]0.77608615247541[/C][C]0.44782769504918[/C][C]0.22391384752459[/C][/ROW]
[ROW][C]88[/C][C]0.983818881053741[/C][C]0.0323622378925171[/C][C]0.0161811189462586[/C][/ROW]
[ROW][C]89[/C][C]0.99331893743826[/C][C]0.0133621251234804[/C][C]0.00668106256174019[/C][/ROW]
[ROW][C]90[/C][C]0.996473963422111[/C][C]0.00705207315577707[/C][C]0.00352603657788854[/C][/ROW]
[ROW][C]91[/C][C]0.998330580562795[/C][C]0.00333883887440969[/C][C]0.00166941943720485[/C][/ROW]
[ROW][C]92[/C][C]0.999887011130353[/C][C]0.000225977739294191[/C][C]0.000112988869647095[/C][/ROW]
[ROW][C]93[/C][C]0.999931069403109[/C][C]0.000137861193781311[/C][C]6.89305968906553e-05[/C][/ROW]
[ROW][C]94[/C][C]0.99995447788188[/C][C]9.10442362395886e-05[/C][C]4.55221181197943e-05[/C][/ROW]
[ROW][C]95[/C][C]0.999995260570743[/C][C]9.47885851471341e-06[/C][C]4.7394292573567e-06[/C][/ROW]
[ROW][C]96[/C][C]0.999996104564156[/C][C]7.79087168704368e-06[/C][C]3.89543584352184e-06[/C][/ROW]
[ROW][C]97[/C][C]0.999999508722833[/C][C]9.82554334427297e-07[/C][C]4.91277167213649e-07[/C][/ROW]
[ROW][C]98[/C][C]0.999999518852669[/C][C]9.62294661744698e-07[/C][C]4.81147330872349e-07[/C][/ROW]
[ROW][C]99[/C][C]0.999999508146225[/C][C]9.83707549538516e-07[/C][C]4.91853774769258e-07[/C][/ROW]
[ROW][C]100[/C][C]0.999999496507881[/C][C]1.00698423774624e-06[/C][C]5.03492118873121e-07[/C][/ROW]
[ROW][C]101[/C][C]0.999999459332595[/C][C]1.0813348095673e-06[/C][C]5.40667404783649e-07[/C][/ROW]
[ROW][C]102[/C][C]0.999999395424068[/C][C]1.2091518635029e-06[/C][C]6.04575931751452e-07[/C][/ROW]
[ROW][C]103[/C][C]0.999999303952034[/C][C]1.39209593215365e-06[/C][C]6.96047966076824e-07[/C][/ROW]
[ROW][C]104[/C][C]0.99999917814175[/C][C]1.64371650017177e-06[/C][C]8.21858250085883e-07[/C][/ROW]
[ROW][C]105[/C][C]0.999999777841807[/C][C]4.44316385259609e-07[/C][C]2.22158192629805e-07[/C][/ROW]
[ROW][C]106[/C][C]0.999999706194545[/C][C]5.87610909480417e-07[/C][C]2.93805454740209e-07[/C][/ROW]
[ROW][C]107[/C][C]0.999999605811106[/C][C]7.88377788447543e-07[/C][C]3.94188894223772e-07[/C][/ROW]
[ROW][C]108[/C][C]0.999999873501465[/C][C]2.52997070554484e-07[/C][C]1.26498535277242e-07[/C][/ROW]
[ROW][C]109[/C][C]0.999999813423524[/C][C]3.7315295229495e-07[/C][C]1.86576476147475e-07[/C][/ROW]
[ROW][C]110[/C][C]0.999999723082835[/C][C]5.53834329289113e-07[/C][C]2.76917164644557e-07[/C][/ROW]
[ROW][C]111[/C][C]0.999999899337758[/C][C]2.01324483481281e-07[/C][C]1.00662241740641e-07[/C][/ROW]
[ROW][C]112[/C][C]0.99999996604257[/C][C]6.79148589707324e-08[/C][C]3.39574294853662e-08[/C][/ROW]
[ROW][C]113[/C][C]0.999999940649999[/C][C]1.1870000120426e-07[/C][C]5.93500006021302e-08[/C][/ROW]
[ROW][C]114[/C][C]0.999999980718351[/C][C]3.85632969428222e-08[/C][C]1.92816484714111e-08[/C][/ROW]
[ROW][C]115[/C][C]0.999999963431429[/C][C]7.31371421258422e-08[/C][C]3.65685710629211e-08[/C][/ROW]
[ROW][C]116[/C][C]0.999999930986814[/C][C]1.38026371757578e-07[/C][C]6.90131858787888e-08[/C][/ROW]
[ROW][C]117[/C][C]0.999999885383463[/C][C]2.29233074830297e-07[/C][C]1.14616537415148e-07[/C][/ROW]
[ROW][C]118[/C][C]0.999999784306994[/C][C]4.31386011251613e-07[/C][C]2.15693005625807e-07[/C][/ROW]
[ROW][C]119[/C][C]0.999999597544014[/C][C]8.04911971963082e-07[/C][C]4.02455985981541e-07[/C][/ROW]
[ROW][C]120[/C][C]0.999999323853956[/C][C]1.35229208859647e-06[/C][C]6.76146044298233e-07[/C][/ROW]
[ROW][C]121[/C][C]0.999998748514025[/C][C]2.50297195039483e-06[/C][C]1.25148597519741e-06[/C][/ROW]
[ROW][C]122[/C][C]0.999997711887088[/C][C]4.57622582450908e-06[/C][C]2.28811291225454e-06[/C][/ROW]
[ROW][C]123[/C][C]0.999998852832452[/C][C]2.29433509620146e-06[/C][C]1.14716754810073e-06[/C][/ROW]
[ROW][C]124[/C][C]0.999997985769228[/C][C]4.02846154482328e-06[/C][C]2.01423077241164e-06[/C][/ROW]
[ROW][C]125[/C][C]0.999996496689315[/C][C]7.006621369854e-06[/C][C]3.503310684927e-06[/C][/ROW]
[ROW][C]126[/C][C]0.999998434380889[/C][C]3.13123822245595e-06[/C][C]1.56561911122797e-06[/C][/ROW]
[ROW][C]127[/C][C]0.999996644661694[/C][C]6.71067661199718e-06[/C][C]3.35533830599859e-06[/C][/ROW]
[ROW][C]128[/C][C]0.99999402728041[/C][C]1.19454391797008e-05[/C][C]5.97271958985041e-06[/C][/ROW]
[ROW][C]129[/C][C]0.999987449600636[/C][C]2.51007987281216e-05[/C][C]1.25503993640608e-05[/C][/ROW]
[ROW][C]130[/C][C]0.999978328707633[/C][C]4.33425847333488e-05[/C][C]2.16712923666744e-05[/C][/ROW]
[ROW][C]131[/C][C]0.999955449553717[/C][C]8.91008925660843e-05[/C][C]4.45504462830421e-05[/C][/ROW]
[ROW][C]132[/C][C]0.999926204925813[/C][C]0.000147590148374042[/C][C]7.37950741870208e-05[/C][/ROW]
[ROW][C]133[/C][C]0.999851857787683[/C][C]0.00029628442463391[/C][C]0.000148142212316955[/C][/ROW]
[ROW][C]134[/C][C]0.999710003004751[/C][C]0.000579993990498671[/C][C]0.000289996995249335[/C][/ROW]
[ROW][C]135[/C][C]0.999447982099773[/C][C]0.00110403580045362[/C][C]0.000552017900226811[/C][/ROW]
[ROW][C]136[/C][C]0.998981869000723[/C][C]0.00203626199855462[/C][C]0.00101813099927731[/C][/ROW]
[ROW][C]137[/C][C]0.998408259574392[/C][C]0.00318348085121669[/C][C]0.00159174042560835[/C][/ROW]
[ROW][C]138[/C][C]0.998435527194763[/C][C]0.00312894561047368[/C][C]0.00156447280523684[/C][/ROW]
[ROW][C]139[/C][C]0.998763873375476[/C][C]0.0024722532490476[/C][C]0.0012361266245238[/C][/ROW]
[ROW][C]140[/C][C]0.997466280239729[/C][C]0.00506743952054099[/C][C]0.00253371976027049[/C][/ROW]
[ROW][C]141[/C][C]0.995605210574344[/C][C]0.00878957885131154[/C][C]0.00439478942565577[/C][/ROW]
[ROW][C]142[/C][C]0.995907563685391[/C][C]0.00818487262921711[/C][C]0.00409243631460856[/C][/ROW]
[ROW][C]143[/C][C]0.991652449255428[/C][C]0.0166951014891437[/C][C]0.00834755074457187[/C][/ROW]
[ROW][C]144[/C][C]0.983828096299743[/C][C]0.0323438074005136[/C][C]0.0161719037002568[/C][/ROW]
[ROW][C]145[/C][C]0.969289352906194[/C][C]0.0614212941876112[/C][C]0.0307106470938056[/C][/ROW]
[ROW][C]146[/C][C]0.977642769212284[/C][C]0.0447144615754325[/C][C]0.0223572307877163[/C][/ROW]
[ROW][C]147[/C][C]0.982927990639007[/C][C]0.0341440187219863[/C][C]0.0170720093609932[/C][/ROW]
[ROW][C]148[/C][C]1[/C][C]3.37849521932786e-63[/C][C]1.68924760966393e-63[/C][/ROW]
[ROW][C]149[/C][C]1[/C][C]1.57459057864381e-49[/C][C]7.87295289321903e-50[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=202069&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=202069&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
5001
60.02094017154585580.04188034309171170.979059828454144
70.005951915860501780.01190383172100360.994048084139498
80.02196479767139980.04392959534279970.9780352023286
90.01225626157476120.02451252314952240.987743738425239
100.005166364488758570.01033272897751710.994833635511241
110.007341373505575560.01468274701115110.992658626494424
120.003555184395191910.007110368790383810.996444815604808
130.001662592447619060.003325184895238120.998337407552381
140.002054403312249440.004108806624498890.997945596687751
150.001042188848039720.002084377696079440.99895781115196
160.0009746404373111290.001949280874622260.999025359562689
170.000940116984384940.001880233968769880.999059883015615
180.0007913565711787020.00158271314235740.999208643428821
190.0004551077851789770.0009102155703579540.999544892214821
200.0003631620283395530.0007263240566791060.99963683797166
210.0002220535616743590.0004441071233487170.999777946438326
220.0001340571699239850.0002681143398479690.999865942830076
237.66805065284728e-050.0001533610130569460.999923319493472
244.21344387429999e-058.42688774859998e-050.999957865561257
253.78164194508935e-057.56328389017869e-050.999962183580549
262.29848244796181e-054.59696489592362e-050.99997701517552
271.3219515224728e-052.6439030449456e-050.999986780484775
287.93349394541533e-061.58669878908307e-050.999992066506055
294.44509209400427e-068.89018418800854e-060.999995554907906
302.64584497988024e-065.29168995976048e-060.99999735415502
311.56437447500693e-063.12874895001385e-060.999998435625525
329.21872556631259e-071.84374511326252e-060.999999078127443
335.43140152212078e-071.08628030442416e-060.999999456859848
345.21532345169542e-071.04306469033908e-060.999999478467655
353.1242637574576e-076.2485275149152e-070.999999687573624
361.88350362248773e-073.76700724497546e-070.999999811649638
372.36874912977628e-074.73749825955256e-070.999999763125087
381.43670308923963e-072.87340617847927e-070.999999856329691
398.55881638075205e-081.71176327615041e-070.999999914411836
409.74193074100039e-081.94838614820008e-070.999999902580693
415.79210069697155e-081.15842013939431e-070.999999942078993
423.41766154548872e-086.83532309097745e-080.999999965823385
432.00905446269995e-084.01810892539989e-080.999999979909455
442.14161173781943e-084.28322347563886e-080.999999978583883
451.57723233496714e-083.15446466993427e-080.999999984227677
469.48067982749078e-091.89613596549816e-080.99999999051932
477.1901204232797e-091.43802408465594e-080.99999999280988
484.40022338718272e-098.80044677436543e-090.999999995599777
492.71909572502418e-095.43819145004836e-090.999999997280904
502.17168049923564e-094.34336099847127e-090.999999997828319
512.53058172610585e-095.0611634522117e-090.999999997469418
522.73165060036823e-095.46330120073645e-090.999999997268349
531.78448842173089e-093.56897684346178e-090.999999998215512
541.64247257302093e-093.28494514604186e-090.999999998357527
551.56999591394952e-093.13999182789904e-090.999999998430004
561.99798634182385e-093.99597268364769e-090.999999998002014
571.45417401587038e-092.90834803174077e-090.999999998545826
581.09046544933962e-092.18093089867925e-090.999999998909535
598.47800328093423e-101.69560065618685e-090.9999999991522
601.1010087811582e-092.20201756231641e-090.999999998898991
611.30348734833596e-092.60697469667192e-090.999999998696513
621.4572663460054e-092.91453269201081e-090.999999998542734
631.72870288649986e-093.45740577299973e-090.999999998271297
641.93874305390957e-093.87748610781915e-090.999999998061257
652.48977504173646e-094.97955008347292e-090.999999997510225
663.45480317560695e-096.9096063512139e-090.999999996545197
674.55010694044934e-099.10021388089868e-090.999999995449893
687.28845007976646e-091.45769001595329e-080.99999999271155
698.40419604601706e-091.68083920920341e-080.999999991595804
701.57421406442861e-083.14842812885721e-080.999999984257859
713.33456532135541e-086.66913064271081e-080.999999966654347
724.71577769614657e-089.43155539229315e-080.999999952842223
737.44046552012702e-081.4880931040254e-070.999999925595345
742.10593164815143e-074.21186329630285e-070.999999789406835
754.12789121866699e-078.25578243733398e-070.999999587210878
765.87427686968311e-071.17485537393662e-060.999999412572313
771.46793429468911e-062.93586858937823e-060.999998532065705
784.50904224191878e-069.01808448383755e-060.999995490957758
797.4734109180979e-061.49468218361958e-050.999992526589082
801.35840202444047e-052.71680404888094e-050.999986415979756
817.06218195065438e-050.0001412436390130880.999929378180493
820.0003567428313864010.0007134856627728030.999643257168614
830.002491648755751090.004983297511502190.997508351244249
840.01970444325198150.03940888650396290.980295556748018
850.1219108444988520.2438216889977040.878089155501148
860.5740813924967580.8518372150064830.425918607503242
870.776086152475410.447827695049180.22391384752459
880.9838188810537410.03236223789251710.0161811189462586
890.993318937438260.01336212512348040.00668106256174019
900.9964739634221110.007052073155777070.00352603657788854
910.9983305805627950.003338838874409690.00166941943720485
920.9998870111303530.0002259777392941910.000112988869647095
930.9999310694031090.0001378611937813116.89305968906553e-05
940.999954477881889.10442362395886e-054.55221181197943e-05
950.9999952605707439.47885851471341e-064.7394292573567e-06
960.9999961045641567.79087168704368e-063.89543584352184e-06
970.9999995087228339.82554334427297e-074.91277167213649e-07
980.9999995188526699.62294661744698e-074.81147330872349e-07
990.9999995081462259.83707549538516e-074.91853774769258e-07
1000.9999994965078811.00698423774624e-065.03492118873121e-07
1010.9999994593325951.0813348095673e-065.40667404783649e-07
1020.9999993954240681.2091518635029e-066.04575931751452e-07
1030.9999993039520341.39209593215365e-066.96047966076824e-07
1040.999999178141751.64371650017177e-068.21858250085883e-07
1050.9999997778418074.44316385259609e-072.22158192629805e-07
1060.9999997061945455.87610909480417e-072.93805454740209e-07
1070.9999996058111067.88377788447543e-073.94188894223772e-07
1080.9999998735014652.52997070554484e-071.26498535277242e-07
1090.9999998134235243.7315295229495e-071.86576476147475e-07
1100.9999997230828355.53834329289113e-072.76917164644557e-07
1110.9999998993377582.01324483481281e-071.00662241740641e-07
1120.999999966042576.79148589707324e-083.39574294853662e-08
1130.9999999406499991.1870000120426e-075.93500006021302e-08
1140.9999999807183513.85632969428222e-081.92816484714111e-08
1150.9999999634314297.31371421258422e-083.65685710629211e-08
1160.9999999309868141.38026371757578e-076.90131858787888e-08
1170.9999998853834632.29233074830297e-071.14616537415148e-07
1180.9999997843069944.31386011251613e-072.15693005625807e-07
1190.9999995975440148.04911971963082e-074.02455985981541e-07
1200.9999993238539561.35229208859647e-066.76146044298233e-07
1210.9999987485140252.50297195039483e-061.25148597519741e-06
1220.9999977118870884.57622582450908e-062.28811291225454e-06
1230.9999988528324522.29433509620146e-061.14716754810073e-06
1240.9999979857692284.02846154482328e-062.01423077241164e-06
1250.9999964966893157.006621369854e-063.503310684927e-06
1260.9999984343808893.13123822245595e-061.56561911122797e-06
1270.9999966446616946.71067661199718e-063.35533830599859e-06
1280.999994027280411.19454391797008e-055.97271958985041e-06
1290.9999874496006362.51007987281216e-051.25503993640608e-05
1300.9999783287076334.33425847333488e-052.16712923666744e-05
1310.9999554495537178.91008925660843e-054.45504462830421e-05
1320.9999262049258130.0001475901483740427.37950741870208e-05
1330.9998518577876830.000296284424633910.000148142212316955
1340.9997100030047510.0005799939904986710.000289996995249335
1350.9994479820997730.001104035800453620.000552017900226811
1360.9989818690007230.002036261998554620.00101813099927731
1370.9984082595743920.003183480851216690.00159174042560835
1380.9984355271947630.003128945610473680.00156447280523684
1390.9987638733754760.00247225324904760.0012361266245238
1400.9974662802397290.005067439520540990.00253371976027049
1410.9956052105743440.008789578851311540.00439478942565577
1420.9959075636853910.008184872629217110.00409243631460856
1430.9916524492554280.01669510148914370.00834755074457187
1440.9838280962997430.03234380740051360.0161719037002568
1450.9692893529061940.06142129418761120.0307106470938056
1460.9776427692122840.04471446157543250.0223572307877163
1470.9829279906390070.03414401872198630.0170720093609932
14813.37849521932786e-631.68924760966393e-63
14911.57459057864381e-497.87295289321903e-50







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level1280.882758620689655NOK
5% type I error level1410.972413793103448NOK
10% type I error level1420.979310344827586NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 128 & 0.882758620689655 & NOK \tabularnewline
5% type I error level & 141 & 0.972413793103448 & NOK \tabularnewline
10% type I error level & 142 & 0.979310344827586 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=202069&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]128[/C][C]0.882758620689655[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]141[/C][C]0.972413793103448[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]142[/C][C]0.979310344827586[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=202069&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=202069&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level1280.882758620689655NOK
5% type I error level1410.972413793103448NOK
10% type I error level1420.979310344827586NOK



Parameters (Session):
par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}