Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_Simple Regression Y ~ X.wasp
Title produced by softwareSimple Linear Regression
Date of computationWed, 19 Dec 2012 13:59:19 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Dec/19/t1355943585ciz3ob3tbm1brcr.htm/, Retrieved Thu, 31 Oct 2024 23:28:48 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=202306, Retrieved Thu, 31 Oct 2024 23:28:48 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact121
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [] [2012-11-04 14:27:14] [febadfc79697d0b79949c3feea916cc5]
- RMPD    [Simple Linear Regression] [Lineaire regressi...] [2012-12-19 18:59:19] [748897fd15c762b037202f89deea04e9] [Current]
Feedback Forum

Post a new message
Dataseries X:
28586	9
25725	7
24178	7
23067	6
15385	6
19369	6
8962	5
24144	5
10113	5
13379	5
16955	5
14397	5
22078	4
6455	4
11118	4
7656	4
13568	4
12327	4
13631	4
5440	4
26285	3
6713	3
5636	3
4882	3
7283	3
9616	3
10583	3
9847	3
16352	3
6719	3
30206	3
5239	3
9048	3
8716	3
8426	3
12548	3
3285	3
11141	3
9755	3
10418	3
4704	3
11824	3
10845	3
7590	3
3044	3
13637	3
4862	2
10624	2
3349	2
10697	2
5953	2
9555	2
7860	2
6519	2
5866	2
13042	2
13624	2
10848	2
15322	2
5480	2
8736	2
5820	2
4799	2
7771	2
3793	2
5936	2
2835	2
4813	2
6711	2
6803	2
9699	2
6899	2
10117	2
6328	2
4336	2
6700	2
10590	2
3678	2
723	2
2530	1
60486	1
1498	1
11754	1
3308	1
1879	1
5683	1
6369	1
7659	1
3546	1
4157	1
7867	1
37706	1
4202	1
5047	1
9840	1
7619	1
2712	1
4259	1
3421	1
516	1
2097	1
2761	1
5429	1
799	1
480	1
2810	1
2949	1
5808	0
3875	0
819	0
4799	0
27	0
26444	0
5610	0
20	0
4896	0
8	0
7206	0
631	0




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ fisher.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=202306&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ fisher.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=202306&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=202306&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net







Linear Regression Model
Y ~ X
coefficients:
EstimateStd. Errort valuePr(>|t|)
(Intercept)3991.6781192.7693.3470.001
X2240.288420.1665.3320
- - -
Residual Std. Err. 7557.097 on 117 df
Multiple R-sq. 0.195
Adjusted R-sq. 0.189

\begin{tabular}{lllllllll}
\hline
Linear Regression Model \tabularnewline
Y ~ X \tabularnewline
coefficients: &   \tabularnewline
  & Estimate & Std. Error & t value & Pr(>|t|) \tabularnewline
(Intercept) & 3991.678 & 1192.769 & 3.347 & 0.001 \tabularnewline
X & 2240.288 & 420.166 & 5.332 & 0 \tabularnewline
- - -  &   \tabularnewline
Residual Std. Err.  & 7557.097  on  117 df \tabularnewline
Multiple R-sq.  & 0.195 \tabularnewline
Adjusted R-sq.  & 0.189 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=202306&T=1

[TABLE]
[ROW][C]Linear Regression Model[/C][/ROW]
[ROW][C]Y ~ X[/C][/ROW]
[ROW][C]coefficients:[/C][C] [/C][/ROW]
[ROW][C] [/C][C]Estimate[/C][C]Std. Error[/C][C]t value[/C][C]Pr(>|t|)[/C][/ROW]
[C](Intercept)[/C][C]3991.678[/C][C]1192.769[/C][C]3.347[/C][C]0.001[/C][/ROW]
[C]X[/C][C]2240.288[/C][C]420.166[/C][C]5.332[/C][C]0[/C][/ROW]
[ROW][C]- - - [/C][C] [/C][/ROW]
[ROW][C]Residual Std. Err. [/C][C]7557.097  on  117 df[/C][/ROW]
[ROW][C]Multiple R-sq. [/C][C]0.195[/C][/ROW]
[ROW][C]Adjusted R-sq. [/C][C]0.189[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=202306&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=202306&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Linear Regression Model
Y ~ X
coefficients:
EstimateStd. Errort valuePr(>|t|)
(Intercept)3991.6781192.7693.3470.001
X2240.288420.1665.3320
- - -
Residual Std. Err. 7557.097 on 117 df
Multiple R-sq. 0.195
Adjusted R-sq. 0.189







ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
Hours11623590313.941623590313.9428.4290
Residuals1176681836345.99357109712.359

\begin{tabular}{lllllllll}
\hline
ANOVA Statistics \tabularnewline
  & Df & Sum Sq & Mean Sq & F value & Pr(>F) \tabularnewline
Hours & 1 & 1623590313.94 & 1623590313.94 & 28.429 & 0 \tabularnewline
Residuals & 117 & 6681836345.993 & 57109712.359 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=202306&T=2

[TABLE]
[ROW][C]ANOVA Statistics[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]Sum Sq[/C][C]Mean Sq[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]Hours[/C][C]1[/C][C]1623590313.94[/C][C]1623590313.94[/C][C]28.429[/C][C]0[/C][/ROW]
[ROW][C]Residuals[/C][C]117[/C][C]6681836345.993[/C][C]57109712.359[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=202306&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=202306&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
Hours11623590313.941623590313.9428.4290
Residuals1176681836345.99357109712.359



Parameters (Session):
par1 = 1 ; par2 = 2 ; par3 = TRUE ;
Parameters (R input):
par1 = 1 ; par2 = 2 ; par3 = TRUE ;
R code (references can be found in the software module):
cat1 <- as.numeric(par1)
cat2<- as.numeric(par2)
intercept<-as.logical(par3)
x <- t(x)
xdf<-data.frame(t(y))
(V1<-dimnames(y)[[1]][cat1])
(V2<-dimnames(y)[[1]][cat2])
xdf <- data.frame(xdf[[cat1]], xdf[[cat2]])
names(xdf)<-c('Y', 'X')
if(intercept == FALSE) (lmxdf<-lm(Y~ X - 1, data = xdf) ) else (lmxdf<-lm(Y~ X, data = xdf) )
sumlmxdf<-summary(lmxdf)
(aov.xdf<-aov(lmxdf) )
(anova.xdf<-anova(lmxdf) )
load(file='createtable')
a<-table.start()
nc <- ncol(sumlmxdf$'coefficients')
nr <- nrow(sumlmxdf$'coefficients')
a<-table.row.start(a)
a<-table.element(a,'Linear Regression Model', nc+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, lmxdf$call['formula'],nc+1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'coefficients:',1,TRUE)
a<-table.element(a, ' ',nc,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ',1,TRUE)
for(i in 1 : nc){
a<-table.element(a, dimnames(sumlmxdf$'coefficients')[[2]][i],1,TRUE)
}#end header
a<-table.row.end(a)
for(i in 1: nr){
a<-table.element(a,dimnames(sumlmxdf$'coefficients')[[1]][i] ,1,TRUE)
for(j in 1 : nc){
a<-table.element(a, round(sumlmxdf$coefficients[i, j], digits=3), 1 ,FALSE)
}
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a, '- - - ',1,TRUE)
a<-table.element(a, ' ',nc,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Std. Err. ',1,TRUE)
a<-table.element(a, paste(round(sumlmxdf$'sigma', digits=3), ' on ', sumlmxdf$'df'[2], 'df') ,nc, FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R-sq. ',1,TRUE)
a<-table.element(a, round(sumlmxdf$'r.squared', digits=3) ,nc, FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-sq. ',1,TRUE)
a<-table.element(a, round(sumlmxdf$'adj.r.squared', digits=3) ,nc, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Statistics', 5+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ',1,TRUE)
a<-table.element(a, 'Df',1,TRUE)
a<-table.element(a, 'Sum Sq',1,TRUE)
a<-table.element(a, 'Mean Sq',1,TRUE)
a<-table.element(a, 'F value',1,TRUE)
a<-table.element(a, 'Pr(>F)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, V2,1,TRUE)
a<-table.element(a, anova.xdf$Df[1])
a<-table.element(a, round(anova.xdf$'Sum Sq'[1], digits=3))
a<-table.element(a, round(anova.xdf$'Mean Sq'[1], digits=3))
a<-table.element(a, round(anova.xdf$'F value'[1], digits=3))
a<-table.element(a, round(anova.xdf$'Pr(>F)'[1], digits=3))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residuals',1,TRUE)
a<-table.element(a, anova.xdf$Df[2])
a<-table.element(a, round(anova.xdf$'Sum Sq'[2], digits=3))
a<-table.element(a, round(anova.xdf$'Mean Sq'[2], digits=3))
a<-table.element(a, ' ')
a<-table.element(a, ' ')
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
bitmap(file='regressionplot.png')
plot(Y~ X, data=xdf, xlab=V2, ylab=V1, main='Regression Solution')
if(intercept == TRUE) abline(coef(lmxdf), col='red')
if(intercept == FALSE) abline(0.0, coef(lmxdf), col='red')
dev.off()
library(car)
bitmap(file='residualsQQplot.png')
qq.plot(resid(lmxdf), main='QQplot of Residuals of Fit')
dev.off()
bitmap(file='residualsplot.png')
plot(xdf$X, resid(lmxdf), main='Scatterplot of Residuals of Model Fit')
dev.off()
bitmap(file='cooksDistanceLmplot.png')
plot.lm(lmxdf, which=4)
dev.off()