Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationWed, 19 Dec 2012 17:49:10 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Dec/19/t1355957386zcn1ynpn163p1we.htm/, Retrieved Fri, 01 Nov 2024 00:03:04 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=202460, Retrieved Fri, 01 Nov 2024 00:03:04 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact103
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Explorative Data Analysis] [Run Sequence gebo...] [2008-12-12 13:32:37] [76963dc1903f0f612b6153510a3818cf]
- R  D  [Univariate Explorative Data Analysis] [Run Sequence gebo...] [2008-12-17 12:14:40] [76963dc1903f0f612b6153510a3818cf]
-         [Univariate Explorative Data Analysis] [Run Sequence Plot...] [2008-12-22 18:19:51] [1ce0d16c8f4225c977b42c8fa93bc163]
- RMP       [Univariate Data Series] [Identifying Integ...] [2009-11-22 12:08:06] [b98453cac15ba1066b407e146608df68]
- RMP         [Classical Decomposition] [Classical Decompo...] [2012-12-16 18:18:45] [f5077040b712f13d41cbe2e9b961fc0e]
- R P             [Classical Decomposition] [Multiplicatieve m...] [2012-12-19 22:49:10] [4bea8166bbee0e00c4800f3bcc822f1b] [Current]
Feedback Forum

Post a new message
Dataseries X:
9700
9081
9084
9743
8587
9731
9563
9998
9437
10038
9918
9252
9737
9035
9133
9487
8700
9627
8947
9283
8829
9947
9628
9318
9605
8640
9214
9567
8547
9185
9470
9123
9278
10170
9434
9655
9429
8739
9552
9687
9019
9672
9206
9069
9788
10312
10105
9863
9656
9295
9946
9701
9049
10190
9706
9765
9893
9994
10433
10073
10112
9266
9820
10097
9115
10411
9678
10408
10153
10368
10581
10597
10680
9738
9556




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'George Udny Yule' @ yule.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'George Udny Yule' @ yule.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=202460&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ yule.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=202460&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=202460&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'George Udny Yule' @ yule.wessa.net







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
19700NANA1.01644971718006NA
29081NANA0.941218770592134NA
39084NANA0.996496359028844NA
49743NANA1.01415120177448NA
58587NANA0.927462892562165NA
69731NANA1.02228779554002NA
795639342.864363501469512.541666666670.9821627795061571.0235619000698
899989504.125223553899512.166666666670.9991546149899831.05196425392441
994379451.291447226359512.291666666670.9935872215047740.998487884189569
101003810070.74536802439503.666666666671.059669464560090.996748466292451
1199189862.096536604499497.708333333331.038365907909841.00566851715434
1292529583.502207312059498.083333333331.008993274851460.965409074872532
1397379623.830626403929468.083333333331.016449717180061.01175928567213
1490358859.339330544789412.6250.9412187705921341.01982773916895
1591339324.714679612419357.50.9964963590288440.979440155951198
1694879460.382716852979328.3751.014151201774481.00281355246861
1787008636.998186985169312.50.9274628925621651.00729441081854
1896279510.513743208069303.166666666671.022287795540021.01224815608674
1989479134.523083898729300.416666666670.9821627795061570.979470949695309
2092839270.614463742279278.458333333330.9991546149899831.00133599949671
2188299205.958202449799265.3750.9935872215047740.959052801005605
2299479825.34358118999272.083333333331.059669464560091.0123818997071
2396289624.656865662449269.041666666661.038365907909841.00034735101565
2493189327.386081045599244.251.008993274851460.998993707244019
2596059399.745815837269247.6251.016449717180061.02183614197492
2686408718.274167302289262.750.9412187705921340.991021827737897
2792149242.29612658449274.791666666670.9964963590288440.996938409438862
2895679434.437348607579302.791666666671.014151201774481.01405093345731
2985478629.1147523983893040.9274628925621650.990483988826831
3091859517.456781152779309.958333333331.022287795540020.965068737500219
3194709150.48322906579316.666666666670.9821627795061571.03491802158813
3291239305.584875266929313.458333333330.9991546149899830.98037900059864
3392789271.824755342059331.666666666670.9935872215047741.00066602258141
34101709908.70424573539350.751.059669464560091.02637032530032
3594349735.113039116369375.416666666671.038365907909840.969069384412234
3696559500.050055204559415.3751.008993274851461.01631043456561
3794299579.699767849689424.666666666671.016449717180060.984268842291337
3887398858.202024530329411.416666666670.9412187705921340.986543316104079
3995529397.375872458269430.416666666670.9964963590288441.01645396860148
4096879591.419503382259457.583333333331.014151201774481.00996520865176
4190198802.97540046669491.458333333330.9274628925621651.02453995265305
4296729740.443306554939528.083333333331.022287795540020.992973286286788
4392069375.93051041159546.208333333330.9821627795061570.981875877789111
4490699570.735531219889578.833333333330.9991546149899830.94757607400359
4597889556.735891108549618.416666666670.9935872215047741.02419906875386
461031210210.35681998019635.416666666671.059669464560091.00995490968749
471010510006.99184600419637.251.038365907909841.00979396760826
4898639746.959117837999660.083333333331.008993274851461.01190534204146
4996569862.103380939549702.51.016449717180060.97910147835827
5092959179.079190404689752.333333333330.9412187705921341.01262880591732
5199469751.422724684899785.708333333330.9964963590288441.01995373196391
5297019915.187274548759776.833333333331.014151201774480.978398060609652
5390499068.036566303429777.250.9274628925621650.99790069590432
541019010018.07963369379799.666666666671.022287795540021.01716101015289
5597069652.122868698479827.416666666670.9821627795061571.00558189447383
5697659836.885341787849845.208333333330.9991546149899830.992692265967311
5798939775.656275580099838.750.9935872215047741.01200366718223
58999410437.744225916998501.059669464560090.957486577912581
591043310247.89273663929869.251.038365907909841.01806295870946
60100739970.072755739529881.208333333331.008993274851461.01032362017632
611011210051.92536562299889.251.016449717180061.00597643060329
6292669332.066458074689914.8750.9412187705921340.992920489971702
6398209917.630013234579952.50.9964963590288440.990155912944495
641009710120.13032990739978.916666666671.014151201774480.997714423712609
6591159275.2472342166910000.66666666670.9274628925621650.982723130697204
661041110252.183538872310028.66666666671.022287795540021.0154909888733
6796789894.4715345416110074.16666666670.9821627795061570.97812197106375
681040810108.946817161210117.50.9991546149899831.02958302068927
691015310061.229802827610126.16666666670.9935872215047741.00912117096725
7010368NANA1.05966946456009NA
7110581NANA1.03836590790984NA
7210597NANA1.00899327485146NA
7310680NANA1.01644971718006NA
749738NANA0.941218770592134NA
759556NANA0.996496359028844NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 9700 & NA & NA & 1.01644971718006 & NA \tabularnewline
2 & 9081 & NA & NA & 0.941218770592134 & NA \tabularnewline
3 & 9084 & NA & NA & 0.996496359028844 & NA \tabularnewline
4 & 9743 & NA & NA & 1.01415120177448 & NA \tabularnewline
5 & 8587 & NA & NA & 0.927462892562165 & NA \tabularnewline
6 & 9731 & NA & NA & 1.02228779554002 & NA \tabularnewline
7 & 9563 & 9342.86436350146 & 9512.54166666667 & 0.982162779506157 & 1.0235619000698 \tabularnewline
8 & 9998 & 9504.12522355389 & 9512.16666666667 & 0.999154614989983 & 1.05196425392441 \tabularnewline
9 & 9437 & 9451.29144722635 & 9512.29166666667 & 0.993587221504774 & 0.998487884189569 \tabularnewline
10 & 10038 & 10070.7453680243 & 9503.66666666667 & 1.05966946456009 & 0.996748466292451 \tabularnewline
11 & 9918 & 9862.09653660449 & 9497.70833333333 & 1.03836590790984 & 1.00566851715434 \tabularnewline
12 & 9252 & 9583.50220731205 & 9498.08333333333 & 1.00899327485146 & 0.965409074872532 \tabularnewline
13 & 9737 & 9623.83062640392 & 9468.08333333333 & 1.01644971718006 & 1.01175928567213 \tabularnewline
14 & 9035 & 8859.33933054478 & 9412.625 & 0.941218770592134 & 1.01982773916895 \tabularnewline
15 & 9133 & 9324.71467961241 & 9357.5 & 0.996496359028844 & 0.979440155951198 \tabularnewline
16 & 9487 & 9460.38271685297 & 9328.375 & 1.01415120177448 & 1.00281355246861 \tabularnewline
17 & 8700 & 8636.99818698516 & 9312.5 & 0.927462892562165 & 1.00729441081854 \tabularnewline
18 & 9627 & 9510.51374320806 & 9303.16666666667 & 1.02228779554002 & 1.01224815608674 \tabularnewline
19 & 8947 & 9134.52308389872 & 9300.41666666667 & 0.982162779506157 & 0.979470949695309 \tabularnewline
20 & 9283 & 9270.61446374227 & 9278.45833333333 & 0.999154614989983 & 1.00133599949671 \tabularnewline
21 & 8829 & 9205.95820244979 & 9265.375 & 0.993587221504774 & 0.959052801005605 \tabularnewline
22 & 9947 & 9825.3435811899 & 9272.08333333333 & 1.05966946456009 & 1.0123818997071 \tabularnewline
23 & 9628 & 9624.65686566244 & 9269.04166666666 & 1.03836590790984 & 1.00034735101565 \tabularnewline
24 & 9318 & 9327.38608104559 & 9244.25 & 1.00899327485146 & 0.998993707244019 \tabularnewline
25 & 9605 & 9399.74581583726 & 9247.625 & 1.01644971718006 & 1.02183614197492 \tabularnewline
26 & 8640 & 8718.27416730228 & 9262.75 & 0.941218770592134 & 0.991021827737897 \tabularnewline
27 & 9214 & 9242.2961265844 & 9274.79166666667 & 0.996496359028844 & 0.996938409438862 \tabularnewline
28 & 9567 & 9434.43734860757 & 9302.79166666667 & 1.01415120177448 & 1.01405093345731 \tabularnewline
29 & 8547 & 8629.11475239838 & 9304 & 0.927462892562165 & 0.990483988826831 \tabularnewline
30 & 9185 & 9517.45678115277 & 9309.95833333333 & 1.02228779554002 & 0.965068737500219 \tabularnewline
31 & 9470 & 9150.4832290657 & 9316.66666666667 & 0.982162779506157 & 1.03491802158813 \tabularnewline
32 & 9123 & 9305.58487526692 & 9313.45833333333 & 0.999154614989983 & 0.98037900059864 \tabularnewline
33 & 9278 & 9271.82475534205 & 9331.66666666667 & 0.993587221504774 & 1.00066602258141 \tabularnewline
34 & 10170 & 9908.7042457353 & 9350.75 & 1.05966946456009 & 1.02637032530032 \tabularnewline
35 & 9434 & 9735.11303911636 & 9375.41666666667 & 1.03836590790984 & 0.969069384412234 \tabularnewline
36 & 9655 & 9500.05005520455 & 9415.375 & 1.00899327485146 & 1.01631043456561 \tabularnewline
37 & 9429 & 9579.69976784968 & 9424.66666666667 & 1.01644971718006 & 0.984268842291337 \tabularnewline
38 & 8739 & 8858.20202453032 & 9411.41666666667 & 0.941218770592134 & 0.986543316104079 \tabularnewline
39 & 9552 & 9397.37587245826 & 9430.41666666667 & 0.996496359028844 & 1.01645396860148 \tabularnewline
40 & 9687 & 9591.41950338225 & 9457.58333333333 & 1.01415120177448 & 1.00996520865176 \tabularnewline
41 & 9019 & 8802.9754004666 & 9491.45833333333 & 0.927462892562165 & 1.02453995265305 \tabularnewline
42 & 9672 & 9740.44330655493 & 9528.08333333333 & 1.02228779554002 & 0.992973286286788 \tabularnewline
43 & 9206 & 9375.9305104115 & 9546.20833333333 & 0.982162779506157 & 0.981875877789111 \tabularnewline
44 & 9069 & 9570.73553121988 & 9578.83333333333 & 0.999154614989983 & 0.94757607400359 \tabularnewline
45 & 9788 & 9556.73589110854 & 9618.41666666667 & 0.993587221504774 & 1.02419906875386 \tabularnewline
46 & 10312 & 10210.3568199801 & 9635.41666666667 & 1.05966946456009 & 1.00995490968749 \tabularnewline
47 & 10105 & 10006.9918460041 & 9637.25 & 1.03836590790984 & 1.00979396760826 \tabularnewline
48 & 9863 & 9746.95911783799 & 9660.08333333333 & 1.00899327485146 & 1.01190534204146 \tabularnewline
49 & 9656 & 9862.10338093954 & 9702.5 & 1.01644971718006 & 0.97910147835827 \tabularnewline
50 & 9295 & 9179.07919040468 & 9752.33333333333 & 0.941218770592134 & 1.01262880591732 \tabularnewline
51 & 9946 & 9751.42272468489 & 9785.70833333333 & 0.996496359028844 & 1.01995373196391 \tabularnewline
52 & 9701 & 9915.18727454875 & 9776.83333333333 & 1.01415120177448 & 0.978398060609652 \tabularnewline
53 & 9049 & 9068.03656630342 & 9777.25 & 0.927462892562165 & 0.99790069590432 \tabularnewline
54 & 10190 & 10018.0796336937 & 9799.66666666667 & 1.02228779554002 & 1.01716101015289 \tabularnewline
55 & 9706 & 9652.12286869847 & 9827.41666666667 & 0.982162779506157 & 1.00558189447383 \tabularnewline
56 & 9765 & 9836.88534178784 & 9845.20833333333 & 0.999154614989983 & 0.992692265967311 \tabularnewline
57 & 9893 & 9775.65627558009 & 9838.75 & 0.993587221504774 & 1.01200366718223 \tabularnewline
58 & 9994 & 10437.7442259169 & 9850 & 1.05966946456009 & 0.957486577912581 \tabularnewline
59 & 10433 & 10247.8927366392 & 9869.25 & 1.03836590790984 & 1.01806295870946 \tabularnewline
60 & 10073 & 9970.07275573952 & 9881.20833333333 & 1.00899327485146 & 1.01032362017632 \tabularnewline
61 & 10112 & 10051.9253656229 & 9889.25 & 1.01644971718006 & 1.00597643060329 \tabularnewline
62 & 9266 & 9332.06645807468 & 9914.875 & 0.941218770592134 & 0.992920489971702 \tabularnewline
63 & 9820 & 9917.63001323457 & 9952.5 & 0.996496359028844 & 0.990155912944495 \tabularnewline
64 & 10097 & 10120.1303299073 & 9978.91666666667 & 1.01415120177448 & 0.997714423712609 \tabularnewline
65 & 9115 & 9275.24723421669 & 10000.6666666667 & 0.927462892562165 & 0.982723130697204 \tabularnewline
66 & 10411 & 10252.1835388723 & 10028.6666666667 & 1.02228779554002 & 1.0154909888733 \tabularnewline
67 & 9678 & 9894.47153454161 & 10074.1666666667 & 0.982162779506157 & 0.97812197106375 \tabularnewline
68 & 10408 & 10108.9468171612 & 10117.5 & 0.999154614989983 & 1.02958302068927 \tabularnewline
69 & 10153 & 10061.2298028276 & 10126.1666666667 & 0.993587221504774 & 1.00912117096725 \tabularnewline
70 & 10368 & NA & NA & 1.05966946456009 & NA \tabularnewline
71 & 10581 & NA & NA & 1.03836590790984 & NA \tabularnewline
72 & 10597 & NA & NA & 1.00899327485146 & NA \tabularnewline
73 & 10680 & NA & NA & 1.01644971718006 & NA \tabularnewline
74 & 9738 & NA & NA & 0.941218770592134 & NA \tabularnewline
75 & 9556 & NA & NA & 0.996496359028844 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=202460&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]9700[/C][C]NA[/C][C]NA[/C][C]1.01644971718006[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]9081[/C][C]NA[/C][C]NA[/C][C]0.941218770592134[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]9084[/C][C]NA[/C][C]NA[/C][C]0.996496359028844[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]9743[/C][C]NA[/C][C]NA[/C][C]1.01415120177448[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]8587[/C][C]NA[/C][C]NA[/C][C]0.927462892562165[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]9731[/C][C]NA[/C][C]NA[/C][C]1.02228779554002[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]9563[/C][C]9342.86436350146[/C][C]9512.54166666667[/C][C]0.982162779506157[/C][C]1.0235619000698[/C][/ROW]
[ROW][C]8[/C][C]9998[/C][C]9504.12522355389[/C][C]9512.16666666667[/C][C]0.999154614989983[/C][C]1.05196425392441[/C][/ROW]
[ROW][C]9[/C][C]9437[/C][C]9451.29144722635[/C][C]9512.29166666667[/C][C]0.993587221504774[/C][C]0.998487884189569[/C][/ROW]
[ROW][C]10[/C][C]10038[/C][C]10070.7453680243[/C][C]9503.66666666667[/C][C]1.05966946456009[/C][C]0.996748466292451[/C][/ROW]
[ROW][C]11[/C][C]9918[/C][C]9862.09653660449[/C][C]9497.70833333333[/C][C]1.03836590790984[/C][C]1.00566851715434[/C][/ROW]
[ROW][C]12[/C][C]9252[/C][C]9583.50220731205[/C][C]9498.08333333333[/C][C]1.00899327485146[/C][C]0.965409074872532[/C][/ROW]
[ROW][C]13[/C][C]9737[/C][C]9623.83062640392[/C][C]9468.08333333333[/C][C]1.01644971718006[/C][C]1.01175928567213[/C][/ROW]
[ROW][C]14[/C][C]9035[/C][C]8859.33933054478[/C][C]9412.625[/C][C]0.941218770592134[/C][C]1.01982773916895[/C][/ROW]
[ROW][C]15[/C][C]9133[/C][C]9324.71467961241[/C][C]9357.5[/C][C]0.996496359028844[/C][C]0.979440155951198[/C][/ROW]
[ROW][C]16[/C][C]9487[/C][C]9460.38271685297[/C][C]9328.375[/C][C]1.01415120177448[/C][C]1.00281355246861[/C][/ROW]
[ROW][C]17[/C][C]8700[/C][C]8636.99818698516[/C][C]9312.5[/C][C]0.927462892562165[/C][C]1.00729441081854[/C][/ROW]
[ROW][C]18[/C][C]9627[/C][C]9510.51374320806[/C][C]9303.16666666667[/C][C]1.02228779554002[/C][C]1.01224815608674[/C][/ROW]
[ROW][C]19[/C][C]8947[/C][C]9134.52308389872[/C][C]9300.41666666667[/C][C]0.982162779506157[/C][C]0.979470949695309[/C][/ROW]
[ROW][C]20[/C][C]9283[/C][C]9270.61446374227[/C][C]9278.45833333333[/C][C]0.999154614989983[/C][C]1.00133599949671[/C][/ROW]
[ROW][C]21[/C][C]8829[/C][C]9205.95820244979[/C][C]9265.375[/C][C]0.993587221504774[/C][C]0.959052801005605[/C][/ROW]
[ROW][C]22[/C][C]9947[/C][C]9825.3435811899[/C][C]9272.08333333333[/C][C]1.05966946456009[/C][C]1.0123818997071[/C][/ROW]
[ROW][C]23[/C][C]9628[/C][C]9624.65686566244[/C][C]9269.04166666666[/C][C]1.03836590790984[/C][C]1.00034735101565[/C][/ROW]
[ROW][C]24[/C][C]9318[/C][C]9327.38608104559[/C][C]9244.25[/C][C]1.00899327485146[/C][C]0.998993707244019[/C][/ROW]
[ROW][C]25[/C][C]9605[/C][C]9399.74581583726[/C][C]9247.625[/C][C]1.01644971718006[/C][C]1.02183614197492[/C][/ROW]
[ROW][C]26[/C][C]8640[/C][C]8718.27416730228[/C][C]9262.75[/C][C]0.941218770592134[/C][C]0.991021827737897[/C][/ROW]
[ROW][C]27[/C][C]9214[/C][C]9242.2961265844[/C][C]9274.79166666667[/C][C]0.996496359028844[/C][C]0.996938409438862[/C][/ROW]
[ROW][C]28[/C][C]9567[/C][C]9434.43734860757[/C][C]9302.79166666667[/C][C]1.01415120177448[/C][C]1.01405093345731[/C][/ROW]
[ROW][C]29[/C][C]8547[/C][C]8629.11475239838[/C][C]9304[/C][C]0.927462892562165[/C][C]0.990483988826831[/C][/ROW]
[ROW][C]30[/C][C]9185[/C][C]9517.45678115277[/C][C]9309.95833333333[/C][C]1.02228779554002[/C][C]0.965068737500219[/C][/ROW]
[ROW][C]31[/C][C]9470[/C][C]9150.4832290657[/C][C]9316.66666666667[/C][C]0.982162779506157[/C][C]1.03491802158813[/C][/ROW]
[ROW][C]32[/C][C]9123[/C][C]9305.58487526692[/C][C]9313.45833333333[/C][C]0.999154614989983[/C][C]0.98037900059864[/C][/ROW]
[ROW][C]33[/C][C]9278[/C][C]9271.82475534205[/C][C]9331.66666666667[/C][C]0.993587221504774[/C][C]1.00066602258141[/C][/ROW]
[ROW][C]34[/C][C]10170[/C][C]9908.7042457353[/C][C]9350.75[/C][C]1.05966946456009[/C][C]1.02637032530032[/C][/ROW]
[ROW][C]35[/C][C]9434[/C][C]9735.11303911636[/C][C]9375.41666666667[/C][C]1.03836590790984[/C][C]0.969069384412234[/C][/ROW]
[ROW][C]36[/C][C]9655[/C][C]9500.05005520455[/C][C]9415.375[/C][C]1.00899327485146[/C][C]1.01631043456561[/C][/ROW]
[ROW][C]37[/C][C]9429[/C][C]9579.69976784968[/C][C]9424.66666666667[/C][C]1.01644971718006[/C][C]0.984268842291337[/C][/ROW]
[ROW][C]38[/C][C]8739[/C][C]8858.20202453032[/C][C]9411.41666666667[/C][C]0.941218770592134[/C][C]0.986543316104079[/C][/ROW]
[ROW][C]39[/C][C]9552[/C][C]9397.37587245826[/C][C]9430.41666666667[/C][C]0.996496359028844[/C][C]1.01645396860148[/C][/ROW]
[ROW][C]40[/C][C]9687[/C][C]9591.41950338225[/C][C]9457.58333333333[/C][C]1.01415120177448[/C][C]1.00996520865176[/C][/ROW]
[ROW][C]41[/C][C]9019[/C][C]8802.9754004666[/C][C]9491.45833333333[/C][C]0.927462892562165[/C][C]1.02453995265305[/C][/ROW]
[ROW][C]42[/C][C]9672[/C][C]9740.44330655493[/C][C]9528.08333333333[/C][C]1.02228779554002[/C][C]0.992973286286788[/C][/ROW]
[ROW][C]43[/C][C]9206[/C][C]9375.9305104115[/C][C]9546.20833333333[/C][C]0.982162779506157[/C][C]0.981875877789111[/C][/ROW]
[ROW][C]44[/C][C]9069[/C][C]9570.73553121988[/C][C]9578.83333333333[/C][C]0.999154614989983[/C][C]0.94757607400359[/C][/ROW]
[ROW][C]45[/C][C]9788[/C][C]9556.73589110854[/C][C]9618.41666666667[/C][C]0.993587221504774[/C][C]1.02419906875386[/C][/ROW]
[ROW][C]46[/C][C]10312[/C][C]10210.3568199801[/C][C]9635.41666666667[/C][C]1.05966946456009[/C][C]1.00995490968749[/C][/ROW]
[ROW][C]47[/C][C]10105[/C][C]10006.9918460041[/C][C]9637.25[/C][C]1.03836590790984[/C][C]1.00979396760826[/C][/ROW]
[ROW][C]48[/C][C]9863[/C][C]9746.95911783799[/C][C]9660.08333333333[/C][C]1.00899327485146[/C][C]1.01190534204146[/C][/ROW]
[ROW][C]49[/C][C]9656[/C][C]9862.10338093954[/C][C]9702.5[/C][C]1.01644971718006[/C][C]0.97910147835827[/C][/ROW]
[ROW][C]50[/C][C]9295[/C][C]9179.07919040468[/C][C]9752.33333333333[/C][C]0.941218770592134[/C][C]1.01262880591732[/C][/ROW]
[ROW][C]51[/C][C]9946[/C][C]9751.42272468489[/C][C]9785.70833333333[/C][C]0.996496359028844[/C][C]1.01995373196391[/C][/ROW]
[ROW][C]52[/C][C]9701[/C][C]9915.18727454875[/C][C]9776.83333333333[/C][C]1.01415120177448[/C][C]0.978398060609652[/C][/ROW]
[ROW][C]53[/C][C]9049[/C][C]9068.03656630342[/C][C]9777.25[/C][C]0.927462892562165[/C][C]0.99790069590432[/C][/ROW]
[ROW][C]54[/C][C]10190[/C][C]10018.0796336937[/C][C]9799.66666666667[/C][C]1.02228779554002[/C][C]1.01716101015289[/C][/ROW]
[ROW][C]55[/C][C]9706[/C][C]9652.12286869847[/C][C]9827.41666666667[/C][C]0.982162779506157[/C][C]1.00558189447383[/C][/ROW]
[ROW][C]56[/C][C]9765[/C][C]9836.88534178784[/C][C]9845.20833333333[/C][C]0.999154614989983[/C][C]0.992692265967311[/C][/ROW]
[ROW][C]57[/C][C]9893[/C][C]9775.65627558009[/C][C]9838.75[/C][C]0.993587221504774[/C][C]1.01200366718223[/C][/ROW]
[ROW][C]58[/C][C]9994[/C][C]10437.7442259169[/C][C]9850[/C][C]1.05966946456009[/C][C]0.957486577912581[/C][/ROW]
[ROW][C]59[/C][C]10433[/C][C]10247.8927366392[/C][C]9869.25[/C][C]1.03836590790984[/C][C]1.01806295870946[/C][/ROW]
[ROW][C]60[/C][C]10073[/C][C]9970.07275573952[/C][C]9881.20833333333[/C][C]1.00899327485146[/C][C]1.01032362017632[/C][/ROW]
[ROW][C]61[/C][C]10112[/C][C]10051.9253656229[/C][C]9889.25[/C][C]1.01644971718006[/C][C]1.00597643060329[/C][/ROW]
[ROW][C]62[/C][C]9266[/C][C]9332.06645807468[/C][C]9914.875[/C][C]0.941218770592134[/C][C]0.992920489971702[/C][/ROW]
[ROW][C]63[/C][C]9820[/C][C]9917.63001323457[/C][C]9952.5[/C][C]0.996496359028844[/C][C]0.990155912944495[/C][/ROW]
[ROW][C]64[/C][C]10097[/C][C]10120.1303299073[/C][C]9978.91666666667[/C][C]1.01415120177448[/C][C]0.997714423712609[/C][/ROW]
[ROW][C]65[/C][C]9115[/C][C]9275.24723421669[/C][C]10000.6666666667[/C][C]0.927462892562165[/C][C]0.982723130697204[/C][/ROW]
[ROW][C]66[/C][C]10411[/C][C]10252.1835388723[/C][C]10028.6666666667[/C][C]1.02228779554002[/C][C]1.0154909888733[/C][/ROW]
[ROW][C]67[/C][C]9678[/C][C]9894.47153454161[/C][C]10074.1666666667[/C][C]0.982162779506157[/C][C]0.97812197106375[/C][/ROW]
[ROW][C]68[/C][C]10408[/C][C]10108.9468171612[/C][C]10117.5[/C][C]0.999154614989983[/C][C]1.02958302068927[/C][/ROW]
[ROW][C]69[/C][C]10153[/C][C]10061.2298028276[/C][C]10126.1666666667[/C][C]0.993587221504774[/C][C]1.00912117096725[/C][/ROW]
[ROW][C]70[/C][C]10368[/C][C]NA[/C][C]NA[/C][C]1.05966946456009[/C][C]NA[/C][/ROW]
[ROW][C]71[/C][C]10581[/C][C]NA[/C][C]NA[/C][C]1.03836590790984[/C][C]NA[/C][/ROW]
[ROW][C]72[/C][C]10597[/C][C]NA[/C][C]NA[/C][C]1.00899327485146[/C][C]NA[/C][/ROW]
[ROW][C]73[/C][C]10680[/C][C]NA[/C][C]NA[/C][C]1.01644971718006[/C][C]NA[/C][/ROW]
[ROW][C]74[/C][C]9738[/C][C]NA[/C][C]NA[/C][C]0.941218770592134[/C][C]NA[/C][/ROW]
[ROW][C]75[/C][C]9556[/C][C]NA[/C][C]NA[/C][C]0.996496359028844[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=202460&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=202460&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
19700NANA1.01644971718006NA
29081NANA0.941218770592134NA
39084NANA0.996496359028844NA
49743NANA1.01415120177448NA
58587NANA0.927462892562165NA
69731NANA1.02228779554002NA
795639342.864363501469512.541666666670.9821627795061571.0235619000698
899989504.125223553899512.166666666670.9991546149899831.05196425392441
994379451.291447226359512.291666666670.9935872215047740.998487884189569
101003810070.74536802439503.666666666671.059669464560090.996748466292451
1199189862.096536604499497.708333333331.038365907909841.00566851715434
1292529583.502207312059498.083333333331.008993274851460.965409074872532
1397379623.830626403929468.083333333331.016449717180061.01175928567213
1490358859.339330544789412.6250.9412187705921341.01982773916895
1591339324.714679612419357.50.9964963590288440.979440155951198
1694879460.382716852979328.3751.014151201774481.00281355246861
1787008636.998186985169312.50.9274628925621651.00729441081854
1896279510.513743208069303.166666666671.022287795540021.01224815608674
1989479134.523083898729300.416666666670.9821627795061570.979470949695309
2092839270.614463742279278.458333333330.9991546149899831.00133599949671
2188299205.958202449799265.3750.9935872215047740.959052801005605
2299479825.34358118999272.083333333331.059669464560091.0123818997071
2396289624.656865662449269.041666666661.038365907909841.00034735101565
2493189327.386081045599244.251.008993274851460.998993707244019
2596059399.745815837269247.6251.016449717180061.02183614197492
2686408718.274167302289262.750.9412187705921340.991021827737897
2792149242.29612658449274.791666666670.9964963590288440.996938409438862
2895679434.437348607579302.791666666671.014151201774481.01405093345731
2985478629.1147523983893040.9274628925621650.990483988826831
3091859517.456781152779309.958333333331.022287795540020.965068737500219
3194709150.48322906579316.666666666670.9821627795061571.03491802158813
3291239305.584875266929313.458333333330.9991546149899830.98037900059864
3392789271.824755342059331.666666666670.9935872215047741.00066602258141
34101709908.70424573539350.751.059669464560091.02637032530032
3594349735.113039116369375.416666666671.038365907909840.969069384412234
3696559500.050055204559415.3751.008993274851461.01631043456561
3794299579.699767849689424.666666666671.016449717180060.984268842291337
3887398858.202024530329411.416666666670.9412187705921340.986543316104079
3995529397.375872458269430.416666666670.9964963590288441.01645396860148
4096879591.419503382259457.583333333331.014151201774481.00996520865176
4190198802.97540046669491.458333333330.9274628925621651.02453995265305
4296729740.443306554939528.083333333331.022287795540020.992973286286788
4392069375.93051041159546.208333333330.9821627795061570.981875877789111
4490699570.735531219889578.833333333330.9991546149899830.94757607400359
4597889556.735891108549618.416666666670.9935872215047741.02419906875386
461031210210.35681998019635.416666666671.059669464560091.00995490968749
471010510006.99184600419637.251.038365907909841.00979396760826
4898639746.959117837999660.083333333331.008993274851461.01190534204146
4996569862.103380939549702.51.016449717180060.97910147835827
5092959179.079190404689752.333333333330.9412187705921341.01262880591732
5199469751.422724684899785.708333333330.9964963590288441.01995373196391
5297019915.187274548759776.833333333331.014151201774480.978398060609652
5390499068.036566303429777.250.9274628925621650.99790069590432
541019010018.07963369379799.666666666671.022287795540021.01716101015289
5597069652.122868698479827.416666666670.9821627795061571.00558189447383
5697659836.885341787849845.208333333330.9991546149899830.992692265967311
5798939775.656275580099838.750.9935872215047741.01200366718223
58999410437.744225916998501.059669464560090.957486577912581
591043310247.89273663929869.251.038365907909841.01806295870946
60100739970.072755739529881.208333333331.008993274851461.01032362017632
611011210051.92536562299889.251.016449717180061.00597643060329
6292669332.066458074689914.8750.9412187705921340.992920489971702
6398209917.630013234579952.50.9964963590288440.990155912944495
641009710120.13032990739978.916666666671.014151201774480.997714423712609
6591159275.2472342166910000.66666666670.9274628925621650.982723130697204
661041110252.183538872310028.66666666671.022287795540021.0154909888733
6796789894.4715345416110074.16666666670.9821627795061570.97812197106375
681040810108.946817161210117.50.9991546149899831.02958302068927
691015310061.229802827610126.16666666670.9935872215047741.00912117096725
7010368NANA1.05966946456009NA
7110581NANA1.03836590790984NA
7210597NANA1.00899327485146NA
7310680NANA1.01644971718006NA
749738NANA0.941218770592134NA
759556NANA0.996496359028844NA



Parameters (Session):
par1 = multiplicative ; par2 = 12 ;
Parameters (R input):
par1 = multiplicative ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,m$trend[i]+m$seasonal[i]) else a<-table.element(a,m$trend[i]*m$seasonal[i])
a<-table.element(a,m$trend[i])
a<-table.element(a,m$seasonal[i])
a<-table.element(a,m$random[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')