Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationWed, 13 Aug 2014 10:41:06 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/Aug/13/t1407922936fnasac6wbt86vtm.htm/, Retrieved Fri, 01 Nov 2024 00:59:35 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=235495, Retrieved Fri, 01 Nov 2024 00:59:35 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact145
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [] [2014-08-13 09:41:06] [b3e3d38149b35cb70244b37a39776b3a] [Current]
- RMP     [Standard Deviation Plot] [] [2014-08-13 09:51:12] [ba0170e6f15797e8c541ec0953bc1848]
- RMP     [Standard Deviation-Mean Plot] [] [2014-08-13 09:59:59] [ba0170e6f15797e8c541ec0953bc1848]
- RMP     [Classical Decomposition] [] [2014-08-13 10:04:03] [ba0170e6f15797e8c541ec0953bc1848]
- RMP     [Exponential Smoothing] [] [2014-08-13 10:15:04] [ba0170e6f15797e8c541ec0953bc1848]
- RMPD    [Univariate Data Series] [] [2014-08-13 10:18:26] [f85cc8f00ef4b762f0a6fdfddc793773]
- RMPD    [Histogram] [] [2014-08-13 10:20:32] [f85cc8f00ef4b762f0a6fdfddc793773]
- RMPD    [Kernel Density Estimation] [] [2014-08-13 10:21:53] [ba0170e6f15797e8c541ec0953bc1848]
- RMPD    [Notched Boxplots] [] [2014-08-13 10:26:48] [ba0170e6f15797e8c541ec0953bc1848]
- RMPD    [Harrell-Davis Quantiles] [] [2014-08-13 10:28:23] [ba0170e6f15797e8c541ec0953bc1848]
- RMPD    [Harrell-Davis Quantiles] [] [2014-08-13 10:30:20] [ba0170e6f15797e8c541ec0953bc1848]
- RMPD    [Central Tendency] [] [2014-08-13 10:32:56] [ba0170e6f15797e8c541ec0953bc1848]
Feedback Forum

Post a new message
Dataseries X:
106
105
104
102
122
121
106
96
97
97
98
100
106
104
107
112
140
140
134
128
133
139
140
143
152
146
146
155
180
182
177
165
174
174
175
180
184
186
186
192
215
221
222
207
215
212
206
219
222
217
218
225
251
264
264
258
267
258
253
272
275
268
286
293
314
328
326
325
333
332
320
338
344
338
363
375
403
414
411
405
410
416
396
412
422
418
444
453
491
498
489
494
497
500
481
499
509
499
528
537
576
582
584
594
594
598
580
589
595
584
616
622
662
669
679
688
689
690
672
690




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ wold.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=235495&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ wold.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=235495&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=235495&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.97472510.67760
20.95040410.41120
30.92352510.11670
40.8958839.81390
50.8690799.52030
60.8423219.22720
70.8164598.94390
80.7898098.65190
90.7667268.39910
100.7435948.14570
110.7229087.91910
120.7006367.67510
130.675187.39620
140.6498327.11850
150.6222416.81630
160.5944646.5120
170.5678056.220
180.5415055.93190
190.5156165.64830
200.4892525.35950

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.974725 & 10.6776 & 0 \tabularnewline
2 & 0.950404 & 10.4112 & 0 \tabularnewline
3 & 0.923525 & 10.1167 & 0 \tabularnewline
4 & 0.895883 & 9.8139 & 0 \tabularnewline
5 & 0.869079 & 9.5203 & 0 \tabularnewline
6 & 0.842321 & 9.2272 & 0 \tabularnewline
7 & 0.816459 & 8.9439 & 0 \tabularnewline
8 & 0.789809 & 8.6519 & 0 \tabularnewline
9 & 0.766726 & 8.3991 & 0 \tabularnewline
10 & 0.743594 & 8.1457 & 0 \tabularnewline
11 & 0.722908 & 7.9191 & 0 \tabularnewline
12 & 0.700636 & 7.6751 & 0 \tabularnewline
13 & 0.67518 & 7.3962 & 0 \tabularnewline
14 & 0.649832 & 7.1185 & 0 \tabularnewline
15 & 0.622241 & 6.8163 & 0 \tabularnewline
16 & 0.594464 & 6.512 & 0 \tabularnewline
17 & 0.567805 & 6.22 & 0 \tabularnewline
18 & 0.541505 & 5.9319 & 0 \tabularnewline
19 & 0.515616 & 5.6483 & 0 \tabularnewline
20 & 0.489252 & 5.3595 & 0 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=235495&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.974725[/C][C]10.6776[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.950404[/C][C]10.4112[/C][C]0[/C][/ROW]
[ROW][C]3[/C][C]0.923525[/C][C]10.1167[/C][C]0[/C][/ROW]
[ROW][C]4[/C][C]0.895883[/C][C]9.8139[/C][C]0[/C][/ROW]
[ROW][C]5[/C][C]0.869079[/C][C]9.5203[/C][C]0[/C][/ROW]
[ROW][C]6[/C][C]0.842321[/C][C]9.2272[/C][C]0[/C][/ROW]
[ROW][C]7[/C][C]0.816459[/C][C]8.9439[/C][C]0[/C][/ROW]
[ROW][C]8[/C][C]0.789809[/C][C]8.6519[/C][C]0[/C][/ROW]
[ROW][C]9[/C][C]0.766726[/C][C]8.3991[/C][C]0[/C][/ROW]
[ROW][C]10[/C][C]0.743594[/C][C]8.1457[/C][C]0[/C][/ROW]
[ROW][C]11[/C][C]0.722908[/C][C]7.9191[/C][C]0[/C][/ROW]
[ROW][C]12[/C][C]0.700636[/C][C]7.6751[/C][C]0[/C][/ROW]
[ROW][C]13[/C][C]0.67518[/C][C]7.3962[/C][C]0[/C][/ROW]
[ROW][C]14[/C][C]0.649832[/C][C]7.1185[/C][C]0[/C][/ROW]
[ROW][C]15[/C][C]0.622241[/C][C]6.8163[/C][C]0[/C][/ROW]
[ROW][C]16[/C][C]0.594464[/C][C]6.512[/C][C]0[/C][/ROW]
[ROW][C]17[/C][C]0.567805[/C][C]6.22[/C][C]0[/C][/ROW]
[ROW][C]18[/C][C]0.541505[/C][C]5.9319[/C][C]0[/C][/ROW]
[ROW][C]19[/C][C]0.515616[/C][C]5.6483[/C][C]0[/C][/ROW]
[ROW][C]20[/C][C]0.489252[/C][C]5.3595[/C][C]0[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=235495&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=235495&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.97472510.67760
20.95040410.41120
30.92352510.11670
40.8958839.81390
50.8690799.52030
60.8423219.22720
70.8164598.94390
80.7898098.65190
90.7667268.39910
100.7435948.14570
110.7229087.91910
120.7006367.67510
130.675187.39620
140.6498327.11850
150.6222416.81630
160.5944646.5120
170.5678056.220
180.5415055.93190
190.5156165.64830
200.4892525.35950







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.97472510.67760
20.0063010.0690.472544
3-0.063351-0.6940.24452
4-0.03124-0.34220.366393
50.0041760.04580.481793
6-0.011124-0.12190.451609
70.0020950.02290.490866
8-0.030227-0.33110.370564
90.0549120.60150.274312
10-0.01044-0.11440.454572
110.0301240.330.370993
12-0.045644-0.50.308992
13-0.080847-0.88560.188792
14-0.014102-0.15450.438746
15-0.049519-0.54250.294256
16-0.023094-0.2530.400355
170.0128920.14120.443966
18-0.008893-0.09740.461277
19-0.006015-0.06590.473785
20-0.030322-0.33220.370175

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.974725 & 10.6776 & 0 \tabularnewline
2 & 0.006301 & 0.069 & 0.472544 \tabularnewline
3 & -0.063351 & -0.694 & 0.24452 \tabularnewline
4 & -0.03124 & -0.3422 & 0.366393 \tabularnewline
5 & 0.004176 & 0.0458 & 0.481793 \tabularnewline
6 & -0.011124 & -0.1219 & 0.451609 \tabularnewline
7 & 0.002095 & 0.0229 & 0.490866 \tabularnewline
8 & -0.030227 & -0.3311 & 0.370564 \tabularnewline
9 & 0.054912 & 0.6015 & 0.274312 \tabularnewline
10 & -0.01044 & -0.1144 & 0.454572 \tabularnewline
11 & 0.030124 & 0.33 & 0.370993 \tabularnewline
12 & -0.045644 & -0.5 & 0.308992 \tabularnewline
13 & -0.080847 & -0.8856 & 0.188792 \tabularnewline
14 & -0.014102 & -0.1545 & 0.438746 \tabularnewline
15 & -0.049519 & -0.5425 & 0.294256 \tabularnewline
16 & -0.023094 & -0.253 & 0.400355 \tabularnewline
17 & 0.012892 & 0.1412 & 0.443966 \tabularnewline
18 & -0.008893 & -0.0974 & 0.461277 \tabularnewline
19 & -0.006015 & -0.0659 & 0.473785 \tabularnewline
20 & -0.030322 & -0.3322 & 0.370175 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=235495&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.974725[/C][C]10.6776[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.006301[/C][C]0.069[/C][C]0.472544[/C][/ROW]
[ROW][C]3[/C][C]-0.063351[/C][C]-0.694[/C][C]0.24452[/C][/ROW]
[ROW][C]4[/C][C]-0.03124[/C][C]-0.3422[/C][C]0.366393[/C][/ROW]
[ROW][C]5[/C][C]0.004176[/C][C]0.0458[/C][C]0.481793[/C][/ROW]
[ROW][C]6[/C][C]-0.011124[/C][C]-0.1219[/C][C]0.451609[/C][/ROW]
[ROW][C]7[/C][C]0.002095[/C][C]0.0229[/C][C]0.490866[/C][/ROW]
[ROW][C]8[/C][C]-0.030227[/C][C]-0.3311[/C][C]0.370564[/C][/ROW]
[ROW][C]9[/C][C]0.054912[/C][C]0.6015[/C][C]0.274312[/C][/ROW]
[ROW][C]10[/C][C]-0.01044[/C][C]-0.1144[/C][C]0.454572[/C][/ROW]
[ROW][C]11[/C][C]0.030124[/C][C]0.33[/C][C]0.370993[/C][/ROW]
[ROW][C]12[/C][C]-0.045644[/C][C]-0.5[/C][C]0.308992[/C][/ROW]
[ROW][C]13[/C][C]-0.080847[/C][C]-0.8856[/C][C]0.188792[/C][/ROW]
[ROW][C]14[/C][C]-0.014102[/C][C]-0.1545[/C][C]0.438746[/C][/ROW]
[ROW][C]15[/C][C]-0.049519[/C][C]-0.5425[/C][C]0.294256[/C][/ROW]
[ROW][C]16[/C][C]-0.023094[/C][C]-0.253[/C][C]0.400355[/C][/ROW]
[ROW][C]17[/C][C]0.012892[/C][C]0.1412[/C][C]0.443966[/C][/ROW]
[ROW][C]18[/C][C]-0.008893[/C][C]-0.0974[/C][C]0.461277[/C][/ROW]
[ROW][C]19[/C][C]-0.006015[/C][C]-0.0659[/C][C]0.473785[/C][/ROW]
[ROW][C]20[/C][C]-0.030322[/C][C]-0.3322[/C][C]0.370175[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=235495&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=235495&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.97472510.67760
20.0063010.0690.472544
3-0.063351-0.6940.24452
4-0.03124-0.34220.366393
50.0041760.04580.481793
6-0.011124-0.12190.451609
70.0020950.02290.490866
8-0.030227-0.33110.370564
90.0549120.60150.274312
10-0.01044-0.11440.454572
110.0301240.330.370993
12-0.045644-0.50.308992
13-0.080847-0.88560.188792
14-0.014102-0.15450.438746
15-0.049519-0.54250.294256
16-0.023094-0.2530.400355
170.0128920.14120.443966
18-0.008893-0.09740.461277
19-0.006015-0.06590.473785
20-0.030322-0.33220.370175



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','ACF(k)','click here for more information about the Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','PACF(k)','click here for more information about the Partial Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')