Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_histogram.wasp
Title produced by softwareHistogram
Date of computationSun, 26 Oct 2014 19:48:56 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/Oct/26/t1414352959nkbl1mhyq7a4t12.htm/, Retrieved Thu, 31 Oct 2024 23:28:30 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=246734, Retrieved Thu, 31 Oct 2024 23:28:30 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact104
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Boxplot and Trimmed Means] [Care Age 10 Data] [2009-10-26 09:01:50] [98fd0e87c3eb04e0cc2efde01dbafab6]
-   PD  [Boxplot and Trimmed Means] [Care Age 7 Data] [2009-10-26 18:36:29] [98fd0e87c3eb04e0cc2efde01dbafab6]
-   P     [CARE Data - Boxplots and Scatterplot Matrix] [CARE Data] [2010-10-19 14:16:27] [3fdd735c61ad38cbc9b3393dc997cdb7]
- RM        [CARE Data - Boxplots and Scatterplot Matrix] [CARE data - works...] [2011-10-17 10:23:12] [98fd0e87c3eb04e0cc2efde01dbafab6]
- RMP         [Boxplot and Trimmed Means] [CARE Study Age 7 ] [2013-10-17 12:59:45] [34296d8f7657c52ed60d5bff9133afec]
- RM D          [Boxplot and Trimmed Means] [Age 10 Data] [2014-10-26 19:39:35] [0af727c7d6fddd5894090204e2de4756]
- RMPD              [Histogram] [WJ10ARD Histogram] [2014-10-26 19:48:56] [892fd876d1e57c7e7407bd9e84fe5104] [Current]
Feedback Forum

Post a new message
Dataseries X:
95
87
91
84
92
84
84
69
84
84
85
89
83
86
91
90
77
88
88
88
102
103
84
87
88
93
101
88
113
95
99
85
105
105
96
88
93
93
69
83
83
93
69
86
90
87
92
75
89
88
87
113
102
101
87
105
101
79
86
95
104
79
86
81
92
95
97
87
94
105
94
88
105
113
69
69
100
113
88
104
94
91
103
95
69
86
108
83
102
94
113
113
93
105
88
90
92
81
86
85
86
97
103
102




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=246734&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=246734&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=246734&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Frequency Table (Histogram)
BinsMidpointAbs. FrequencyRel. FrequencyCumul. Rel. Freq.Density
[65,70[67.560.0576920.0576920.011538
[70,75[72.5000.0576920
[75,80[77.540.0384620.0961540.007692
[80,85[82.5120.1153850.2115380.023077
[85,90[87.5280.2692310.4807690.053846
[90,95[92.5190.1826920.6634620.036538
[95,100[97.590.0865380.750.017308
[100,105[102.5130.1250.8750.025
[105,110[107.570.0673080.9423080.013462
[110,115]112.560.05769210.011538

\begin{tabular}{lllllllll}
\hline
Frequency Table (Histogram) \tabularnewline
Bins & Midpoint & Abs. Frequency & Rel. Frequency & Cumul. Rel. Freq. & Density \tabularnewline
[65,70[ & 67.5 & 6 & 0.057692 & 0.057692 & 0.011538 \tabularnewline
[70,75[ & 72.5 & 0 & 0 & 0.057692 & 0 \tabularnewline
[75,80[ & 77.5 & 4 & 0.038462 & 0.096154 & 0.007692 \tabularnewline
[80,85[ & 82.5 & 12 & 0.115385 & 0.211538 & 0.023077 \tabularnewline
[85,90[ & 87.5 & 28 & 0.269231 & 0.480769 & 0.053846 \tabularnewline
[90,95[ & 92.5 & 19 & 0.182692 & 0.663462 & 0.036538 \tabularnewline
[95,100[ & 97.5 & 9 & 0.086538 & 0.75 & 0.017308 \tabularnewline
[100,105[ & 102.5 & 13 & 0.125 & 0.875 & 0.025 \tabularnewline
[105,110[ & 107.5 & 7 & 0.067308 & 0.942308 & 0.013462 \tabularnewline
[110,115] & 112.5 & 6 & 0.057692 & 1 & 0.011538 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=246734&T=1

[TABLE]
[ROW][C]Frequency Table (Histogram)[/C][/ROW]
[ROW][C]Bins[/C][C]Midpoint[/C][C]Abs. Frequency[/C][C]Rel. Frequency[/C][C]Cumul. Rel. Freq.[/C][C]Density[/C][/ROW]
[ROW][C][65,70[[/C][C]67.5[/C][C]6[/C][C]0.057692[/C][C]0.057692[/C][C]0.011538[/C][/ROW]
[ROW][C][70,75[[/C][C]72.5[/C][C]0[/C][C]0[/C][C]0.057692[/C][C]0[/C][/ROW]
[ROW][C][75,80[[/C][C]77.5[/C][C]4[/C][C]0.038462[/C][C]0.096154[/C][C]0.007692[/C][/ROW]
[ROW][C][80,85[[/C][C]82.5[/C][C]12[/C][C]0.115385[/C][C]0.211538[/C][C]0.023077[/C][/ROW]
[ROW][C][85,90[[/C][C]87.5[/C][C]28[/C][C]0.269231[/C][C]0.480769[/C][C]0.053846[/C][/ROW]
[ROW][C][90,95[[/C][C]92.5[/C][C]19[/C][C]0.182692[/C][C]0.663462[/C][C]0.036538[/C][/ROW]
[ROW][C][95,100[[/C][C]97.5[/C][C]9[/C][C]0.086538[/C][C]0.75[/C][C]0.017308[/C][/ROW]
[ROW][C][100,105[[/C][C]102.5[/C][C]13[/C][C]0.125[/C][C]0.875[/C][C]0.025[/C][/ROW]
[ROW][C][105,110[[/C][C]107.5[/C][C]7[/C][C]0.067308[/C][C]0.942308[/C][C]0.013462[/C][/ROW]
[ROW][C][110,115][/C][C]112.5[/C][C]6[/C][C]0.057692[/C][C]1[/C][C]0.011538[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=246734&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=246734&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Frequency Table (Histogram)
BinsMidpointAbs. FrequencyRel. FrequencyCumul. Rel. Freq.Density
[65,70[67.560.0576920.0576920.011538
[70,75[72.5000.0576920
[75,80[77.540.0384620.0961540.007692
[80,85[82.5120.1153850.2115380.023077
[85,90[87.5280.2692310.4807690.053846
[90,95[92.5190.1826920.6634620.036538
[95,100[97.590.0865380.750.017308
[100,105[102.5130.1250.8750.025
[105,110[107.570.0673080.9423080.013462
[110,115]112.560.05769210.011538



Parameters (Session):
par2 = grey ; par3 = FALSE ; par4 = Unknown ;
Parameters (R input):
par1 = ; par2 = grey ; par3 = FALSE ; par4 = Unknown ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
if (par3 == 'TRUE') par3 <- TRUE
if (par3 == 'FALSE') par3 <- FALSE
if (par4 == 'Unknown') par1 <- as.numeric(par1)
if (par4 == 'Interval/Ratio') par1 <- as.numeric(par1)
if (par4 == '3-point Likert') par1 <- c(1:3 - 0.5, 3.5)
if (par4 == '4-point Likert') par1 <- c(1:4 - 0.5, 4.5)
if (par4 == '5-point Likert') par1 <- c(1:5 - 0.5, 5.5)
if (par4 == '6-point Likert') par1 <- c(1:6 - 0.5, 6.5)
if (par4 == '7-point Likert') par1 <- c(1:7 - 0.5, 7.5)
if (par4 == '8-point Likert') par1 <- c(1:8 - 0.5, 8.5)
if (par4 == '9-point Likert') par1 <- c(1:9 - 0.5, 9.5)
if (par4 == '10-point Likert') par1 <- c(1:10 - 0.5, 10.5)
bitmap(file='test1.png')
if(is.numeric(x[1])) {
if (is.na(par1)) {
myhist<-hist(x,col=par2,main=main,xlab=xlab,right=par3)
} else {
if (par1 < 0) par1 <- 3
if (par1 > 50) par1 <- 50
myhist<-hist(x,breaks=par1,col=par2,main=main,xlab=xlab,right=par3)
}
} else {
plot(mytab <- table(x),col=par2,main='Frequency Plot',xlab=xlab,ylab='Absolute Frequency')
}
dev.off()
if(is.numeric(x[1])) {
myhist
n <- length(x)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('histogram.htm','Frequency Table (Histogram)',''),6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Bins',header=TRUE)
a<-table.element(a,'Midpoint',header=TRUE)
a<-table.element(a,'Abs. Frequency',header=TRUE)
a<-table.element(a,'Rel. Frequency',header=TRUE)
a<-table.element(a,'Cumul. Rel. Freq.',header=TRUE)
a<-table.element(a,'Density',header=TRUE)
a<-table.row.end(a)
crf <- 0
if (par3 == FALSE) mybracket <- '[' else mybracket <- ']'
mynumrows <- (length(myhist$breaks)-1)
for (i in 1:mynumrows) {
a<-table.row.start(a)
if (i == 1)
dum <- paste('[',myhist$breaks[i],sep='')
else
dum <- paste(mybracket,myhist$breaks[i],sep='')
dum <- paste(dum,myhist$breaks[i+1],sep=',')
if (i==mynumrows)
dum <- paste(dum,']',sep='')
else
dum <- paste(dum,mybracket,sep='')
a<-table.element(a,dum,header=TRUE)
a<-table.element(a,myhist$mids[i])
a<-table.element(a,myhist$counts[i])
rf <- myhist$counts[i]/n
crf <- crf + rf
a<-table.element(a,round(rf,6))
a<-table.element(a,round(crf,6))
a<-table.element(a,round(myhist$density[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
} else {
mytab
reltab <- mytab / sum(mytab)
n <- length(mytab)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Frequency Table (Categorical Data)',3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Category',header=TRUE)
a<-table.element(a,'Abs. Frequency',header=TRUE)
a<-table.element(a,'Rel. Frequency',header=TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,labels(mytab)$x[i],header=TRUE)
a<-table.element(a,mytab[i])
a<-table.element(a,round(reltab[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
}