Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 16 Dec 2014 15:36:19 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/Dec/16/t1418744213zdwczwzae1tznww.htm/, Retrieved Fri, 01 Nov 2024 00:04:33 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=269745, Retrieved Fri, 01 Nov 2024 00:04:33 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact86
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2014-12-16 15:36:19] [f065a278b55a6e0b46d8d4a5c5e7b8ed] [Current]
Feedback Forum

Post a new message
Dataseries X:
22 58
17 51
23 57
23 30
28 46
29 51
21 56
24 58
20 44
7 14
19 53
28 42
18 49
26 44
21 62
19 30
20 46
23 50
24 54
16 48
19 55
24 35
21 55
16 41
16 59
21 54
28 55
16 45
23 51
26 47
29 42
18 53
19 53
19 41
16 55
16 55
16 46
18 63
22 43
14 65
20 59
15 39
22 44
24 60
16 57
19 67
24 52
19 52
15 69
11 46
15 46
17 53
20 40
21 70
16 54
17 77
20 45
15 60
21 47
16 50
18 66
25 60
21 41
21 53
16 34
20 51
24 69
28 60
27 45
22 58
20 39
27 51
17 52
22 49
23 63
15 44
22 51
13 52
21 60
18 53
22 53
19 52
15 31
20 51
17 65
21 51
23 49
20 61
18 58
22 62
24 54
24 52
18 72
27 50
19 65
20 53
15 56
20 63
27 62
20 66
20 50
13 45
21 58
23 52
26 53
24 68
25 59
18 58
21 52
23 45
16 58
19 70
20 69
25 71
22 46
20 58
25 39
27 46
20 64
18 67
26 44
26 54
24 41
27 68
16 63
15 57
25 61
27 39
18 69
16 64
18 38
23 59
21 51
21 59
14 51
24 65
18 47
16 50
25 57
22 21
13 47
20 51
17 37
23 67
22 43
23 58
22 51
23 40
10 41
18 58
25 64
26 64
14 58
23 50
22 59
23 55
19 59
14 58
26 41
24 56
21 63
17 77
16 60
15 58
11 64
19 46
21 62
20 60
16 50
19 46
16 44
11 58
22 56
20 43
26 54
26 54
20 56
24 65
20 66
15 62
23 58
25 67
27 25
23 56
20 53
25 56
24 59
22 46
27 49
20 56
17 76
22 33
26 49
19 53
19 58
24 72
22 51
16 42
22 69
23 51
19 54
20 52
16 59
19 51
20 67
15 64
22 58
26 53




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 7 seconds \tabularnewline
R Server & 'Gertrude Mary Cox' @ cox.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=269745&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]7 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gertrude Mary Cox' @ cox.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=269745&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=269745&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net







Multiple Linear Regression - Estimated Regression Equation
Wiskundige_kennis[t] = + 20.2968 + 0.00271647Intrinsieke_motivatie[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Wiskundige_kennis[t] =  +  20.2968 +  0.00271647Intrinsieke_motivatie[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=269745&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Wiskundige_kennis[t] =  +  20.2968 +  0.00271647Intrinsieke_motivatie[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=269745&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=269745&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Wiskundige_kennis[t] = + 20.2968 + 0.00271647Intrinsieke_motivatie[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)20.29681.5439313.154.59299e-292.29649e-29
Intrinsieke_motivatie0.002716470.02832440.095910.9236890.461844

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 20.2968 & 1.54393 & 13.15 & 4.59299e-29 & 2.29649e-29 \tabularnewline
Intrinsieke_motivatie & 0.00271647 & 0.0283244 & 0.09591 & 0.923689 & 0.461844 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=269745&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]20.2968[/C][C]1.54393[/C][C]13.15[/C][C]4.59299e-29[/C][C]2.29649e-29[/C][/ROW]
[ROW][C]Intrinsieke_motivatie[/C][C]0.00271647[/C][C]0.0283244[/C][C]0.09591[/C][C]0.923689[/C][C]0.461844[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=269745&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=269745&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)20.29681.5439313.154.59299e-292.29649e-29
Intrinsieke_motivatie0.002716470.02832440.095910.9236890.461844







Multiple Linear Regression - Regression Statistics
Multiple R0.00668192
R-squared4.46481e-05
Adjusted R-squared-0.0048095
F-TEST (value)0.00919791
F-TEST (DF numerator)1
F-TEST (DF denominator)206
p-value0.923689
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation4.10017
Sum Squared Residuals3463.15

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.00668192 \tabularnewline
R-squared & 4.46481e-05 \tabularnewline
Adjusted R-squared & -0.0048095 \tabularnewline
F-TEST (value) & 0.00919791 \tabularnewline
F-TEST (DF numerator) & 1 \tabularnewline
F-TEST (DF denominator) & 206 \tabularnewline
p-value & 0.923689 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 4.10017 \tabularnewline
Sum Squared Residuals & 3463.15 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=269745&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.00668192[/C][/ROW]
[ROW][C]R-squared[/C][C]4.46481e-05[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]-0.0048095[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]0.00919791[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]1[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]206[/C][/ROW]
[ROW][C]p-value[/C][C]0.923689[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]4.10017[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]3463.15[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=269745&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=269745&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.00668192
R-squared4.46481e-05
Adjusted R-squared-0.0048095
F-TEST (value)0.00919791
F-TEST (DF numerator)1
F-TEST (DF denominator)206
p-value0.923689
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation4.10017
Sum Squared Residuals3463.15







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
12220.45431.54568
21720.4353-3.43531
32320.45162.54839
42320.37832.62174
52820.42177.57827
62920.43538.56469
72120.44890.55111
82420.45433.54568
92020.4163-0.416292
10720.3348-13.3348
111920.4407-1.44074
122820.41097.58914
131820.4299-2.42987
142620.41635.58371
152120.46520.534811
161920.3783-1.37826
172020.4217-0.421725
182320.43262.56741
192420.44353.55654
201620.4272-4.42716
211920.4462-1.44617
222420.39183.60816
232120.44620.553827
241620.4081-4.40814
251620.457-4.45704
262120.44350.556543
272820.44627.55383
281620.419-4.41901
292320.43532.56469
302620.42445.57556
312920.41098.58914
321820.4407-2.44074
331920.4407-1.44074
341920.4081-1.40814
351620.4462-4.44617
361620.4462-4.44617
371620.4217-4.42173
381820.4679-2.46791
392220.41361.58642
401420.4733-6.47334
412020.457-0.457039
421520.4027-5.40271
432220.41631.58371
442420.45983.54024
451620.4516-4.45161
461920.4788-1.47877
472420.4383.56198
481920.438-1.43802
491520.4842-5.4842
501120.4217-9.42173
511520.4217-5.42173
521720.4407-3.44074
532020.4054-0.405426
542120.48690.513079
551620.4435-4.44346
561720.5059-3.50594
572020.419-0.419009
581520.4598-5.45976
592120.42440.575558
601620.4326-4.43259
611820.4761-2.47605
622520.45984.54024
632120.40810.591857
642120.44070.55926
651620.3891-4.38913
662020.4353-0.435308
672420.48423.5158
682820.45987.54024
692720.4196.58099
702220.45431.54568
712020.4027-0.40271
722720.43536.56469
731720.438-3.43802
742220.42991.57013
752320.46792.53209
761520.4163-5.41629
772220.43531.56469
781320.438-7.43802
792120.45980.540244
801820.4407-2.44074
812220.44071.55926
821920.438-1.43802
831520.381-5.38098
842020.4353-0.435308
851720.4733-3.47334
862120.43530.564692
872320.42992.57013
882020.4625-0.462472
891820.4543-2.45432
902220.46521.53481
912420.44353.55654
922420.4383.56198
931820.4924-2.49235
942720.43266.56741
951920.4733-1.47334
962020.4407-0.44074
971520.4489-5.44889
982020.4679-0.467905
992720.46526.53481
1002020.4761-0.476055
1012020.4326-0.432591
1021320.419-7.41901
1032120.45430.545677
1042320.4382.56198
1052620.44075.55926
1062420.48153.51851
1072520.4574.54296
1081820.4543-2.45432
1092120.4380.561976
1102320.4192.58099
1111620.4543-4.45432
1121920.4869-1.48692
1132020.4842-0.484204
1142520.48964.51036
1152220.42171.57827
1162020.4543-0.454323
1172520.40274.59729
1182720.42176.57827
1192020.4706-0.470622
1201820.4788-2.47877
1212620.41635.58371
1222620.44355.55654
1232420.40813.59186
1242720.48156.51851
1251620.4679-4.46791
1261520.4516-5.45161
1272520.46254.53753
1282720.40276.59729
1291820.4842-2.4842
1301620.4706-4.47062
1311820.4-2.39999
1322320.4572.54296
1332120.43530.564692
1342120.4570.542961
1351420.4353-6.43531
1362420.47333.52666
1371820.4244-2.42444
1381620.4326-4.43259
1392520.45164.54839
1402220.35381.64619
1411320.4244-7.42444
1422020.4353-0.435308
1431720.3973-3.39728
1442320.47882.52123
1452220.41361.58642
1462320.45432.54568
1472220.43531.56469
1482320.40542.59457
1491020.4081-10.4081
1501820.4543-2.45432
1512520.47064.52938
1522620.47065.52938
1531420.4543-6.45432
1542320.43262.56741
1552220.4571.54296
1562320.44622.55383
1571920.457-1.45704
1581420.4543-6.45432
1592620.40815.59186
1602420.44893.55111
1612120.46790.532095
1621720.5059-3.50594
1631620.4598-4.45976
1641520.4543-5.45432
1651120.4706-9.47062
1661920.4217-1.42173
1672120.46520.534811
1682020.4598-0.459756
1691620.4326-4.43259
1701920.4217-1.42173
1711620.4163-4.41629
1721120.4543-9.45432
1732220.44891.55111
1742020.4136-0.413576
1752620.44355.55654
1762620.44355.55654
1772020.4489-0.44889
1782420.47333.52666
1792020.4761-0.476055
1801520.4652-5.46519
1812320.45432.54568
1822520.47884.52123
1832720.36476.63532
1842320.44892.55111
1852020.4407-0.44074
1862520.44894.55111
1872420.4573.54296
1882220.42171.57827
1892720.42996.57013
1902020.4489-0.44889
1911720.5032-3.50322
1922220.38641.61359
1932620.42995.57013
1941920.4407-1.44074
1951920.4543-1.45432
1962420.49243.50765
1972220.43531.56469
1981620.4109-4.41086
1992220.48421.5158
2002320.43532.56469
2011920.4435-1.44346
2022020.438-0.438024
2031620.457-4.45704
2041920.4353-1.43531
2052020.4788-0.478771
2061520.4706-5.47062
2072220.45431.54568
2082620.44075.55926

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 22 & 20.4543 & 1.54568 \tabularnewline
2 & 17 & 20.4353 & -3.43531 \tabularnewline
3 & 23 & 20.4516 & 2.54839 \tabularnewline
4 & 23 & 20.3783 & 2.62174 \tabularnewline
5 & 28 & 20.4217 & 7.57827 \tabularnewline
6 & 29 & 20.4353 & 8.56469 \tabularnewline
7 & 21 & 20.4489 & 0.55111 \tabularnewline
8 & 24 & 20.4543 & 3.54568 \tabularnewline
9 & 20 & 20.4163 & -0.416292 \tabularnewline
10 & 7 & 20.3348 & -13.3348 \tabularnewline
11 & 19 & 20.4407 & -1.44074 \tabularnewline
12 & 28 & 20.4109 & 7.58914 \tabularnewline
13 & 18 & 20.4299 & -2.42987 \tabularnewline
14 & 26 & 20.4163 & 5.58371 \tabularnewline
15 & 21 & 20.4652 & 0.534811 \tabularnewline
16 & 19 & 20.3783 & -1.37826 \tabularnewline
17 & 20 & 20.4217 & -0.421725 \tabularnewline
18 & 23 & 20.4326 & 2.56741 \tabularnewline
19 & 24 & 20.4435 & 3.55654 \tabularnewline
20 & 16 & 20.4272 & -4.42716 \tabularnewline
21 & 19 & 20.4462 & -1.44617 \tabularnewline
22 & 24 & 20.3918 & 3.60816 \tabularnewline
23 & 21 & 20.4462 & 0.553827 \tabularnewline
24 & 16 & 20.4081 & -4.40814 \tabularnewline
25 & 16 & 20.457 & -4.45704 \tabularnewline
26 & 21 & 20.4435 & 0.556543 \tabularnewline
27 & 28 & 20.4462 & 7.55383 \tabularnewline
28 & 16 & 20.419 & -4.41901 \tabularnewline
29 & 23 & 20.4353 & 2.56469 \tabularnewline
30 & 26 & 20.4244 & 5.57556 \tabularnewline
31 & 29 & 20.4109 & 8.58914 \tabularnewline
32 & 18 & 20.4407 & -2.44074 \tabularnewline
33 & 19 & 20.4407 & -1.44074 \tabularnewline
34 & 19 & 20.4081 & -1.40814 \tabularnewline
35 & 16 & 20.4462 & -4.44617 \tabularnewline
36 & 16 & 20.4462 & -4.44617 \tabularnewline
37 & 16 & 20.4217 & -4.42173 \tabularnewline
38 & 18 & 20.4679 & -2.46791 \tabularnewline
39 & 22 & 20.4136 & 1.58642 \tabularnewline
40 & 14 & 20.4733 & -6.47334 \tabularnewline
41 & 20 & 20.457 & -0.457039 \tabularnewline
42 & 15 & 20.4027 & -5.40271 \tabularnewline
43 & 22 & 20.4163 & 1.58371 \tabularnewline
44 & 24 & 20.4598 & 3.54024 \tabularnewline
45 & 16 & 20.4516 & -4.45161 \tabularnewline
46 & 19 & 20.4788 & -1.47877 \tabularnewline
47 & 24 & 20.438 & 3.56198 \tabularnewline
48 & 19 & 20.438 & -1.43802 \tabularnewline
49 & 15 & 20.4842 & -5.4842 \tabularnewline
50 & 11 & 20.4217 & -9.42173 \tabularnewline
51 & 15 & 20.4217 & -5.42173 \tabularnewline
52 & 17 & 20.4407 & -3.44074 \tabularnewline
53 & 20 & 20.4054 & -0.405426 \tabularnewline
54 & 21 & 20.4869 & 0.513079 \tabularnewline
55 & 16 & 20.4435 & -4.44346 \tabularnewline
56 & 17 & 20.5059 & -3.50594 \tabularnewline
57 & 20 & 20.419 & -0.419009 \tabularnewline
58 & 15 & 20.4598 & -5.45976 \tabularnewline
59 & 21 & 20.4244 & 0.575558 \tabularnewline
60 & 16 & 20.4326 & -4.43259 \tabularnewline
61 & 18 & 20.4761 & -2.47605 \tabularnewline
62 & 25 & 20.4598 & 4.54024 \tabularnewline
63 & 21 & 20.4081 & 0.591857 \tabularnewline
64 & 21 & 20.4407 & 0.55926 \tabularnewline
65 & 16 & 20.3891 & -4.38913 \tabularnewline
66 & 20 & 20.4353 & -0.435308 \tabularnewline
67 & 24 & 20.4842 & 3.5158 \tabularnewline
68 & 28 & 20.4598 & 7.54024 \tabularnewline
69 & 27 & 20.419 & 6.58099 \tabularnewline
70 & 22 & 20.4543 & 1.54568 \tabularnewline
71 & 20 & 20.4027 & -0.40271 \tabularnewline
72 & 27 & 20.4353 & 6.56469 \tabularnewline
73 & 17 & 20.438 & -3.43802 \tabularnewline
74 & 22 & 20.4299 & 1.57013 \tabularnewline
75 & 23 & 20.4679 & 2.53209 \tabularnewline
76 & 15 & 20.4163 & -5.41629 \tabularnewline
77 & 22 & 20.4353 & 1.56469 \tabularnewline
78 & 13 & 20.438 & -7.43802 \tabularnewline
79 & 21 & 20.4598 & 0.540244 \tabularnewline
80 & 18 & 20.4407 & -2.44074 \tabularnewline
81 & 22 & 20.4407 & 1.55926 \tabularnewline
82 & 19 & 20.438 & -1.43802 \tabularnewline
83 & 15 & 20.381 & -5.38098 \tabularnewline
84 & 20 & 20.4353 & -0.435308 \tabularnewline
85 & 17 & 20.4733 & -3.47334 \tabularnewline
86 & 21 & 20.4353 & 0.564692 \tabularnewline
87 & 23 & 20.4299 & 2.57013 \tabularnewline
88 & 20 & 20.4625 & -0.462472 \tabularnewline
89 & 18 & 20.4543 & -2.45432 \tabularnewline
90 & 22 & 20.4652 & 1.53481 \tabularnewline
91 & 24 & 20.4435 & 3.55654 \tabularnewline
92 & 24 & 20.438 & 3.56198 \tabularnewline
93 & 18 & 20.4924 & -2.49235 \tabularnewline
94 & 27 & 20.4326 & 6.56741 \tabularnewline
95 & 19 & 20.4733 & -1.47334 \tabularnewline
96 & 20 & 20.4407 & -0.44074 \tabularnewline
97 & 15 & 20.4489 & -5.44889 \tabularnewline
98 & 20 & 20.4679 & -0.467905 \tabularnewline
99 & 27 & 20.4652 & 6.53481 \tabularnewline
100 & 20 & 20.4761 & -0.476055 \tabularnewline
101 & 20 & 20.4326 & -0.432591 \tabularnewline
102 & 13 & 20.419 & -7.41901 \tabularnewline
103 & 21 & 20.4543 & 0.545677 \tabularnewline
104 & 23 & 20.438 & 2.56198 \tabularnewline
105 & 26 & 20.4407 & 5.55926 \tabularnewline
106 & 24 & 20.4815 & 3.51851 \tabularnewline
107 & 25 & 20.457 & 4.54296 \tabularnewline
108 & 18 & 20.4543 & -2.45432 \tabularnewline
109 & 21 & 20.438 & 0.561976 \tabularnewline
110 & 23 & 20.419 & 2.58099 \tabularnewline
111 & 16 & 20.4543 & -4.45432 \tabularnewline
112 & 19 & 20.4869 & -1.48692 \tabularnewline
113 & 20 & 20.4842 & -0.484204 \tabularnewline
114 & 25 & 20.4896 & 4.51036 \tabularnewline
115 & 22 & 20.4217 & 1.57827 \tabularnewline
116 & 20 & 20.4543 & -0.454323 \tabularnewline
117 & 25 & 20.4027 & 4.59729 \tabularnewline
118 & 27 & 20.4217 & 6.57827 \tabularnewline
119 & 20 & 20.4706 & -0.470622 \tabularnewline
120 & 18 & 20.4788 & -2.47877 \tabularnewline
121 & 26 & 20.4163 & 5.58371 \tabularnewline
122 & 26 & 20.4435 & 5.55654 \tabularnewline
123 & 24 & 20.4081 & 3.59186 \tabularnewline
124 & 27 & 20.4815 & 6.51851 \tabularnewline
125 & 16 & 20.4679 & -4.46791 \tabularnewline
126 & 15 & 20.4516 & -5.45161 \tabularnewline
127 & 25 & 20.4625 & 4.53753 \tabularnewline
128 & 27 & 20.4027 & 6.59729 \tabularnewline
129 & 18 & 20.4842 & -2.4842 \tabularnewline
130 & 16 & 20.4706 & -4.47062 \tabularnewline
131 & 18 & 20.4 & -2.39999 \tabularnewline
132 & 23 & 20.457 & 2.54296 \tabularnewline
133 & 21 & 20.4353 & 0.564692 \tabularnewline
134 & 21 & 20.457 & 0.542961 \tabularnewline
135 & 14 & 20.4353 & -6.43531 \tabularnewline
136 & 24 & 20.4733 & 3.52666 \tabularnewline
137 & 18 & 20.4244 & -2.42444 \tabularnewline
138 & 16 & 20.4326 & -4.43259 \tabularnewline
139 & 25 & 20.4516 & 4.54839 \tabularnewline
140 & 22 & 20.3538 & 1.64619 \tabularnewline
141 & 13 & 20.4244 & -7.42444 \tabularnewline
142 & 20 & 20.4353 & -0.435308 \tabularnewline
143 & 17 & 20.3973 & -3.39728 \tabularnewline
144 & 23 & 20.4788 & 2.52123 \tabularnewline
145 & 22 & 20.4136 & 1.58642 \tabularnewline
146 & 23 & 20.4543 & 2.54568 \tabularnewline
147 & 22 & 20.4353 & 1.56469 \tabularnewline
148 & 23 & 20.4054 & 2.59457 \tabularnewline
149 & 10 & 20.4081 & -10.4081 \tabularnewline
150 & 18 & 20.4543 & -2.45432 \tabularnewline
151 & 25 & 20.4706 & 4.52938 \tabularnewline
152 & 26 & 20.4706 & 5.52938 \tabularnewline
153 & 14 & 20.4543 & -6.45432 \tabularnewline
154 & 23 & 20.4326 & 2.56741 \tabularnewline
155 & 22 & 20.457 & 1.54296 \tabularnewline
156 & 23 & 20.4462 & 2.55383 \tabularnewline
157 & 19 & 20.457 & -1.45704 \tabularnewline
158 & 14 & 20.4543 & -6.45432 \tabularnewline
159 & 26 & 20.4081 & 5.59186 \tabularnewline
160 & 24 & 20.4489 & 3.55111 \tabularnewline
161 & 21 & 20.4679 & 0.532095 \tabularnewline
162 & 17 & 20.5059 & -3.50594 \tabularnewline
163 & 16 & 20.4598 & -4.45976 \tabularnewline
164 & 15 & 20.4543 & -5.45432 \tabularnewline
165 & 11 & 20.4706 & -9.47062 \tabularnewline
166 & 19 & 20.4217 & -1.42173 \tabularnewline
167 & 21 & 20.4652 & 0.534811 \tabularnewline
168 & 20 & 20.4598 & -0.459756 \tabularnewline
169 & 16 & 20.4326 & -4.43259 \tabularnewline
170 & 19 & 20.4217 & -1.42173 \tabularnewline
171 & 16 & 20.4163 & -4.41629 \tabularnewline
172 & 11 & 20.4543 & -9.45432 \tabularnewline
173 & 22 & 20.4489 & 1.55111 \tabularnewline
174 & 20 & 20.4136 & -0.413576 \tabularnewline
175 & 26 & 20.4435 & 5.55654 \tabularnewline
176 & 26 & 20.4435 & 5.55654 \tabularnewline
177 & 20 & 20.4489 & -0.44889 \tabularnewline
178 & 24 & 20.4733 & 3.52666 \tabularnewline
179 & 20 & 20.4761 & -0.476055 \tabularnewline
180 & 15 & 20.4652 & -5.46519 \tabularnewline
181 & 23 & 20.4543 & 2.54568 \tabularnewline
182 & 25 & 20.4788 & 4.52123 \tabularnewline
183 & 27 & 20.3647 & 6.63532 \tabularnewline
184 & 23 & 20.4489 & 2.55111 \tabularnewline
185 & 20 & 20.4407 & -0.44074 \tabularnewline
186 & 25 & 20.4489 & 4.55111 \tabularnewline
187 & 24 & 20.457 & 3.54296 \tabularnewline
188 & 22 & 20.4217 & 1.57827 \tabularnewline
189 & 27 & 20.4299 & 6.57013 \tabularnewline
190 & 20 & 20.4489 & -0.44889 \tabularnewline
191 & 17 & 20.5032 & -3.50322 \tabularnewline
192 & 22 & 20.3864 & 1.61359 \tabularnewline
193 & 26 & 20.4299 & 5.57013 \tabularnewline
194 & 19 & 20.4407 & -1.44074 \tabularnewline
195 & 19 & 20.4543 & -1.45432 \tabularnewline
196 & 24 & 20.4924 & 3.50765 \tabularnewline
197 & 22 & 20.4353 & 1.56469 \tabularnewline
198 & 16 & 20.4109 & -4.41086 \tabularnewline
199 & 22 & 20.4842 & 1.5158 \tabularnewline
200 & 23 & 20.4353 & 2.56469 \tabularnewline
201 & 19 & 20.4435 & -1.44346 \tabularnewline
202 & 20 & 20.438 & -0.438024 \tabularnewline
203 & 16 & 20.457 & -4.45704 \tabularnewline
204 & 19 & 20.4353 & -1.43531 \tabularnewline
205 & 20 & 20.4788 & -0.478771 \tabularnewline
206 & 15 & 20.4706 & -5.47062 \tabularnewline
207 & 22 & 20.4543 & 1.54568 \tabularnewline
208 & 26 & 20.4407 & 5.55926 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=269745&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]22[/C][C]20.4543[/C][C]1.54568[/C][/ROW]
[ROW][C]2[/C][C]17[/C][C]20.4353[/C][C]-3.43531[/C][/ROW]
[ROW][C]3[/C][C]23[/C][C]20.4516[/C][C]2.54839[/C][/ROW]
[ROW][C]4[/C][C]23[/C][C]20.3783[/C][C]2.62174[/C][/ROW]
[ROW][C]5[/C][C]28[/C][C]20.4217[/C][C]7.57827[/C][/ROW]
[ROW][C]6[/C][C]29[/C][C]20.4353[/C][C]8.56469[/C][/ROW]
[ROW][C]7[/C][C]21[/C][C]20.4489[/C][C]0.55111[/C][/ROW]
[ROW][C]8[/C][C]24[/C][C]20.4543[/C][C]3.54568[/C][/ROW]
[ROW][C]9[/C][C]20[/C][C]20.4163[/C][C]-0.416292[/C][/ROW]
[ROW][C]10[/C][C]7[/C][C]20.3348[/C][C]-13.3348[/C][/ROW]
[ROW][C]11[/C][C]19[/C][C]20.4407[/C][C]-1.44074[/C][/ROW]
[ROW][C]12[/C][C]28[/C][C]20.4109[/C][C]7.58914[/C][/ROW]
[ROW][C]13[/C][C]18[/C][C]20.4299[/C][C]-2.42987[/C][/ROW]
[ROW][C]14[/C][C]26[/C][C]20.4163[/C][C]5.58371[/C][/ROW]
[ROW][C]15[/C][C]21[/C][C]20.4652[/C][C]0.534811[/C][/ROW]
[ROW][C]16[/C][C]19[/C][C]20.3783[/C][C]-1.37826[/C][/ROW]
[ROW][C]17[/C][C]20[/C][C]20.4217[/C][C]-0.421725[/C][/ROW]
[ROW][C]18[/C][C]23[/C][C]20.4326[/C][C]2.56741[/C][/ROW]
[ROW][C]19[/C][C]24[/C][C]20.4435[/C][C]3.55654[/C][/ROW]
[ROW][C]20[/C][C]16[/C][C]20.4272[/C][C]-4.42716[/C][/ROW]
[ROW][C]21[/C][C]19[/C][C]20.4462[/C][C]-1.44617[/C][/ROW]
[ROW][C]22[/C][C]24[/C][C]20.3918[/C][C]3.60816[/C][/ROW]
[ROW][C]23[/C][C]21[/C][C]20.4462[/C][C]0.553827[/C][/ROW]
[ROW][C]24[/C][C]16[/C][C]20.4081[/C][C]-4.40814[/C][/ROW]
[ROW][C]25[/C][C]16[/C][C]20.457[/C][C]-4.45704[/C][/ROW]
[ROW][C]26[/C][C]21[/C][C]20.4435[/C][C]0.556543[/C][/ROW]
[ROW][C]27[/C][C]28[/C][C]20.4462[/C][C]7.55383[/C][/ROW]
[ROW][C]28[/C][C]16[/C][C]20.419[/C][C]-4.41901[/C][/ROW]
[ROW][C]29[/C][C]23[/C][C]20.4353[/C][C]2.56469[/C][/ROW]
[ROW][C]30[/C][C]26[/C][C]20.4244[/C][C]5.57556[/C][/ROW]
[ROW][C]31[/C][C]29[/C][C]20.4109[/C][C]8.58914[/C][/ROW]
[ROW][C]32[/C][C]18[/C][C]20.4407[/C][C]-2.44074[/C][/ROW]
[ROW][C]33[/C][C]19[/C][C]20.4407[/C][C]-1.44074[/C][/ROW]
[ROW][C]34[/C][C]19[/C][C]20.4081[/C][C]-1.40814[/C][/ROW]
[ROW][C]35[/C][C]16[/C][C]20.4462[/C][C]-4.44617[/C][/ROW]
[ROW][C]36[/C][C]16[/C][C]20.4462[/C][C]-4.44617[/C][/ROW]
[ROW][C]37[/C][C]16[/C][C]20.4217[/C][C]-4.42173[/C][/ROW]
[ROW][C]38[/C][C]18[/C][C]20.4679[/C][C]-2.46791[/C][/ROW]
[ROW][C]39[/C][C]22[/C][C]20.4136[/C][C]1.58642[/C][/ROW]
[ROW][C]40[/C][C]14[/C][C]20.4733[/C][C]-6.47334[/C][/ROW]
[ROW][C]41[/C][C]20[/C][C]20.457[/C][C]-0.457039[/C][/ROW]
[ROW][C]42[/C][C]15[/C][C]20.4027[/C][C]-5.40271[/C][/ROW]
[ROW][C]43[/C][C]22[/C][C]20.4163[/C][C]1.58371[/C][/ROW]
[ROW][C]44[/C][C]24[/C][C]20.4598[/C][C]3.54024[/C][/ROW]
[ROW][C]45[/C][C]16[/C][C]20.4516[/C][C]-4.45161[/C][/ROW]
[ROW][C]46[/C][C]19[/C][C]20.4788[/C][C]-1.47877[/C][/ROW]
[ROW][C]47[/C][C]24[/C][C]20.438[/C][C]3.56198[/C][/ROW]
[ROW][C]48[/C][C]19[/C][C]20.438[/C][C]-1.43802[/C][/ROW]
[ROW][C]49[/C][C]15[/C][C]20.4842[/C][C]-5.4842[/C][/ROW]
[ROW][C]50[/C][C]11[/C][C]20.4217[/C][C]-9.42173[/C][/ROW]
[ROW][C]51[/C][C]15[/C][C]20.4217[/C][C]-5.42173[/C][/ROW]
[ROW][C]52[/C][C]17[/C][C]20.4407[/C][C]-3.44074[/C][/ROW]
[ROW][C]53[/C][C]20[/C][C]20.4054[/C][C]-0.405426[/C][/ROW]
[ROW][C]54[/C][C]21[/C][C]20.4869[/C][C]0.513079[/C][/ROW]
[ROW][C]55[/C][C]16[/C][C]20.4435[/C][C]-4.44346[/C][/ROW]
[ROW][C]56[/C][C]17[/C][C]20.5059[/C][C]-3.50594[/C][/ROW]
[ROW][C]57[/C][C]20[/C][C]20.419[/C][C]-0.419009[/C][/ROW]
[ROW][C]58[/C][C]15[/C][C]20.4598[/C][C]-5.45976[/C][/ROW]
[ROW][C]59[/C][C]21[/C][C]20.4244[/C][C]0.575558[/C][/ROW]
[ROW][C]60[/C][C]16[/C][C]20.4326[/C][C]-4.43259[/C][/ROW]
[ROW][C]61[/C][C]18[/C][C]20.4761[/C][C]-2.47605[/C][/ROW]
[ROW][C]62[/C][C]25[/C][C]20.4598[/C][C]4.54024[/C][/ROW]
[ROW][C]63[/C][C]21[/C][C]20.4081[/C][C]0.591857[/C][/ROW]
[ROW][C]64[/C][C]21[/C][C]20.4407[/C][C]0.55926[/C][/ROW]
[ROW][C]65[/C][C]16[/C][C]20.3891[/C][C]-4.38913[/C][/ROW]
[ROW][C]66[/C][C]20[/C][C]20.4353[/C][C]-0.435308[/C][/ROW]
[ROW][C]67[/C][C]24[/C][C]20.4842[/C][C]3.5158[/C][/ROW]
[ROW][C]68[/C][C]28[/C][C]20.4598[/C][C]7.54024[/C][/ROW]
[ROW][C]69[/C][C]27[/C][C]20.419[/C][C]6.58099[/C][/ROW]
[ROW][C]70[/C][C]22[/C][C]20.4543[/C][C]1.54568[/C][/ROW]
[ROW][C]71[/C][C]20[/C][C]20.4027[/C][C]-0.40271[/C][/ROW]
[ROW][C]72[/C][C]27[/C][C]20.4353[/C][C]6.56469[/C][/ROW]
[ROW][C]73[/C][C]17[/C][C]20.438[/C][C]-3.43802[/C][/ROW]
[ROW][C]74[/C][C]22[/C][C]20.4299[/C][C]1.57013[/C][/ROW]
[ROW][C]75[/C][C]23[/C][C]20.4679[/C][C]2.53209[/C][/ROW]
[ROW][C]76[/C][C]15[/C][C]20.4163[/C][C]-5.41629[/C][/ROW]
[ROW][C]77[/C][C]22[/C][C]20.4353[/C][C]1.56469[/C][/ROW]
[ROW][C]78[/C][C]13[/C][C]20.438[/C][C]-7.43802[/C][/ROW]
[ROW][C]79[/C][C]21[/C][C]20.4598[/C][C]0.540244[/C][/ROW]
[ROW][C]80[/C][C]18[/C][C]20.4407[/C][C]-2.44074[/C][/ROW]
[ROW][C]81[/C][C]22[/C][C]20.4407[/C][C]1.55926[/C][/ROW]
[ROW][C]82[/C][C]19[/C][C]20.438[/C][C]-1.43802[/C][/ROW]
[ROW][C]83[/C][C]15[/C][C]20.381[/C][C]-5.38098[/C][/ROW]
[ROW][C]84[/C][C]20[/C][C]20.4353[/C][C]-0.435308[/C][/ROW]
[ROW][C]85[/C][C]17[/C][C]20.4733[/C][C]-3.47334[/C][/ROW]
[ROW][C]86[/C][C]21[/C][C]20.4353[/C][C]0.564692[/C][/ROW]
[ROW][C]87[/C][C]23[/C][C]20.4299[/C][C]2.57013[/C][/ROW]
[ROW][C]88[/C][C]20[/C][C]20.4625[/C][C]-0.462472[/C][/ROW]
[ROW][C]89[/C][C]18[/C][C]20.4543[/C][C]-2.45432[/C][/ROW]
[ROW][C]90[/C][C]22[/C][C]20.4652[/C][C]1.53481[/C][/ROW]
[ROW][C]91[/C][C]24[/C][C]20.4435[/C][C]3.55654[/C][/ROW]
[ROW][C]92[/C][C]24[/C][C]20.438[/C][C]3.56198[/C][/ROW]
[ROW][C]93[/C][C]18[/C][C]20.4924[/C][C]-2.49235[/C][/ROW]
[ROW][C]94[/C][C]27[/C][C]20.4326[/C][C]6.56741[/C][/ROW]
[ROW][C]95[/C][C]19[/C][C]20.4733[/C][C]-1.47334[/C][/ROW]
[ROW][C]96[/C][C]20[/C][C]20.4407[/C][C]-0.44074[/C][/ROW]
[ROW][C]97[/C][C]15[/C][C]20.4489[/C][C]-5.44889[/C][/ROW]
[ROW][C]98[/C][C]20[/C][C]20.4679[/C][C]-0.467905[/C][/ROW]
[ROW][C]99[/C][C]27[/C][C]20.4652[/C][C]6.53481[/C][/ROW]
[ROW][C]100[/C][C]20[/C][C]20.4761[/C][C]-0.476055[/C][/ROW]
[ROW][C]101[/C][C]20[/C][C]20.4326[/C][C]-0.432591[/C][/ROW]
[ROW][C]102[/C][C]13[/C][C]20.419[/C][C]-7.41901[/C][/ROW]
[ROW][C]103[/C][C]21[/C][C]20.4543[/C][C]0.545677[/C][/ROW]
[ROW][C]104[/C][C]23[/C][C]20.438[/C][C]2.56198[/C][/ROW]
[ROW][C]105[/C][C]26[/C][C]20.4407[/C][C]5.55926[/C][/ROW]
[ROW][C]106[/C][C]24[/C][C]20.4815[/C][C]3.51851[/C][/ROW]
[ROW][C]107[/C][C]25[/C][C]20.457[/C][C]4.54296[/C][/ROW]
[ROW][C]108[/C][C]18[/C][C]20.4543[/C][C]-2.45432[/C][/ROW]
[ROW][C]109[/C][C]21[/C][C]20.438[/C][C]0.561976[/C][/ROW]
[ROW][C]110[/C][C]23[/C][C]20.419[/C][C]2.58099[/C][/ROW]
[ROW][C]111[/C][C]16[/C][C]20.4543[/C][C]-4.45432[/C][/ROW]
[ROW][C]112[/C][C]19[/C][C]20.4869[/C][C]-1.48692[/C][/ROW]
[ROW][C]113[/C][C]20[/C][C]20.4842[/C][C]-0.484204[/C][/ROW]
[ROW][C]114[/C][C]25[/C][C]20.4896[/C][C]4.51036[/C][/ROW]
[ROW][C]115[/C][C]22[/C][C]20.4217[/C][C]1.57827[/C][/ROW]
[ROW][C]116[/C][C]20[/C][C]20.4543[/C][C]-0.454323[/C][/ROW]
[ROW][C]117[/C][C]25[/C][C]20.4027[/C][C]4.59729[/C][/ROW]
[ROW][C]118[/C][C]27[/C][C]20.4217[/C][C]6.57827[/C][/ROW]
[ROW][C]119[/C][C]20[/C][C]20.4706[/C][C]-0.470622[/C][/ROW]
[ROW][C]120[/C][C]18[/C][C]20.4788[/C][C]-2.47877[/C][/ROW]
[ROW][C]121[/C][C]26[/C][C]20.4163[/C][C]5.58371[/C][/ROW]
[ROW][C]122[/C][C]26[/C][C]20.4435[/C][C]5.55654[/C][/ROW]
[ROW][C]123[/C][C]24[/C][C]20.4081[/C][C]3.59186[/C][/ROW]
[ROW][C]124[/C][C]27[/C][C]20.4815[/C][C]6.51851[/C][/ROW]
[ROW][C]125[/C][C]16[/C][C]20.4679[/C][C]-4.46791[/C][/ROW]
[ROW][C]126[/C][C]15[/C][C]20.4516[/C][C]-5.45161[/C][/ROW]
[ROW][C]127[/C][C]25[/C][C]20.4625[/C][C]4.53753[/C][/ROW]
[ROW][C]128[/C][C]27[/C][C]20.4027[/C][C]6.59729[/C][/ROW]
[ROW][C]129[/C][C]18[/C][C]20.4842[/C][C]-2.4842[/C][/ROW]
[ROW][C]130[/C][C]16[/C][C]20.4706[/C][C]-4.47062[/C][/ROW]
[ROW][C]131[/C][C]18[/C][C]20.4[/C][C]-2.39999[/C][/ROW]
[ROW][C]132[/C][C]23[/C][C]20.457[/C][C]2.54296[/C][/ROW]
[ROW][C]133[/C][C]21[/C][C]20.4353[/C][C]0.564692[/C][/ROW]
[ROW][C]134[/C][C]21[/C][C]20.457[/C][C]0.542961[/C][/ROW]
[ROW][C]135[/C][C]14[/C][C]20.4353[/C][C]-6.43531[/C][/ROW]
[ROW][C]136[/C][C]24[/C][C]20.4733[/C][C]3.52666[/C][/ROW]
[ROW][C]137[/C][C]18[/C][C]20.4244[/C][C]-2.42444[/C][/ROW]
[ROW][C]138[/C][C]16[/C][C]20.4326[/C][C]-4.43259[/C][/ROW]
[ROW][C]139[/C][C]25[/C][C]20.4516[/C][C]4.54839[/C][/ROW]
[ROW][C]140[/C][C]22[/C][C]20.3538[/C][C]1.64619[/C][/ROW]
[ROW][C]141[/C][C]13[/C][C]20.4244[/C][C]-7.42444[/C][/ROW]
[ROW][C]142[/C][C]20[/C][C]20.4353[/C][C]-0.435308[/C][/ROW]
[ROW][C]143[/C][C]17[/C][C]20.3973[/C][C]-3.39728[/C][/ROW]
[ROW][C]144[/C][C]23[/C][C]20.4788[/C][C]2.52123[/C][/ROW]
[ROW][C]145[/C][C]22[/C][C]20.4136[/C][C]1.58642[/C][/ROW]
[ROW][C]146[/C][C]23[/C][C]20.4543[/C][C]2.54568[/C][/ROW]
[ROW][C]147[/C][C]22[/C][C]20.4353[/C][C]1.56469[/C][/ROW]
[ROW][C]148[/C][C]23[/C][C]20.4054[/C][C]2.59457[/C][/ROW]
[ROW][C]149[/C][C]10[/C][C]20.4081[/C][C]-10.4081[/C][/ROW]
[ROW][C]150[/C][C]18[/C][C]20.4543[/C][C]-2.45432[/C][/ROW]
[ROW][C]151[/C][C]25[/C][C]20.4706[/C][C]4.52938[/C][/ROW]
[ROW][C]152[/C][C]26[/C][C]20.4706[/C][C]5.52938[/C][/ROW]
[ROW][C]153[/C][C]14[/C][C]20.4543[/C][C]-6.45432[/C][/ROW]
[ROW][C]154[/C][C]23[/C][C]20.4326[/C][C]2.56741[/C][/ROW]
[ROW][C]155[/C][C]22[/C][C]20.457[/C][C]1.54296[/C][/ROW]
[ROW][C]156[/C][C]23[/C][C]20.4462[/C][C]2.55383[/C][/ROW]
[ROW][C]157[/C][C]19[/C][C]20.457[/C][C]-1.45704[/C][/ROW]
[ROW][C]158[/C][C]14[/C][C]20.4543[/C][C]-6.45432[/C][/ROW]
[ROW][C]159[/C][C]26[/C][C]20.4081[/C][C]5.59186[/C][/ROW]
[ROW][C]160[/C][C]24[/C][C]20.4489[/C][C]3.55111[/C][/ROW]
[ROW][C]161[/C][C]21[/C][C]20.4679[/C][C]0.532095[/C][/ROW]
[ROW][C]162[/C][C]17[/C][C]20.5059[/C][C]-3.50594[/C][/ROW]
[ROW][C]163[/C][C]16[/C][C]20.4598[/C][C]-4.45976[/C][/ROW]
[ROW][C]164[/C][C]15[/C][C]20.4543[/C][C]-5.45432[/C][/ROW]
[ROW][C]165[/C][C]11[/C][C]20.4706[/C][C]-9.47062[/C][/ROW]
[ROW][C]166[/C][C]19[/C][C]20.4217[/C][C]-1.42173[/C][/ROW]
[ROW][C]167[/C][C]21[/C][C]20.4652[/C][C]0.534811[/C][/ROW]
[ROW][C]168[/C][C]20[/C][C]20.4598[/C][C]-0.459756[/C][/ROW]
[ROW][C]169[/C][C]16[/C][C]20.4326[/C][C]-4.43259[/C][/ROW]
[ROW][C]170[/C][C]19[/C][C]20.4217[/C][C]-1.42173[/C][/ROW]
[ROW][C]171[/C][C]16[/C][C]20.4163[/C][C]-4.41629[/C][/ROW]
[ROW][C]172[/C][C]11[/C][C]20.4543[/C][C]-9.45432[/C][/ROW]
[ROW][C]173[/C][C]22[/C][C]20.4489[/C][C]1.55111[/C][/ROW]
[ROW][C]174[/C][C]20[/C][C]20.4136[/C][C]-0.413576[/C][/ROW]
[ROW][C]175[/C][C]26[/C][C]20.4435[/C][C]5.55654[/C][/ROW]
[ROW][C]176[/C][C]26[/C][C]20.4435[/C][C]5.55654[/C][/ROW]
[ROW][C]177[/C][C]20[/C][C]20.4489[/C][C]-0.44889[/C][/ROW]
[ROW][C]178[/C][C]24[/C][C]20.4733[/C][C]3.52666[/C][/ROW]
[ROW][C]179[/C][C]20[/C][C]20.4761[/C][C]-0.476055[/C][/ROW]
[ROW][C]180[/C][C]15[/C][C]20.4652[/C][C]-5.46519[/C][/ROW]
[ROW][C]181[/C][C]23[/C][C]20.4543[/C][C]2.54568[/C][/ROW]
[ROW][C]182[/C][C]25[/C][C]20.4788[/C][C]4.52123[/C][/ROW]
[ROW][C]183[/C][C]27[/C][C]20.3647[/C][C]6.63532[/C][/ROW]
[ROW][C]184[/C][C]23[/C][C]20.4489[/C][C]2.55111[/C][/ROW]
[ROW][C]185[/C][C]20[/C][C]20.4407[/C][C]-0.44074[/C][/ROW]
[ROW][C]186[/C][C]25[/C][C]20.4489[/C][C]4.55111[/C][/ROW]
[ROW][C]187[/C][C]24[/C][C]20.457[/C][C]3.54296[/C][/ROW]
[ROW][C]188[/C][C]22[/C][C]20.4217[/C][C]1.57827[/C][/ROW]
[ROW][C]189[/C][C]27[/C][C]20.4299[/C][C]6.57013[/C][/ROW]
[ROW][C]190[/C][C]20[/C][C]20.4489[/C][C]-0.44889[/C][/ROW]
[ROW][C]191[/C][C]17[/C][C]20.5032[/C][C]-3.50322[/C][/ROW]
[ROW][C]192[/C][C]22[/C][C]20.3864[/C][C]1.61359[/C][/ROW]
[ROW][C]193[/C][C]26[/C][C]20.4299[/C][C]5.57013[/C][/ROW]
[ROW][C]194[/C][C]19[/C][C]20.4407[/C][C]-1.44074[/C][/ROW]
[ROW][C]195[/C][C]19[/C][C]20.4543[/C][C]-1.45432[/C][/ROW]
[ROW][C]196[/C][C]24[/C][C]20.4924[/C][C]3.50765[/C][/ROW]
[ROW][C]197[/C][C]22[/C][C]20.4353[/C][C]1.56469[/C][/ROW]
[ROW][C]198[/C][C]16[/C][C]20.4109[/C][C]-4.41086[/C][/ROW]
[ROW][C]199[/C][C]22[/C][C]20.4842[/C][C]1.5158[/C][/ROW]
[ROW][C]200[/C][C]23[/C][C]20.4353[/C][C]2.56469[/C][/ROW]
[ROW][C]201[/C][C]19[/C][C]20.4435[/C][C]-1.44346[/C][/ROW]
[ROW][C]202[/C][C]20[/C][C]20.438[/C][C]-0.438024[/C][/ROW]
[ROW][C]203[/C][C]16[/C][C]20.457[/C][C]-4.45704[/C][/ROW]
[ROW][C]204[/C][C]19[/C][C]20.4353[/C][C]-1.43531[/C][/ROW]
[ROW][C]205[/C][C]20[/C][C]20.4788[/C][C]-0.478771[/C][/ROW]
[ROW][C]206[/C][C]15[/C][C]20.4706[/C][C]-5.47062[/C][/ROW]
[ROW][C]207[/C][C]22[/C][C]20.4543[/C][C]1.54568[/C][/ROW]
[ROW][C]208[/C][C]26[/C][C]20.4407[/C][C]5.55926[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=269745&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=269745&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
12220.45431.54568
21720.4353-3.43531
32320.45162.54839
42320.37832.62174
52820.42177.57827
62920.43538.56469
72120.44890.55111
82420.45433.54568
92020.4163-0.416292
10720.3348-13.3348
111920.4407-1.44074
122820.41097.58914
131820.4299-2.42987
142620.41635.58371
152120.46520.534811
161920.3783-1.37826
172020.4217-0.421725
182320.43262.56741
192420.44353.55654
201620.4272-4.42716
211920.4462-1.44617
222420.39183.60816
232120.44620.553827
241620.4081-4.40814
251620.457-4.45704
262120.44350.556543
272820.44627.55383
281620.419-4.41901
292320.43532.56469
302620.42445.57556
312920.41098.58914
321820.4407-2.44074
331920.4407-1.44074
341920.4081-1.40814
351620.4462-4.44617
361620.4462-4.44617
371620.4217-4.42173
381820.4679-2.46791
392220.41361.58642
401420.4733-6.47334
412020.457-0.457039
421520.4027-5.40271
432220.41631.58371
442420.45983.54024
451620.4516-4.45161
461920.4788-1.47877
472420.4383.56198
481920.438-1.43802
491520.4842-5.4842
501120.4217-9.42173
511520.4217-5.42173
521720.4407-3.44074
532020.4054-0.405426
542120.48690.513079
551620.4435-4.44346
561720.5059-3.50594
572020.419-0.419009
581520.4598-5.45976
592120.42440.575558
601620.4326-4.43259
611820.4761-2.47605
622520.45984.54024
632120.40810.591857
642120.44070.55926
651620.3891-4.38913
662020.4353-0.435308
672420.48423.5158
682820.45987.54024
692720.4196.58099
702220.45431.54568
712020.4027-0.40271
722720.43536.56469
731720.438-3.43802
742220.42991.57013
752320.46792.53209
761520.4163-5.41629
772220.43531.56469
781320.438-7.43802
792120.45980.540244
801820.4407-2.44074
812220.44071.55926
821920.438-1.43802
831520.381-5.38098
842020.4353-0.435308
851720.4733-3.47334
862120.43530.564692
872320.42992.57013
882020.4625-0.462472
891820.4543-2.45432
902220.46521.53481
912420.44353.55654
922420.4383.56198
931820.4924-2.49235
942720.43266.56741
951920.4733-1.47334
962020.4407-0.44074
971520.4489-5.44889
982020.4679-0.467905
992720.46526.53481
1002020.4761-0.476055
1012020.4326-0.432591
1021320.419-7.41901
1032120.45430.545677
1042320.4382.56198
1052620.44075.55926
1062420.48153.51851
1072520.4574.54296
1081820.4543-2.45432
1092120.4380.561976
1102320.4192.58099
1111620.4543-4.45432
1121920.4869-1.48692
1132020.4842-0.484204
1142520.48964.51036
1152220.42171.57827
1162020.4543-0.454323
1172520.40274.59729
1182720.42176.57827
1192020.4706-0.470622
1201820.4788-2.47877
1212620.41635.58371
1222620.44355.55654
1232420.40813.59186
1242720.48156.51851
1251620.4679-4.46791
1261520.4516-5.45161
1272520.46254.53753
1282720.40276.59729
1291820.4842-2.4842
1301620.4706-4.47062
1311820.4-2.39999
1322320.4572.54296
1332120.43530.564692
1342120.4570.542961
1351420.4353-6.43531
1362420.47333.52666
1371820.4244-2.42444
1381620.4326-4.43259
1392520.45164.54839
1402220.35381.64619
1411320.4244-7.42444
1422020.4353-0.435308
1431720.3973-3.39728
1442320.47882.52123
1452220.41361.58642
1462320.45432.54568
1472220.43531.56469
1482320.40542.59457
1491020.4081-10.4081
1501820.4543-2.45432
1512520.47064.52938
1522620.47065.52938
1531420.4543-6.45432
1542320.43262.56741
1552220.4571.54296
1562320.44622.55383
1571920.457-1.45704
1581420.4543-6.45432
1592620.40815.59186
1602420.44893.55111
1612120.46790.532095
1621720.5059-3.50594
1631620.4598-4.45976
1641520.4543-5.45432
1651120.4706-9.47062
1661920.4217-1.42173
1672120.46520.534811
1682020.4598-0.459756
1691620.4326-4.43259
1701920.4217-1.42173
1711620.4163-4.41629
1721120.4543-9.45432
1732220.44891.55111
1742020.4136-0.413576
1752620.44355.55654
1762620.44355.55654
1772020.4489-0.44889
1782420.47333.52666
1792020.4761-0.476055
1801520.4652-5.46519
1812320.45432.54568
1822520.47884.52123
1832720.36476.63532
1842320.44892.55111
1852020.4407-0.44074
1862520.44894.55111
1872420.4573.54296
1882220.42171.57827
1892720.42996.57013
1902020.4489-0.44889
1911720.5032-3.50322
1922220.38641.61359
1932620.42995.57013
1941920.4407-1.44074
1951920.4543-1.45432
1962420.49243.50765
1972220.43531.56469
1981620.4109-4.41086
1992220.48421.5158
2002320.43532.56469
2011920.4435-1.44346
2022020.438-0.438024
2031620.457-4.45704
2041920.4353-1.43531
2052020.4788-0.478771
2061520.4706-5.47062
2072220.45431.54568
2082620.44075.55926







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
50.6742730.6514540.325727
60.773880.4522390.22612
70.6841480.6317040.315852
80.5754610.8490790.424539
90.5352610.9294770.464739
100.8745320.2509360.125468
110.8601350.279730.139865
120.9329590.1340820.067041
130.9262110.1475780.0737892
140.932330.135340.0676701
150.9237870.1524270.0762133
160.8940340.2119320.105966
170.8598490.2803020.140151
180.8186360.3627270.181364
190.7744290.4511430.225571
200.8092070.3815850.190793
210.795480.409040.20452
220.8033130.3933740.196687
230.7622640.4754720.237736
240.7634160.4731680.236584
250.8235370.3529270.176463
260.782940.434120.21706
270.8273830.3452350.172617
280.8338360.3323280.166164
290.8016580.3966840.198342
300.8180570.3638860.181943
310.9060410.1879180.0939592
320.9015040.1969910.0984956
330.8870380.2259240.112962
340.8624180.2751650.137582
350.8843790.2312420.115621
360.900030.199940.0999702
370.9032810.1934390.0967194
380.8993160.2013680.100684
390.8791150.2417690.120885
400.9230570.1538860.0769429
410.9047720.1904550.0952275
420.9130640.1738720.0869359
430.8958090.2083810.104191
440.8841890.2316220.115811
450.8910660.2178670.108934
460.8737910.2524170.126209
470.8649560.2700890.135044
480.8418160.3163690.158184
490.8670950.2658090.132905
500.9382610.1234790.0617395
510.9446130.1107750.0553873
520.9393540.1212920.060646
530.9248620.1502750.0751376
540.9078640.1842710.0921356
550.9083060.1833870.0916937
560.9023820.1952370.0976184
570.882210.235580.11779
580.8930350.2139290.106965
590.8727280.2545440.127272
600.8721010.2557980.127899
610.8545880.2908240.145412
620.8629960.2740080.137004
630.8395440.3209120.160456
640.8134040.3731910.186596
650.8130780.3738450.186922
660.7835930.4328130.216407
670.7765860.4468280.223414
680.8437480.3125040.156252
690.8812160.2375670.118784
700.8624890.2750220.137511
710.838810.3223790.16119
720.8743490.2513010.125651
730.8669870.2660270.133013
740.8473990.3052030.152601
750.8310740.3378520.168926
760.847080.3058390.15292
770.8256330.3487340.174367
780.8768510.2462980.123149
790.8552270.2895460.144773
800.8394140.3211710.160586
810.8174970.3650060.182503
820.7929350.414130.207065
830.8118530.3762940.188147
840.7840130.4319730.215987
850.7760160.4479680.223984
860.74580.5084010.2542
870.7264810.5470390.273519
880.6925590.6148830.307441
890.6696050.6607910.330395
900.6376590.7246820.362341
910.6282870.7434270.371713
920.6188810.7622390.381119
930.5956980.8086040.404302
940.6541420.6917160.345858
950.6217870.7564260.378213
960.5839830.8320330.416017
970.6134810.7730370.386519
980.5754010.8491980.424599
990.6331980.7336050.366802
1000.5958250.808350.404175
1010.5577190.8845620.442281
1020.6474470.7051060.352553
1030.6104940.7790110.389506
1040.5865760.8268480.413424
1050.6170670.7658670.382933
1060.6070660.7858670.392934
1070.6147190.7705620.385281
1080.590720.818560.40928
1090.5523460.8953070.447654
1100.5278210.9443570.472179
1110.5360320.9279350.463968
1120.5019220.9961560.498078
1130.4630480.9260970.536952
1140.4734290.9468590.526571
1150.4393110.8786230.560689
1160.4007860.8015720.599214
1170.4075370.8150740.592463
1180.465120.9302410.53488
1190.4260930.8521870.573907
1200.4005630.8011270.599437
1210.4301870.8603750.569813
1220.461960.9239210.53804
1230.4506920.9013840.549308
1240.515780.968440.48422
1250.5207710.9584590.479229
1260.550150.8996990.44985
1270.5608290.8783420.439171
1280.6200370.7599260.379963
1290.59340.81320.4066
1300.5984490.8031030.401551
1310.572820.854360.42718
1320.5484550.903090.451545
1330.508020.9839610.49198
1340.4676270.9352540.532373
1350.5270990.9458020.472901
1360.5186730.9626540.481327
1370.4922480.9844960.507752
1380.5002530.9994940.499747
1390.510410.9791810.48959
1400.4723920.9447830.527608
1410.5738150.8523690.426185
1420.532280.9354390.46772
1430.5303650.9392710.469635
1440.5087970.9824060.491203
1450.4691950.938390.530805
1460.4434550.886910.556545
1470.4056050.8112090.594395
1480.374580.749160.62542
1490.6495030.7009940.350497
1500.6225230.7549540.377477
1510.6434920.7130160.356508
1520.6958840.6082310.304116
1530.7521010.4957970.247899
1540.7250150.5499710.274985
1550.6929210.6141590.307079
1560.6672420.6655170.332758
1570.6277950.744410.372205
1580.6907550.618490.309245
1590.7030010.5939970.296999
1600.6939740.6120520.306026
1610.653740.6925210.34626
1620.6231410.7537180.376859
1630.6265350.7469290.373465
1640.6623430.6753140.337657
1650.8343280.3313440.165672
1660.811550.37690.18845
1670.7752560.4494880.224744
1680.7354350.5291290.264565
1690.7630080.4739850.236992
1700.7376010.5247990.262399
1710.785740.428520.21426
1720.9457520.1084960.0542482
1730.9290510.1418980.0709491
1740.9172140.1655720.082786
1750.9261910.1476180.0738092
1760.9360710.1278580.0639289
1770.9176330.1647340.0823672
1780.9146450.1707110.0853553
1790.8881750.2236510.111825
1800.9238320.1523360.0761681
1810.9048610.1902770.0951387
1820.920110.159780.0798901
1830.9198350.1603310.0801653
1840.9002210.1995590.0997794
1850.8700720.2598550.129928
1860.8760280.2479440.123972
1870.8692310.2615380.130769
1880.8274970.3450070.172503
1890.8956640.2086730.104336
1900.8558280.2883440.144172
1910.8371460.3257080.162854
1920.7903430.4193130.209657
1930.8740160.2519680.125984
1940.8245540.3508930.175446
1950.7663910.4672190.233609
1960.7488680.5022640.251132
1970.6884750.623050.311525
1980.7358240.5283530.264176
1990.7540220.4919560.245978
2000.6692320.6615360.330768
2010.5595010.8809980.440499
2020.4295530.8591060.570447
2030.4033810.8067620.596619

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
5 & 0.674273 & 0.651454 & 0.325727 \tabularnewline
6 & 0.77388 & 0.452239 & 0.22612 \tabularnewline
7 & 0.684148 & 0.631704 & 0.315852 \tabularnewline
8 & 0.575461 & 0.849079 & 0.424539 \tabularnewline
9 & 0.535261 & 0.929477 & 0.464739 \tabularnewline
10 & 0.874532 & 0.250936 & 0.125468 \tabularnewline
11 & 0.860135 & 0.27973 & 0.139865 \tabularnewline
12 & 0.932959 & 0.134082 & 0.067041 \tabularnewline
13 & 0.926211 & 0.147578 & 0.0737892 \tabularnewline
14 & 0.93233 & 0.13534 & 0.0676701 \tabularnewline
15 & 0.923787 & 0.152427 & 0.0762133 \tabularnewline
16 & 0.894034 & 0.211932 & 0.105966 \tabularnewline
17 & 0.859849 & 0.280302 & 0.140151 \tabularnewline
18 & 0.818636 & 0.362727 & 0.181364 \tabularnewline
19 & 0.774429 & 0.451143 & 0.225571 \tabularnewline
20 & 0.809207 & 0.381585 & 0.190793 \tabularnewline
21 & 0.79548 & 0.40904 & 0.20452 \tabularnewline
22 & 0.803313 & 0.393374 & 0.196687 \tabularnewline
23 & 0.762264 & 0.475472 & 0.237736 \tabularnewline
24 & 0.763416 & 0.473168 & 0.236584 \tabularnewline
25 & 0.823537 & 0.352927 & 0.176463 \tabularnewline
26 & 0.78294 & 0.43412 & 0.21706 \tabularnewline
27 & 0.827383 & 0.345235 & 0.172617 \tabularnewline
28 & 0.833836 & 0.332328 & 0.166164 \tabularnewline
29 & 0.801658 & 0.396684 & 0.198342 \tabularnewline
30 & 0.818057 & 0.363886 & 0.181943 \tabularnewline
31 & 0.906041 & 0.187918 & 0.0939592 \tabularnewline
32 & 0.901504 & 0.196991 & 0.0984956 \tabularnewline
33 & 0.887038 & 0.225924 & 0.112962 \tabularnewline
34 & 0.862418 & 0.275165 & 0.137582 \tabularnewline
35 & 0.884379 & 0.231242 & 0.115621 \tabularnewline
36 & 0.90003 & 0.19994 & 0.0999702 \tabularnewline
37 & 0.903281 & 0.193439 & 0.0967194 \tabularnewline
38 & 0.899316 & 0.201368 & 0.100684 \tabularnewline
39 & 0.879115 & 0.241769 & 0.120885 \tabularnewline
40 & 0.923057 & 0.153886 & 0.0769429 \tabularnewline
41 & 0.904772 & 0.190455 & 0.0952275 \tabularnewline
42 & 0.913064 & 0.173872 & 0.0869359 \tabularnewline
43 & 0.895809 & 0.208381 & 0.104191 \tabularnewline
44 & 0.884189 & 0.231622 & 0.115811 \tabularnewline
45 & 0.891066 & 0.217867 & 0.108934 \tabularnewline
46 & 0.873791 & 0.252417 & 0.126209 \tabularnewline
47 & 0.864956 & 0.270089 & 0.135044 \tabularnewline
48 & 0.841816 & 0.316369 & 0.158184 \tabularnewline
49 & 0.867095 & 0.265809 & 0.132905 \tabularnewline
50 & 0.938261 & 0.123479 & 0.0617395 \tabularnewline
51 & 0.944613 & 0.110775 & 0.0553873 \tabularnewline
52 & 0.939354 & 0.121292 & 0.060646 \tabularnewline
53 & 0.924862 & 0.150275 & 0.0751376 \tabularnewline
54 & 0.907864 & 0.184271 & 0.0921356 \tabularnewline
55 & 0.908306 & 0.183387 & 0.0916937 \tabularnewline
56 & 0.902382 & 0.195237 & 0.0976184 \tabularnewline
57 & 0.88221 & 0.23558 & 0.11779 \tabularnewline
58 & 0.893035 & 0.213929 & 0.106965 \tabularnewline
59 & 0.872728 & 0.254544 & 0.127272 \tabularnewline
60 & 0.872101 & 0.255798 & 0.127899 \tabularnewline
61 & 0.854588 & 0.290824 & 0.145412 \tabularnewline
62 & 0.862996 & 0.274008 & 0.137004 \tabularnewline
63 & 0.839544 & 0.320912 & 0.160456 \tabularnewline
64 & 0.813404 & 0.373191 & 0.186596 \tabularnewline
65 & 0.813078 & 0.373845 & 0.186922 \tabularnewline
66 & 0.783593 & 0.432813 & 0.216407 \tabularnewline
67 & 0.776586 & 0.446828 & 0.223414 \tabularnewline
68 & 0.843748 & 0.312504 & 0.156252 \tabularnewline
69 & 0.881216 & 0.237567 & 0.118784 \tabularnewline
70 & 0.862489 & 0.275022 & 0.137511 \tabularnewline
71 & 0.83881 & 0.322379 & 0.16119 \tabularnewline
72 & 0.874349 & 0.251301 & 0.125651 \tabularnewline
73 & 0.866987 & 0.266027 & 0.133013 \tabularnewline
74 & 0.847399 & 0.305203 & 0.152601 \tabularnewline
75 & 0.831074 & 0.337852 & 0.168926 \tabularnewline
76 & 0.84708 & 0.305839 & 0.15292 \tabularnewline
77 & 0.825633 & 0.348734 & 0.174367 \tabularnewline
78 & 0.876851 & 0.246298 & 0.123149 \tabularnewline
79 & 0.855227 & 0.289546 & 0.144773 \tabularnewline
80 & 0.839414 & 0.321171 & 0.160586 \tabularnewline
81 & 0.817497 & 0.365006 & 0.182503 \tabularnewline
82 & 0.792935 & 0.41413 & 0.207065 \tabularnewline
83 & 0.811853 & 0.376294 & 0.188147 \tabularnewline
84 & 0.784013 & 0.431973 & 0.215987 \tabularnewline
85 & 0.776016 & 0.447968 & 0.223984 \tabularnewline
86 & 0.7458 & 0.508401 & 0.2542 \tabularnewline
87 & 0.726481 & 0.547039 & 0.273519 \tabularnewline
88 & 0.692559 & 0.614883 & 0.307441 \tabularnewline
89 & 0.669605 & 0.660791 & 0.330395 \tabularnewline
90 & 0.637659 & 0.724682 & 0.362341 \tabularnewline
91 & 0.628287 & 0.743427 & 0.371713 \tabularnewline
92 & 0.618881 & 0.762239 & 0.381119 \tabularnewline
93 & 0.595698 & 0.808604 & 0.404302 \tabularnewline
94 & 0.654142 & 0.691716 & 0.345858 \tabularnewline
95 & 0.621787 & 0.756426 & 0.378213 \tabularnewline
96 & 0.583983 & 0.832033 & 0.416017 \tabularnewline
97 & 0.613481 & 0.773037 & 0.386519 \tabularnewline
98 & 0.575401 & 0.849198 & 0.424599 \tabularnewline
99 & 0.633198 & 0.733605 & 0.366802 \tabularnewline
100 & 0.595825 & 0.80835 & 0.404175 \tabularnewline
101 & 0.557719 & 0.884562 & 0.442281 \tabularnewline
102 & 0.647447 & 0.705106 & 0.352553 \tabularnewline
103 & 0.610494 & 0.779011 & 0.389506 \tabularnewline
104 & 0.586576 & 0.826848 & 0.413424 \tabularnewline
105 & 0.617067 & 0.765867 & 0.382933 \tabularnewline
106 & 0.607066 & 0.785867 & 0.392934 \tabularnewline
107 & 0.614719 & 0.770562 & 0.385281 \tabularnewline
108 & 0.59072 & 0.81856 & 0.40928 \tabularnewline
109 & 0.552346 & 0.895307 & 0.447654 \tabularnewline
110 & 0.527821 & 0.944357 & 0.472179 \tabularnewline
111 & 0.536032 & 0.927935 & 0.463968 \tabularnewline
112 & 0.501922 & 0.996156 & 0.498078 \tabularnewline
113 & 0.463048 & 0.926097 & 0.536952 \tabularnewline
114 & 0.473429 & 0.946859 & 0.526571 \tabularnewline
115 & 0.439311 & 0.878623 & 0.560689 \tabularnewline
116 & 0.400786 & 0.801572 & 0.599214 \tabularnewline
117 & 0.407537 & 0.815074 & 0.592463 \tabularnewline
118 & 0.46512 & 0.930241 & 0.53488 \tabularnewline
119 & 0.426093 & 0.852187 & 0.573907 \tabularnewline
120 & 0.400563 & 0.801127 & 0.599437 \tabularnewline
121 & 0.430187 & 0.860375 & 0.569813 \tabularnewline
122 & 0.46196 & 0.923921 & 0.53804 \tabularnewline
123 & 0.450692 & 0.901384 & 0.549308 \tabularnewline
124 & 0.51578 & 0.96844 & 0.48422 \tabularnewline
125 & 0.520771 & 0.958459 & 0.479229 \tabularnewline
126 & 0.55015 & 0.899699 & 0.44985 \tabularnewline
127 & 0.560829 & 0.878342 & 0.439171 \tabularnewline
128 & 0.620037 & 0.759926 & 0.379963 \tabularnewline
129 & 0.5934 & 0.8132 & 0.4066 \tabularnewline
130 & 0.598449 & 0.803103 & 0.401551 \tabularnewline
131 & 0.57282 & 0.85436 & 0.42718 \tabularnewline
132 & 0.548455 & 0.90309 & 0.451545 \tabularnewline
133 & 0.50802 & 0.983961 & 0.49198 \tabularnewline
134 & 0.467627 & 0.935254 & 0.532373 \tabularnewline
135 & 0.527099 & 0.945802 & 0.472901 \tabularnewline
136 & 0.518673 & 0.962654 & 0.481327 \tabularnewline
137 & 0.492248 & 0.984496 & 0.507752 \tabularnewline
138 & 0.500253 & 0.999494 & 0.499747 \tabularnewline
139 & 0.51041 & 0.979181 & 0.48959 \tabularnewline
140 & 0.472392 & 0.944783 & 0.527608 \tabularnewline
141 & 0.573815 & 0.852369 & 0.426185 \tabularnewline
142 & 0.53228 & 0.935439 & 0.46772 \tabularnewline
143 & 0.530365 & 0.939271 & 0.469635 \tabularnewline
144 & 0.508797 & 0.982406 & 0.491203 \tabularnewline
145 & 0.469195 & 0.93839 & 0.530805 \tabularnewline
146 & 0.443455 & 0.88691 & 0.556545 \tabularnewline
147 & 0.405605 & 0.811209 & 0.594395 \tabularnewline
148 & 0.37458 & 0.74916 & 0.62542 \tabularnewline
149 & 0.649503 & 0.700994 & 0.350497 \tabularnewline
150 & 0.622523 & 0.754954 & 0.377477 \tabularnewline
151 & 0.643492 & 0.713016 & 0.356508 \tabularnewline
152 & 0.695884 & 0.608231 & 0.304116 \tabularnewline
153 & 0.752101 & 0.495797 & 0.247899 \tabularnewline
154 & 0.725015 & 0.549971 & 0.274985 \tabularnewline
155 & 0.692921 & 0.614159 & 0.307079 \tabularnewline
156 & 0.667242 & 0.665517 & 0.332758 \tabularnewline
157 & 0.627795 & 0.74441 & 0.372205 \tabularnewline
158 & 0.690755 & 0.61849 & 0.309245 \tabularnewline
159 & 0.703001 & 0.593997 & 0.296999 \tabularnewline
160 & 0.693974 & 0.612052 & 0.306026 \tabularnewline
161 & 0.65374 & 0.692521 & 0.34626 \tabularnewline
162 & 0.623141 & 0.753718 & 0.376859 \tabularnewline
163 & 0.626535 & 0.746929 & 0.373465 \tabularnewline
164 & 0.662343 & 0.675314 & 0.337657 \tabularnewline
165 & 0.834328 & 0.331344 & 0.165672 \tabularnewline
166 & 0.81155 & 0.3769 & 0.18845 \tabularnewline
167 & 0.775256 & 0.449488 & 0.224744 \tabularnewline
168 & 0.735435 & 0.529129 & 0.264565 \tabularnewline
169 & 0.763008 & 0.473985 & 0.236992 \tabularnewline
170 & 0.737601 & 0.524799 & 0.262399 \tabularnewline
171 & 0.78574 & 0.42852 & 0.21426 \tabularnewline
172 & 0.945752 & 0.108496 & 0.0542482 \tabularnewline
173 & 0.929051 & 0.141898 & 0.0709491 \tabularnewline
174 & 0.917214 & 0.165572 & 0.082786 \tabularnewline
175 & 0.926191 & 0.147618 & 0.0738092 \tabularnewline
176 & 0.936071 & 0.127858 & 0.0639289 \tabularnewline
177 & 0.917633 & 0.164734 & 0.0823672 \tabularnewline
178 & 0.914645 & 0.170711 & 0.0853553 \tabularnewline
179 & 0.888175 & 0.223651 & 0.111825 \tabularnewline
180 & 0.923832 & 0.152336 & 0.0761681 \tabularnewline
181 & 0.904861 & 0.190277 & 0.0951387 \tabularnewline
182 & 0.92011 & 0.15978 & 0.0798901 \tabularnewline
183 & 0.919835 & 0.160331 & 0.0801653 \tabularnewline
184 & 0.900221 & 0.199559 & 0.0997794 \tabularnewline
185 & 0.870072 & 0.259855 & 0.129928 \tabularnewline
186 & 0.876028 & 0.247944 & 0.123972 \tabularnewline
187 & 0.869231 & 0.261538 & 0.130769 \tabularnewline
188 & 0.827497 & 0.345007 & 0.172503 \tabularnewline
189 & 0.895664 & 0.208673 & 0.104336 \tabularnewline
190 & 0.855828 & 0.288344 & 0.144172 \tabularnewline
191 & 0.837146 & 0.325708 & 0.162854 \tabularnewline
192 & 0.790343 & 0.419313 & 0.209657 \tabularnewline
193 & 0.874016 & 0.251968 & 0.125984 \tabularnewline
194 & 0.824554 & 0.350893 & 0.175446 \tabularnewline
195 & 0.766391 & 0.467219 & 0.233609 \tabularnewline
196 & 0.748868 & 0.502264 & 0.251132 \tabularnewline
197 & 0.688475 & 0.62305 & 0.311525 \tabularnewline
198 & 0.735824 & 0.528353 & 0.264176 \tabularnewline
199 & 0.754022 & 0.491956 & 0.245978 \tabularnewline
200 & 0.669232 & 0.661536 & 0.330768 \tabularnewline
201 & 0.559501 & 0.880998 & 0.440499 \tabularnewline
202 & 0.429553 & 0.859106 & 0.570447 \tabularnewline
203 & 0.403381 & 0.806762 & 0.596619 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=269745&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]5[/C][C]0.674273[/C][C]0.651454[/C][C]0.325727[/C][/ROW]
[ROW][C]6[/C][C]0.77388[/C][C]0.452239[/C][C]0.22612[/C][/ROW]
[ROW][C]7[/C][C]0.684148[/C][C]0.631704[/C][C]0.315852[/C][/ROW]
[ROW][C]8[/C][C]0.575461[/C][C]0.849079[/C][C]0.424539[/C][/ROW]
[ROW][C]9[/C][C]0.535261[/C][C]0.929477[/C][C]0.464739[/C][/ROW]
[ROW][C]10[/C][C]0.874532[/C][C]0.250936[/C][C]0.125468[/C][/ROW]
[ROW][C]11[/C][C]0.860135[/C][C]0.27973[/C][C]0.139865[/C][/ROW]
[ROW][C]12[/C][C]0.932959[/C][C]0.134082[/C][C]0.067041[/C][/ROW]
[ROW][C]13[/C][C]0.926211[/C][C]0.147578[/C][C]0.0737892[/C][/ROW]
[ROW][C]14[/C][C]0.93233[/C][C]0.13534[/C][C]0.0676701[/C][/ROW]
[ROW][C]15[/C][C]0.923787[/C][C]0.152427[/C][C]0.0762133[/C][/ROW]
[ROW][C]16[/C][C]0.894034[/C][C]0.211932[/C][C]0.105966[/C][/ROW]
[ROW][C]17[/C][C]0.859849[/C][C]0.280302[/C][C]0.140151[/C][/ROW]
[ROW][C]18[/C][C]0.818636[/C][C]0.362727[/C][C]0.181364[/C][/ROW]
[ROW][C]19[/C][C]0.774429[/C][C]0.451143[/C][C]0.225571[/C][/ROW]
[ROW][C]20[/C][C]0.809207[/C][C]0.381585[/C][C]0.190793[/C][/ROW]
[ROW][C]21[/C][C]0.79548[/C][C]0.40904[/C][C]0.20452[/C][/ROW]
[ROW][C]22[/C][C]0.803313[/C][C]0.393374[/C][C]0.196687[/C][/ROW]
[ROW][C]23[/C][C]0.762264[/C][C]0.475472[/C][C]0.237736[/C][/ROW]
[ROW][C]24[/C][C]0.763416[/C][C]0.473168[/C][C]0.236584[/C][/ROW]
[ROW][C]25[/C][C]0.823537[/C][C]0.352927[/C][C]0.176463[/C][/ROW]
[ROW][C]26[/C][C]0.78294[/C][C]0.43412[/C][C]0.21706[/C][/ROW]
[ROW][C]27[/C][C]0.827383[/C][C]0.345235[/C][C]0.172617[/C][/ROW]
[ROW][C]28[/C][C]0.833836[/C][C]0.332328[/C][C]0.166164[/C][/ROW]
[ROW][C]29[/C][C]0.801658[/C][C]0.396684[/C][C]0.198342[/C][/ROW]
[ROW][C]30[/C][C]0.818057[/C][C]0.363886[/C][C]0.181943[/C][/ROW]
[ROW][C]31[/C][C]0.906041[/C][C]0.187918[/C][C]0.0939592[/C][/ROW]
[ROW][C]32[/C][C]0.901504[/C][C]0.196991[/C][C]0.0984956[/C][/ROW]
[ROW][C]33[/C][C]0.887038[/C][C]0.225924[/C][C]0.112962[/C][/ROW]
[ROW][C]34[/C][C]0.862418[/C][C]0.275165[/C][C]0.137582[/C][/ROW]
[ROW][C]35[/C][C]0.884379[/C][C]0.231242[/C][C]0.115621[/C][/ROW]
[ROW][C]36[/C][C]0.90003[/C][C]0.19994[/C][C]0.0999702[/C][/ROW]
[ROW][C]37[/C][C]0.903281[/C][C]0.193439[/C][C]0.0967194[/C][/ROW]
[ROW][C]38[/C][C]0.899316[/C][C]0.201368[/C][C]0.100684[/C][/ROW]
[ROW][C]39[/C][C]0.879115[/C][C]0.241769[/C][C]0.120885[/C][/ROW]
[ROW][C]40[/C][C]0.923057[/C][C]0.153886[/C][C]0.0769429[/C][/ROW]
[ROW][C]41[/C][C]0.904772[/C][C]0.190455[/C][C]0.0952275[/C][/ROW]
[ROW][C]42[/C][C]0.913064[/C][C]0.173872[/C][C]0.0869359[/C][/ROW]
[ROW][C]43[/C][C]0.895809[/C][C]0.208381[/C][C]0.104191[/C][/ROW]
[ROW][C]44[/C][C]0.884189[/C][C]0.231622[/C][C]0.115811[/C][/ROW]
[ROW][C]45[/C][C]0.891066[/C][C]0.217867[/C][C]0.108934[/C][/ROW]
[ROW][C]46[/C][C]0.873791[/C][C]0.252417[/C][C]0.126209[/C][/ROW]
[ROW][C]47[/C][C]0.864956[/C][C]0.270089[/C][C]0.135044[/C][/ROW]
[ROW][C]48[/C][C]0.841816[/C][C]0.316369[/C][C]0.158184[/C][/ROW]
[ROW][C]49[/C][C]0.867095[/C][C]0.265809[/C][C]0.132905[/C][/ROW]
[ROW][C]50[/C][C]0.938261[/C][C]0.123479[/C][C]0.0617395[/C][/ROW]
[ROW][C]51[/C][C]0.944613[/C][C]0.110775[/C][C]0.0553873[/C][/ROW]
[ROW][C]52[/C][C]0.939354[/C][C]0.121292[/C][C]0.060646[/C][/ROW]
[ROW][C]53[/C][C]0.924862[/C][C]0.150275[/C][C]0.0751376[/C][/ROW]
[ROW][C]54[/C][C]0.907864[/C][C]0.184271[/C][C]0.0921356[/C][/ROW]
[ROW][C]55[/C][C]0.908306[/C][C]0.183387[/C][C]0.0916937[/C][/ROW]
[ROW][C]56[/C][C]0.902382[/C][C]0.195237[/C][C]0.0976184[/C][/ROW]
[ROW][C]57[/C][C]0.88221[/C][C]0.23558[/C][C]0.11779[/C][/ROW]
[ROW][C]58[/C][C]0.893035[/C][C]0.213929[/C][C]0.106965[/C][/ROW]
[ROW][C]59[/C][C]0.872728[/C][C]0.254544[/C][C]0.127272[/C][/ROW]
[ROW][C]60[/C][C]0.872101[/C][C]0.255798[/C][C]0.127899[/C][/ROW]
[ROW][C]61[/C][C]0.854588[/C][C]0.290824[/C][C]0.145412[/C][/ROW]
[ROW][C]62[/C][C]0.862996[/C][C]0.274008[/C][C]0.137004[/C][/ROW]
[ROW][C]63[/C][C]0.839544[/C][C]0.320912[/C][C]0.160456[/C][/ROW]
[ROW][C]64[/C][C]0.813404[/C][C]0.373191[/C][C]0.186596[/C][/ROW]
[ROW][C]65[/C][C]0.813078[/C][C]0.373845[/C][C]0.186922[/C][/ROW]
[ROW][C]66[/C][C]0.783593[/C][C]0.432813[/C][C]0.216407[/C][/ROW]
[ROW][C]67[/C][C]0.776586[/C][C]0.446828[/C][C]0.223414[/C][/ROW]
[ROW][C]68[/C][C]0.843748[/C][C]0.312504[/C][C]0.156252[/C][/ROW]
[ROW][C]69[/C][C]0.881216[/C][C]0.237567[/C][C]0.118784[/C][/ROW]
[ROW][C]70[/C][C]0.862489[/C][C]0.275022[/C][C]0.137511[/C][/ROW]
[ROW][C]71[/C][C]0.83881[/C][C]0.322379[/C][C]0.16119[/C][/ROW]
[ROW][C]72[/C][C]0.874349[/C][C]0.251301[/C][C]0.125651[/C][/ROW]
[ROW][C]73[/C][C]0.866987[/C][C]0.266027[/C][C]0.133013[/C][/ROW]
[ROW][C]74[/C][C]0.847399[/C][C]0.305203[/C][C]0.152601[/C][/ROW]
[ROW][C]75[/C][C]0.831074[/C][C]0.337852[/C][C]0.168926[/C][/ROW]
[ROW][C]76[/C][C]0.84708[/C][C]0.305839[/C][C]0.15292[/C][/ROW]
[ROW][C]77[/C][C]0.825633[/C][C]0.348734[/C][C]0.174367[/C][/ROW]
[ROW][C]78[/C][C]0.876851[/C][C]0.246298[/C][C]0.123149[/C][/ROW]
[ROW][C]79[/C][C]0.855227[/C][C]0.289546[/C][C]0.144773[/C][/ROW]
[ROW][C]80[/C][C]0.839414[/C][C]0.321171[/C][C]0.160586[/C][/ROW]
[ROW][C]81[/C][C]0.817497[/C][C]0.365006[/C][C]0.182503[/C][/ROW]
[ROW][C]82[/C][C]0.792935[/C][C]0.41413[/C][C]0.207065[/C][/ROW]
[ROW][C]83[/C][C]0.811853[/C][C]0.376294[/C][C]0.188147[/C][/ROW]
[ROW][C]84[/C][C]0.784013[/C][C]0.431973[/C][C]0.215987[/C][/ROW]
[ROW][C]85[/C][C]0.776016[/C][C]0.447968[/C][C]0.223984[/C][/ROW]
[ROW][C]86[/C][C]0.7458[/C][C]0.508401[/C][C]0.2542[/C][/ROW]
[ROW][C]87[/C][C]0.726481[/C][C]0.547039[/C][C]0.273519[/C][/ROW]
[ROW][C]88[/C][C]0.692559[/C][C]0.614883[/C][C]0.307441[/C][/ROW]
[ROW][C]89[/C][C]0.669605[/C][C]0.660791[/C][C]0.330395[/C][/ROW]
[ROW][C]90[/C][C]0.637659[/C][C]0.724682[/C][C]0.362341[/C][/ROW]
[ROW][C]91[/C][C]0.628287[/C][C]0.743427[/C][C]0.371713[/C][/ROW]
[ROW][C]92[/C][C]0.618881[/C][C]0.762239[/C][C]0.381119[/C][/ROW]
[ROW][C]93[/C][C]0.595698[/C][C]0.808604[/C][C]0.404302[/C][/ROW]
[ROW][C]94[/C][C]0.654142[/C][C]0.691716[/C][C]0.345858[/C][/ROW]
[ROW][C]95[/C][C]0.621787[/C][C]0.756426[/C][C]0.378213[/C][/ROW]
[ROW][C]96[/C][C]0.583983[/C][C]0.832033[/C][C]0.416017[/C][/ROW]
[ROW][C]97[/C][C]0.613481[/C][C]0.773037[/C][C]0.386519[/C][/ROW]
[ROW][C]98[/C][C]0.575401[/C][C]0.849198[/C][C]0.424599[/C][/ROW]
[ROW][C]99[/C][C]0.633198[/C][C]0.733605[/C][C]0.366802[/C][/ROW]
[ROW][C]100[/C][C]0.595825[/C][C]0.80835[/C][C]0.404175[/C][/ROW]
[ROW][C]101[/C][C]0.557719[/C][C]0.884562[/C][C]0.442281[/C][/ROW]
[ROW][C]102[/C][C]0.647447[/C][C]0.705106[/C][C]0.352553[/C][/ROW]
[ROW][C]103[/C][C]0.610494[/C][C]0.779011[/C][C]0.389506[/C][/ROW]
[ROW][C]104[/C][C]0.586576[/C][C]0.826848[/C][C]0.413424[/C][/ROW]
[ROW][C]105[/C][C]0.617067[/C][C]0.765867[/C][C]0.382933[/C][/ROW]
[ROW][C]106[/C][C]0.607066[/C][C]0.785867[/C][C]0.392934[/C][/ROW]
[ROW][C]107[/C][C]0.614719[/C][C]0.770562[/C][C]0.385281[/C][/ROW]
[ROW][C]108[/C][C]0.59072[/C][C]0.81856[/C][C]0.40928[/C][/ROW]
[ROW][C]109[/C][C]0.552346[/C][C]0.895307[/C][C]0.447654[/C][/ROW]
[ROW][C]110[/C][C]0.527821[/C][C]0.944357[/C][C]0.472179[/C][/ROW]
[ROW][C]111[/C][C]0.536032[/C][C]0.927935[/C][C]0.463968[/C][/ROW]
[ROW][C]112[/C][C]0.501922[/C][C]0.996156[/C][C]0.498078[/C][/ROW]
[ROW][C]113[/C][C]0.463048[/C][C]0.926097[/C][C]0.536952[/C][/ROW]
[ROW][C]114[/C][C]0.473429[/C][C]0.946859[/C][C]0.526571[/C][/ROW]
[ROW][C]115[/C][C]0.439311[/C][C]0.878623[/C][C]0.560689[/C][/ROW]
[ROW][C]116[/C][C]0.400786[/C][C]0.801572[/C][C]0.599214[/C][/ROW]
[ROW][C]117[/C][C]0.407537[/C][C]0.815074[/C][C]0.592463[/C][/ROW]
[ROW][C]118[/C][C]0.46512[/C][C]0.930241[/C][C]0.53488[/C][/ROW]
[ROW][C]119[/C][C]0.426093[/C][C]0.852187[/C][C]0.573907[/C][/ROW]
[ROW][C]120[/C][C]0.400563[/C][C]0.801127[/C][C]0.599437[/C][/ROW]
[ROW][C]121[/C][C]0.430187[/C][C]0.860375[/C][C]0.569813[/C][/ROW]
[ROW][C]122[/C][C]0.46196[/C][C]0.923921[/C][C]0.53804[/C][/ROW]
[ROW][C]123[/C][C]0.450692[/C][C]0.901384[/C][C]0.549308[/C][/ROW]
[ROW][C]124[/C][C]0.51578[/C][C]0.96844[/C][C]0.48422[/C][/ROW]
[ROW][C]125[/C][C]0.520771[/C][C]0.958459[/C][C]0.479229[/C][/ROW]
[ROW][C]126[/C][C]0.55015[/C][C]0.899699[/C][C]0.44985[/C][/ROW]
[ROW][C]127[/C][C]0.560829[/C][C]0.878342[/C][C]0.439171[/C][/ROW]
[ROW][C]128[/C][C]0.620037[/C][C]0.759926[/C][C]0.379963[/C][/ROW]
[ROW][C]129[/C][C]0.5934[/C][C]0.8132[/C][C]0.4066[/C][/ROW]
[ROW][C]130[/C][C]0.598449[/C][C]0.803103[/C][C]0.401551[/C][/ROW]
[ROW][C]131[/C][C]0.57282[/C][C]0.85436[/C][C]0.42718[/C][/ROW]
[ROW][C]132[/C][C]0.548455[/C][C]0.90309[/C][C]0.451545[/C][/ROW]
[ROW][C]133[/C][C]0.50802[/C][C]0.983961[/C][C]0.49198[/C][/ROW]
[ROW][C]134[/C][C]0.467627[/C][C]0.935254[/C][C]0.532373[/C][/ROW]
[ROW][C]135[/C][C]0.527099[/C][C]0.945802[/C][C]0.472901[/C][/ROW]
[ROW][C]136[/C][C]0.518673[/C][C]0.962654[/C][C]0.481327[/C][/ROW]
[ROW][C]137[/C][C]0.492248[/C][C]0.984496[/C][C]0.507752[/C][/ROW]
[ROW][C]138[/C][C]0.500253[/C][C]0.999494[/C][C]0.499747[/C][/ROW]
[ROW][C]139[/C][C]0.51041[/C][C]0.979181[/C][C]0.48959[/C][/ROW]
[ROW][C]140[/C][C]0.472392[/C][C]0.944783[/C][C]0.527608[/C][/ROW]
[ROW][C]141[/C][C]0.573815[/C][C]0.852369[/C][C]0.426185[/C][/ROW]
[ROW][C]142[/C][C]0.53228[/C][C]0.935439[/C][C]0.46772[/C][/ROW]
[ROW][C]143[/C][C]0.530365[/C][C]0.939271[/C][C]0.469635[/C][/ROW]
[ROW][C]144[/C][C]0.508797[/C][C]0.982406[/C][C]0.491203[/C][/ROW]
[ROW][C]145[/C][C]0.469195[/C][C]0.93839[/C][C]0.530805[/C][/ROW]
[ROW][C]146[/C][C]0.443455[/C][C]0.88691[/C][C]0.556545[/C][/ROW]
[ROW][C]147[/C][C]0.405605[/C][C]0.811209[/C][C]0.594395[/C][/ROW]
[ROW][C]148[/C][C]0.37458[/C][C]0.74916[/C][C]0.62542[/C][/ROW]
[ROW][C]149[/C][C]0.649503[/C][C]0.700994[/C][C]0.350497[/C][/ROW]
[ROW][C]150[/C][C]0.622523[/C][C]0.754954[/C][C]0.377477[/C][/ROW]
[ROW][C]151[/C][C]0.643492[/C][C]0.713016[/C][C]0.356508[/C][/ROW]
[ROW][C]152[/C][C]0.695884[/C][C]0.608231[/C][C]0.304116[/C][/ROW]
[ROW][C]153[/C][C]0.752101[/C][C]0.495797[/C][C]0.247899[/C][/ROW]
[ROW][C]154[/C][C]0.725015[/C][C]0.549971[/C][C]0.274985[/C][/ROW]
[ROW][C]155[/C][C]0.692921[/C][C]0.614159[/C][C]0.307079[/C][/ROW]
[ROW][C]156[/C][C]0.667242[/C][C]0.665517[/C][C]0.332758[/C][/ROW]
[ROW][C]157[/C][C]0.627795[/C][C]0.74441[/C][C]0.372205[/C][/ROW]
[ROW][C]158[/C][C]0.690755[/C][C]0.61849[/C][C]0.309245[/C][/ROW]
[ROW][C]159[/C][C]0.703001[/C][C]0.593997[/C][C]0.296999[/C][/ROW]
[ROW][C]160[/C][C]0.693974[/C][C]0.612052[/C][C]0.306026[/C][/ROW]
[ROW][C]161[/C][C]0.65374[/C][C]0.692521[/C][C]0.34626[/C][/ROW]
[ROW][C]162[/C][C]0.623141[/C][C]0.753718[/C][C]0.376859[/C][/ROW]
[ROW][C]163[/C][C]0.626535[/C][C]0.746929[/C][C]0.373465[/C][/ROW]
[ROW][C]164[/C][C]0.662343[/C][C]0.675314[/C][C]0.337657[/C][/ROW]
[ROW][C]165[/C][C]0.834328[/C][C]0.331344[/C][C]0.165672[/C][/ROW]
[ROW][C]166[/C][C]0.81155[/C][C]0.3769[/C][C]0.18845[/C][/ROW]
[ROW][C]167[/C][C]0.775256[/C][C]0.449488[/C][C]0.224744[/C][/ROW]
[ROW][C]168[/C][C]0.735435[/C][C]0.529129[/C][C]0.264565[/C][/ROW]
[ROW][C]169[/C][C]0.763008[/C][C]0.473985[/C][C]0.236992[/C][/ROW]
[ROW][C]170[/C][C]0.737601[/C][C]0.524799[/C][C]0.262399[/C][/ROW]
[ROW][C]171[/C][C]0.78574[/C][C]0.42852[/C][C]0.21426[/C][/ROW]
[ROW][C]172[/C][C]0.945752[/C][C]0.108496[/C][C]0.0542482[/C][/ROW]
[ROW][C]173[/C][C]0.929051[/C][C]0.141898[/C][C]0.0709491[/C][/ROW]
[ROW][C]174[/C][C]0.917214[/C][C]0.165572[/C][C]0.082786[/C][/ROW]
[ROW][C]175[/C][C]0.926191[/C][C]0.147618[/C][C]0.0738092[/C][/ROW]
[ROW][C]176[/C][C]0.936071[/C][C]0.127858[/C][C]0.0639289[/C][/ROW]
[ROW][C]177[/C][C]0.917633[/C][C]0.164734[/C][C]0.0823672[/C][/ROW]
[ROW][C]178[/C][C]0.914645[/C][C]0.170711[/C][C]0.0853553[/C][/ROW]
[ROW][C]179[/C][C]0.888175[/C][C]0.223651[/C][C]0.111825[/C][/ROW]
[ROW][C]180[/C][C]0.923832[/C][C]0.152336[/C][C]0.0761681[/C][/ROW]
[ROW][C]181[/C][C]0.904861[/C][C]0.190277[/C][C]0.0951387[/C][/ROW]
[ROW][C]182[/C][C]0.92011[/C][C]0.15978[/C][C]0.0798901[/C][/ROW]
[ROW][C]183[/C][C]0.919835[/C][C]0.160331[/C][C]0.0801653[/C][/ROW]
[ROW][C]184[/C][C]0.900221[/C][C]0.199559[/C][C]0.0997794[/C][/ROW]
[ROW][C]185[/C][C]0.870072[/C][C]0.259855[/C][C]0.129928[/C][/ROW]
[ROW][C]186[/C][C]0.876028[/C][C]0.247944[/C][C]0.123972[/C][/ROW]
[ROW][C]187[/C][C]0.869231[/C][C]0.261538[/C][C]0.130769[/C][/ROW]
[ROW][C]188[/C][C]0.827497[/C][C]0.345007[/C][C]0.172503[/C][/ROW]
[ROW][C]189[/C][C]0.895664[/C][C]0.208673[/C][C]0.104336[/C][/ROW]
[ROW][C]190[/C][C]0.855828[/C][C]0.288344[/C][C]0.144172[/C][/ROW]
[ROW][C]191[/C][C]0.837146[/C][C]0.325708[/C][C]0.162854[/C][/ROW]
[ROW][C]192[/C][C]0.790343[/C][C]0.419313[/C][C]0.209657[/C][/ROW]
[ROW][C]193[/C][C]0.874016[/C][C]0.251968[/C][C]0.125984[/C][/ROW]
[ROW][C]194[/C][C]0.824554[/C][C]0.350893[/C][C]0.175446[/C][/ROW]
[ROW][C]195[/C][C]0.766391[/C][C]0.467219[/C][C]0.233609[/C][/ROW]
[ROW][C]196[/C][C]0.748868[/C][C]0.502264[/C][C]0.251132[/C][/ROW]
[ROW][C]197[/C][C]0.688475[/C][C]0.62305[/C][C]0.311525[/C][/ROW]
[ROW][C]198[/C][C]0.735824[/C][C]0.528353[/C][C]0.264176[/C][/ROW]
[ROW][C]199[/C][C]0.754022[/C][C]0.491956[/C][C]0.245978[/C][/ROW]
[ROW][C]200[/C][C]0.669232[/C][C]0.661536[/C][C]0.330768[/C][/ROW]
[ROW][C]201[/C][C]0.559501[/C][C]0.880998[/C][C]0.440499[/C][/ROW]
[ROW][C]202[/C][C]0.429553[/C][C]0.859106[/C][C]0.570447[/C][/ROW]
[ROW][C]203[/C][C]0.403381[/C][C]0.806762[/C][C]0.596619[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=269745&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=269745&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
50.6742730.6514540.325727
60.773880.4522390.22612
70.6841480.6317040.315852
80.5754610.8490790.424539
90.5352610.9294770.464739
100.8745320.2509360.125468
110.8601350.279730.139865
120.9329590.1340820.067041
130.9262110.1475780.0737892
140.932330.135340.0676701
150.9237870.1524270.0762133
160.8940340.2119320.105966
170.8598490.2803020.140151
180.8186360.3627270.181364
190.7744290.4511430.225571
200.8092070.3815850.190793
210.795480.409040.20452
220.8033130.3933740.196687
230.7622640.4754720.237736
240.7634160.4731680.236584
250.8235370.3529270.176463
260.782940.434120.21706
270.8273830.3452350.172617
280.8338360.3323280.166164
290.8016580.3966840.198342
300.8180570.3638860.181943
310.9060410.1879180.0939592
320.9015040.1969910.0984956
330.8870380.2259240.112962
340.8624180.2751650.137582
350.8843790.2312420.115621
360.900030.199940.0999702
370.9032810.1934390.0967194
380.8993160.2013680.100684
390.8791150.2417690.120885
400.9230570.1538860.0769429
410.9047720.1904550.0952275
420.9130640.1738720.0869359
430.8958090.2083810.104191
440.8841890.2316220.115811
450.8910660.2178670.108934
460.8737910.2524170.126209
470.8649560.2700890.135044
480.8418160.3163690.158184
490.8670950.2658090.132905
500.9382610.1234790.0617395
510.9446130.1107750.0553873
520.9393540.1212920.060646
530.9248620.1502750.0751376
540.9078640.1842710.0921356
550.9083060.1833870.0916937
560.9023820.1952370.0976184
570.882210.235580.11779
580.8930350.2139290.106965
590.8727280.2545440.127272
600.8721010.2557980.127899
610.8545880.2908240.145412
620.8629960.2740080.137004
630.8395440.3209120.160456
640.8134040.3731910.186596
650.8130780.3738450.186922
660.7835930.4328130.216407
670.7765860.4468280.223414
680.8437480.3125040.156252
690.8812160.2375670.118784
700.8624890.2750220.137511
710.838810.3223790.16119
720.8743490.2513010.125651
730.8669870.2660270.133013
740.8473990.3052030.152601
750.8310740.3378520.168926
760.847080.3058390.15292
770.8256330.3487340.174367
780.8768510.2462980.123149
790.8552270.2895460.144773
800.8394140.3211710.160586
810.8174970.3650060.182503
820.7929350.414130.207065
830.8118530.3762940.188147
840.7840130.4319730.215987
850.7760160.4479680.223984
860.74580.5084010.2542
870.7264810.5470390.273519
880.6925590.6148830.307441
890.6696050.6607910.330395
900.6376590.7246820.362341
910.6282870.7434270.371713
920.6188810.7622390.381119
930.5956980.8086040.404302
940.6541420.6917160.345858
950.6217870.7564260.378213
960.5839830.8320330.416017
970.6134810.7730370.386519
980.5754010.8491980.424599
990.6331980.7336050.366802
1000.5958250.808350.404175
1010.5577190.8845620.442281
1020.6474470.7051060.352553
1030.6104940.7790110.389506
1040.5865760.8268480.413424
1050.6170670.7658670.382933
1060.6070660.7858670.392934
1070.6147190.7705620.385281
1080.590720.818560.40928
1090.5523460.8953070.447654
1100.5278210.9443570.472179
1110.5360320.9279350.463968
1120.5019220.9961560.498078
1130.4630480.9260970.536952
1140.4734290.9468590.526571
1150.4393110.8786230.560689
1160.4007860.8015720.599214
1170.4075370.8150740.592463
1180.465120.9302410.53488
1190.4260930.8521870.573907
1200.4005630.8011270.599437
1210.4301870.8603750.569813
1220.461960.9239210.53804
1230.4506920.9013840.549308
1240.515780.968440.48422
1250.5207710.9584590.479229
1260.550150.8996990.44985
1270.5608290.8783420.439171
1280.6200370.7599260.379963
1290.59340.81320.4066
1300.5984490.8031030.401551
1310.572820.854360.42718
1320.5484550.903090.451545
1330.508020.9839610.49198
1340.4676270.9352540.532373
1350.5270990.9458020.472901
1360.5186730.9626540.481327
1370.4922480.9844960.507752
1380.5002530.9994940.499747
1390.510410.9791810.48959
1400.4723920.9447830.527608
1410.5738150.8523690.426185
1420.532280.9354390.46772
1430.5303650.9392710.469635
1440.5087970.9824060.491203
1450.4691950.938390.530805
1460.4434550.886910.556545
1470.4056050.8112090.594395
1480.374580.749160.62542
1490.6495030.7009940.350497
1500.6225230.7549540.377477
1510.6434920.7130160.356508
1520.6958840.6082310.304116
1530.7521010.4957970.247899
1540.7250150.5499710.274985
1550.6929210.6141590.307079
1560.6672420.6655170.332758
1570.6277950.744410.372205
1580.6907550.618490.309245
1590.7030010.5939970.296999
1600.6939740.6120520.306026
1610.653740.6925210.34626
1620.6231410.7537180.376859
1630.6265350.7469290.373465
1640.6623430.6753140.337657
1650.8343280.3313440.165672
1660.811550.37690.18845
1670.7752560.4494880.224744
1680.7354350.5291290.264565
1690.7630080.4739850.236992
1700.7376010.5247990.262399
1710.785740.428520.21426
1720.9457520.1084960.0542482
1730.9290510.1418980.0709491
1740.9172140.1655720.082786
1750.9261910.1476180.0738092
1760.9360710.1278580.0639289
1770.9176330.1647340.0823672
1780.9146450.1707110.0853553
1790.8881750.2236510.111825
1800.9238320.1523360.0761681
1810.9048610.1902770.0951387
1820.920110.159780.0798901
1830.9198350.1603310.0801653
1840.9002210.1995590.0997794
1850.8700720.2598550.129928
1860.8760280.2479440.123972
1870.8692310.2615380.130769
1880.8274970.3450070.172503
1890.8956640.2086730.104336
1900.8558280.2883440.144172
1910.8371460.3257080.162854
1920.7903430.4193130.209657
1930.8740160.2519680.125984
1940.8245540.3508930.175446
1950.7663910.4672190.233609
1960.7488680.5022640.251132
1970.6884750.623050.311525
1980.7358240.5283530.264176
1990.7540220.4919560.245978
2000.6692320.6615360.330768
2010.5595010.8809980.440499
2020.4295530.8591060.570447
2030.4033810.8067620.596619







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level00OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 & 0 & OK \tabularnewline
5% type I error level & 0 & 0 & OK \tabularnewline
10% type I error level & 0 & 0 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=269745&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=269745&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=269745&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level00OK



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,signif(mysum$coefficients[i,1],6))
a<-table.element(a, signif(mysum$coefficients[i,2],6))
a<-table.element(a, signif(mysum$coefficients[i,3],4))
a<-table.element(a, signif(mysum$coefficients[i,4],6))
a<-table.element(a, signif(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, signif(sqrt(mysum$r.squared),6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, signif(mysum$r.squared,6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, signif(mysum$adj.r.squared,6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[1],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, signif(mysum$sigma,6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, signif(sum(myerror*myerror),6))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,signif(x[i],6))
a<-table.element(a,signif(x[i]-mysum$resid[i],6))
a<-table.element(a,signif(mysum$resid[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,signif(gqarr[mypoint-kp3+1,1],6))
a<-table.element(a,signif(gqarr[mypoint-kp3+1,2],6))
a<-table.element(a,signif(gqarr[mypoint-kp3+1,3],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,signif(numsignificant1/numgqtests,6))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}