Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationWed, 31 Dec 2014 13:48:57 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/Dec/31/t1420033765n5v72r8tdv3qsby.htm/, Retrieved Thu, 31 Oct 2024 22:46:10 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=271816, Retrieved Thu, 31 Oct 2024 22:46:10 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsSimon Dewilde
Estimated Impact158
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Exponential Smoothing] [] [2014-12-31 13:48:57] [1a08c6aa6bf9a3504070a6066c5cb670] [Current]
Feedback Forum

Post a new message
Dataseries X:
1,64
1,65
1,65
1,66
1,67
1,67
1,68
1,68
1,69
1,7
1,71
1,72
1,72
1,73
1,73
1,73
1,73
1,74
1,75
1,75
1,75
1,76
1,76
1,76
1,77
1,78
1,78
1,79
1,79
1,79
1,79
1,79
1,83
1,83
1,83
1,83
1,84
1,84
1,84
1,85
1,85
1,85
1,86
1,86
1,86
1,87
1,87
1,88
1,88
1,88
1,89
1,89
1,9
1,91
1,91
1,91
1,91
1,91
1,92
1,92
1,92
1,93
1,94
1,94
1,94
1,95
1,95
1,95
1,95
1,96
1,96
1,97




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'George Udny Yule' @ yule.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'George Udny Yule' @ yule.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=271816&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ yule.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=271816&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=271816&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'George Udny Yule' @ yule.wessa.net







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.668625017373185
beta0.11119640039078
gammaFALSE

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 0.668625017373185 \tabularnewline
beta & 0.11119640039078 \tabularnewline
gamma & FALSE \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=271816&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]0.668625017373185[/C][/ROW]
[ROW][C]beta[/C][C]0.11119640039078[/C][/ROW]
[ROW][C]gamma[/C][C]FALSE[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=271816&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=271816&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.668625017373185
beta0.11119640039078
gammaFALSE







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
31.651.66-0.01
41.661.66257026287484-0.00257026287483697
51.671.669917138173158.28618268546855e-05
61.671.67904411968992-0.00904411968991936
71.681.68139615453381-0.00139615453381192
81.681.68875800794527-0.00875800794526915
91.691.69054639552881-0.000546395528808308
101.71.697784648812370.00221535118763394
111.711.707034183512270.00296581648772998
121.721.717006002672390.00299399732761474
131.721.72721926404163-0.00721926404162798
141.731.73006694048904-6.69404890352165e-05
151.731.73769186245804-0.00769186245804154
161.731.73964669090608-0.00964669090607595
171.731.73957725326777-0.00957725326776626
181.741.738842187088060.00115781291193606
191.751.745370936598490.00462906340151026
201.751.75456481585145-0.00456481585145108
211.751.75727204932705-0.00727204932704995
221.761.757628491394510.00237150860548896
231.761.76460917612249-0.00460917612249379
241.761.76657971417256-0.00657971417256031
251.771.766743508021520.0032564919784781
261.781.773726151308450.00627384869154834
271.781.78319272724382-0.00319272724382125
281.791.786092338575410.0039076614245861
291.791.79402997693176-0.00402997693175555
301.791.79636068817785-0.00636068817785329
311.791.7966601187103-0.00666011871030148
321.791.79626417136218-0.00626417136218005
331.831.795667231349640.0343327686503558
341.831.824767017608090.00523298239190706
351.831.83479902418648-0.00479902418647571
361.831.83776657900587-0.00776657900587474
371.841.838172517417780.00182748258221577
381.841.84512915637109-0.00512915637109468
391.841.84705306640001-0.00705306640001302
401.851.847166215768820.00283378423117719
411.851.85410064897258-0.00410064897258322
421.851.85609366875465-0.00609366875465445
431.861.856301049329770.00369895067022963
441.861.86333103239371-0.00333103239370902
451.861.86541293499744-0.00541293499743634
461.871.865700380782620.00429961921737654
471.871.87280155437685-0.00280155437685226
481.881.874946413740980.0050535862590213
491.881.88271914419339-0.00271914419338604
501.881.88509266778933-0.00509266778933126
511.891.885500560924770.00449943907523243
521.891.89265650410329-0.00265650410328777
531.91.894830297036030.00516970296397345
541.911.902621248474730.0073787515252719
551.911.9124378255938-0.00243782559379535
561.911.9155095445142-0.00550954451419572
571.911.91611780787261-0.00611780787261473
581.911.91586452009998-0.00586452009997784
591.921.915344567451650.00465543254835299
601.921.92220464366087-0.00220464366086826
611.921.92431398891608-0.00431398891607659
621.931.92469223371660.00530776628339691
631.941.931898450251830.00810154974816713
641.941.94157499995714-0.00157499995714505
651.941.94466446725597-0.00466446725596614
661.951.945341442374420.00465855762557976
671.951.95259838284698-0.00259838284697955
681.951.95480996499584-0.00480996499584263
691.951.95518521337087-0.00518521337087496
701.961.954924047446470.00507595255353133
711.961.9619011442155-0.00190114421550103
721.971.964071831944420.0059281680555765

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
3 & 1.65 & 1.66 & -0.01 \tabularnewline
4 & 1.66 & 1.66257026287484 & -0.00257026287483697 \tabularnewline
5 & 1.67 & 1.66991713817315 & 8.28618268546855e-05 \tabularnewline
6 & 1.67 & 1.67904411968992 & -0.00904411968991936 \tabularnewline
7 & 1.68 & 1.68139615453381 & -0.00139615453381192 \tabularnewline
8 & 1.68 & 1.68875800794527 & -0.00875800794526915 \tabularnewline
9 & 1.69 & 1.69054639552881 & -0.000546395528808308 \tabularnewline
10 & 1.7 & 1.69778464881237 & 0.00221535118763394 \tabularnewline
11 & 1.71 & 1.70703418351227 & 0.00296581648772998 \tabularnewline
12 & 1.72 & 1.71700600267239 & 0.00299399732761474 \tabularnewline
13 & 1.72 & 1.72721926404163 & -0.00721926404162798 \tabularnewline
14 & 1.73 & 1.73006694048904 & -6.69404890352165e-05 \tabularnewline
15 & 1.73 & 1.73769186245804 & -0.00769186245804154 \tabularnewline
16 & 1.73 & 1.73964669090608 & -0.00964669090607595 \tabularnewline
17 & 1.73 & 1.73957725326777 & -0.00957725326776626 \tabularnewline
18 & 1.74 & 1.73884218708806 & 0.00115781291193606 \tabularnewline
19 & 1.75 & 1.74537093659849 & 0.00462906340151026 \tabularnewline
20 & 1.75 & 1.75456481585145 & -0.00456481585145108 \tabularnewline
21 & 1.75 & 1.75727204932705 & -0.00727204932704995 \tabularnewline
22 & 1.76 & 1.75762849139451 & 0.00237150860548896 \tabularnewline
23 & 1.76 & 1.76460917612249 & -0.00460917612249379 \tabularnewline
24 & 1.76 & 1.76657971417256 & -0.00657971417256031 \tabularnewline
25 & 1.77 & 1.76674350802152 & 0.0032564919784781 \tabularnewline
26 & 1.78 & 1.77372615130845 & 0.00627384869154834 \tabularnewline
27 & 1.78 & 1.78319272724382 & -0.00319272724382125 \tabularnewline
28 & 1.79 & 1.78609233857541 & 0.0039076614245861 \tabularnewline
29 & 1.79 & 1.79402997693176 & -0.00402997693175555 \tabularnewline
30 & 1.79 & 1.79636068817785 & -0.00636068817785329 \tabularnewline
31 & 1.79 & 1.7966601187103 & -0.00666011871030148 \tabularnewline
32 & 1.79 & 1.79626417136218 & -0.00626417136218005 \tabularnewline
33 & 1.83 & 1.79566723134964 & 0.0343327686503558 \tabularnewline
34 & 1.83 & 1.82476701760809 & 0.00523298239190706 \tabularnewline
35 & 1.83 & 1.83479902418648 & -0.00479902418647571 \tabularnewline
36 & 1.83 & 1.83776657900587 & -0.00776657900587474 \tabularnewline
37 & 1.84 & 1.83817251741778 & 0.00182748258221577 \tabularnewline
38 & 1.84 & 1.84512915637109 & -0.00512915637109468 \tabularnewline
39 & 1.84 & 1.84705306640001 & -0.00705306640001302 \tabularnewline
40 & 1.85 & 1.84716621576882 & 0.00283378423117719 \tabularnewline
41 & 1.85 & 1.85410064897258 & -0.00410064897258322 \tabularnewline
42 & 1.85 & 1.85609366875465 & -0.00609366875465445 \tabularnewline
43 & 1.86 & 1.85630104932977 & 0.00369895067022963 \tabularnewline
44 & 1.86 & 1.86333103239371 & -0.00333103239370902 \tabularnewline
45 & 1.86 & 1.86541293499744 & -0.00541293499743634 \tabularnewline
46 & 1.87 & 1.86570038078262 & 0.00429961921737654 \tabularnewline
47 & 1.87 & 1.87280155437685 & -0.00280155437685226 \tabularnewline
48 & 1.88 & 1.87494641374098 & 0.0050535862590213 \tabularnewline
49 & 1.88 & 1.88271914419339 & -0.00271914419338604 \tabularnewline
50 & 1.88 & 1.88509266778933 & -0.00509266778933126 \tabularnewline
51 & 1.89 & 1.88550056092477 & 0.00449943907523243 \tabularnewline
52 & 1.89 & 1.89265650410329 & -0.00265650410328777 \tabularnewline
53 & 1.9 & 1.89483029703603 & 0.00516970296397345 \tabularnewline
54 & 1.91 & 1.90262124847473 & 0.0073787515252719 \tabularnewline
55 & 1.91 & 1.9124378255938 & -0.00243782559379535 \tabularnewline
56 & 1.91 & 1.9155095445142 & -0.00550954451419572 \tabularnewline
57 & 1.91 & 1.91611780787261 & -0.00611780787261473 \tabularnewline
58 & 1.91 & 1.91586452009998 & -0.00586452009997784 \tabularnewline
59 & 1.92 & 1.91534456745165 & 0.00465543254835299 \tabularnewline
60 & 1.92 & 1.92220464366087 & -0.00220464366086826 \tabularnewline
61 & 1.92 & 1.92431398891608 & -0.00431398891607659 \tabularnewline
62 & 1.93 & 1.9246922337166 & 0.00530776628339691 \tabularnewline
63 & 1.94 & 1.93189845025183 & 0.00810154974816713 \tabularnewline
64 & 1.94 & 1.94157499995714 & -0.00157499995714505 \tabularnewline
65 & 1.94 & 1.94466446725597 & -0.00466446725596614 \tabularnewline
66 & 1.95 & 1.94534144237442 & 0.00465855762557976 \tabularnewline
67 & 1.95 & 1.95259838284698 & -0.00259838284697955 \tabularnewline
68 & 1.95 & 1.95480996499584 & -0.00480996499584263 \tabularnewline
69 & 1.95 & 1.95518521337087 & -0.00518521337087496 \tabularnewline
70 & 1.96 & 1.95492404744647 & 0.00507595255353133 \tabularnewline
71 & 1.96 & 1.9619011442155 & -0.00190114421550103 \tabularnewline
72 & 1.97 & 1.96407183194442 & 0.0059281680555765 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=271816&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]3[/C][C]1.65[/C][C]1.66[/C][C]-0.01[/C][/ROW]
[ROW][C]4[/C][C]1.66[/C][C]1.66257026287484[/C][C]-0.00257026287483697[/C][/ROW]
[ROW][C]5[/C][C]1.67[/C][C]1.66991713817315[/C][C]8.28618268546855e-05[/C][/ROW]
[ROW][C]6[/C][C]1.67[/C][C]1.67904411968992[/C][C]-0.00904411968991936[/C][/ROW]
[ROW][C]7[/C][C]1.68[/C][C]1.68139615453381[/C][C]-0.00139615453381192[/C][/ROW]
[ROW][C]8[/C][C]1.68[/C][C]1.68875800794527[/C][C]-0.00875800794526915[/C][/ROW]
[ROW][C]9[/C][C]1.69[/C][C]1.69054639552881[/C][C]-0.000546395528808308[/C][/ROW]
[ROW][C]10[/C][C]1.7[/C][C]1.69778464881237[/C][C]0.00221535118763394[/C][/ROW]
[ROW][C]11[/C][C]1.71[/C][C]1.70703418351227[/C][C]0.00296581648772998[/C][/ROW]
[ROW][C]12[/C][C]1.72[/C][C]1.71700600267239[/C][C]0.00299399732761474[/C][/ROW]
[ROW][C]13[/C][C]1.72[/C][C]1.72721926404163[/C][C]-0.00721926404162798[/C][/ROW]
[ROW][C]14[/C][C]1.73[/C][C]1.73006694048904[/C][C]-6.69404890352165e-05[/C][/ROW]
[ROW][C]15[/C][C]1.73[/C][C]1.73769186245804[/C][C]-0.00769186245804154[/C][/ROW]
[ROW][C]16[/C][C]1.73[/C][C]1.73964669090608[/C][C]-0.00964669090607595[/C][/ROW]
[ROW][C]17[/C][C]1.73[/C][C]1.73957725326777[/C][C]-0.00957725326776626[/C][/ROW]
[ROW][C]18[/C][C]1.74[/C][C]1.73884218708806[/C][C]0.00115781291193606[/C][/ROW]
[ROW][C]19[/C][C]1.75[/C][C]1.74537093659849[/C][C]0.00462906340151026[/C][/ROW]
[ROW][C]20[/C][C]1.75[/C][C]1.75456481585145[/C][C]-0.00456481585145108[/C][/ROW]
[ROW][C]21[/C][C]1.75[/C][C]1.75727204932705[/C][C]-0.00727204932704995[/C][/ROW]
[ROW][C]22[/C][C]1.76[/C][C]1.75762849139451[/C][C]0.00237150860548896[/C][/ROW]
[ROW][C]23[/C][C]1.76[/C][C]1.76460917612249[/C][C]-0.00460917612249379[/C][/ROW]
[ROW][C]24[/C][C]1.76[/C][C]1.76657971417256[/C][C]-0.00657971417256031[/C][/ROW]
[ROW][C]25[/C][C]1.77[/C][C]1.76674350802152[/C][C]0.0032564919784781[/C][/ROW]
[ROW][C]26[/C][C]1.78[/C][C]1.77372615130845[/C][C]0.00627384869154834[/C][/ROW]
[ROW][C]27[/C][C]1.78[/C][C]1.78319272724382[/C][C]-0.00319272724382125[/C][/ROW]
[ROW][C]28[/C][C]1.79[/C][C]1.78609233857541[/C][C]0.0039076614245861[/C][/ROW]
[ROW][C]29[/C][C]1.79[/C][C]1.79402997693176[/C][C]-0.00402997693175555[/C][/ROW]
[ROW][C]30[/C][C]1.79[/C][C]1.79636068817785[/C][C]-0.00636068817785329[/C][/ROW]
[ROW][C]31[/C][C]1.79[/C][C]1.7966601187103[/C][C]-0.00666011871030148[/C][/ROW]
[ROW][C]32[/C][C]1.79[/C][C]1.79626417136218[/C][C]-0.00626417136218005[/C][/ROW]
[ROW][C]33[/C][C]1.83[/C][C]1.79566723134964[/C][C]0.0343327686503558[/C][/ROW]
[ROW][C]34[/C][C]1.83[/C][C]1.82476701760809[/C][C]0.00523298239190706[/C][/ROW]
[ROW][C]35[/C][C]1.83[/C][C]1.83479902418648[/C][C]-0.00479902418647571[/C][/ROW]
[ROW][C]36[/C][C]1.83[/C][C]1.83776657900587[/C][C]-0.00776657900587474[/C][/ROW]
[ROW][C]37[/C][C]1.84[/C][C]1.83817251741778[/C][C]0.00182748258221577[/C][/ROW]
[ROW][C]38[/C][C]1.84[/C][C]1.84512915637109[/C][C]-0.00512915637109468[/C][/ROW]
[ROW][C]39[/C][C]1.84[/C][C]1.84705306640001[/C][C]-0.00705306640001302[/C][/ROW]
[ROW][C]40[/C][C]1.85[/C][C]1.84716621576882[/C][C]0.00283378423117719[/C][/ROW]
[ROW][C]41[/C][C]1.85[/C][C]1.85410064897258[/C][C]-0.00410064897258322[/C][/ROW]
[ROW][C]42[/C][C]1.85[/C][C]1.85609366875465[/C][C]-0.00609366875465445[/C][/ROW]
[ROW][C]43[/C][C]1.86[/C][C]1.85630104932977[/C][C]0.00369895067022963[/C][/ROW]
[ROW][C]44[/C][C]1.86[/C][C]1.86333103239371[/C][C]-0.00333103239370902[/C][/ROW]
[ROW][C]45[/C][C]1.86[/C][C]1.86541293499744[/C][C]-0.00541293499743634[/C][/ROW]
[ROW][C]46[/C][C]1.87[/C][C]1.86570038078262[/C][C]0.00429961921737654[/C][/ROW]
[ROW][C]47[/C][C]1.87[/C][C]1.87280155437685[/C][C]-0.00280155437685226[/C][/ROW]
[ROW][C]48[/C][C]1.88[/C][C]1.87494641374098[/C][C]0.0050535862590213[/C][/ROW]
[ROW][C]49[/C][C]1.88[/C][C]1.88271914419339[/C][C]-0.00271914419338604[/C][/ROW]
[ROW][C]50[/C][C]1.88[/C][C]1.88509266778933[/C][C]-0.00509266778933126[/C][/ROW]
[ROW][C]51[/C][C]1.89[/C][C]1.88550056092477[/C][C]0.00449943907523243[/C][/ROW]
[ROW][C]52[/C][C]1.89[/C][C]1.89265650410329[/C][C]-0.00265650410328777[/C][/ROW]
[ROW][C]53[/C][C]1.9[/C][C]1.89483029703603[/C][C]0.00516970296397345[/C][/ROW]
[ROW][C]54[/C][C]1.91[/C][C]1.90262124847473[/C][C]0.0073787515252719[/C][/ROW]
[ROW][C]55[/C][C]1.91[/C][C]1.9124378255938[/C][C]-0.00243782559379535[/C][/ROW]
[ROW][C]56[/C][C]1.91[/C][C]1.9155095445142[/C][C]-0.00550954451419572[/C][/ROW]
[ROW][C]57[/C][C]1.91[/C][C]1.91611780787261[/C][C]-0.00611780787261473[/C][/ROW]
[ROW][C]58[/C][C]1.91[/C][C]1.91586452009998[/C][C]-0.00586452009997784[/C][/ROW]
[ROW][C]59[/C][C]1.92[/C][C]1.91534456745165[/C][C]0.00465543254835299[/C][/ROW]
[ROW][C]60[/C][C]1.92[/C][C]1.92220464366087[/C][C]-0.00220464366086826[/C][/ROW]
[ROW][C]61[/C][C]1.92[/C][C]1.92431398891608[/C][C]-0.00431398891607659[/C][/ROW]
[ROW][C]62[/C][C]1.93[/C][C]1.9246922337166[/C][C]0.00530776628339691[/C][/ROW]
[ROW][C]63[/C][C]1.94[/C][C]1.93189845025183[/C][C]0.00810154974816713[/C][/ROW]
[ROW][C]64[/C][C]1.94[/C][C]1.94157499995714[/C][C]-0.00157499995714505[/C][/ROW]
[ROW][C]65[/C][C]1.94[/C][C]1.94466446725597[/C][C]-0.00466446725596614[/C][/ROW]
[ROW][C]66[/C][C]1.95[/C][C]1.94534144237442[/C][C]0.00465855762557976[/C][/ROW]
[ROW][C]67[/C][C]1.95[/C][C]1.95259838284698[/C][C]-0.00259838284697955[/C][/ROW]
[ROW][C]68[/C][C]1.95[/C][C]1.95480996499584[/C][C]-0.00480996499584263[/C][/ROW]
[ROW][C]69[/C][C]1.95[/C][C]1.95518521337087[/C][C]-0.00518521337087496[/C][/ROW]
[ROW][C]70[/C][C]1.96[/C][C]1.95492404744647[/C][C]0.00507595255353133[/C][/ROW]
[ROW][C]71[/C][C]1.96[/C][C]1.9619011442155[/C][C]-0.00190114421550103[/C][/ROW]
[ROW][C]72[/C][C]1.97[/C][C]1.96407183194442[/C][C]0.0059281680555765[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=271816&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=271816&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
31.651.66-0.01
41.661.66257026287484-0.00257026287483697
51.671.669917138173158.28618268546855e-05
61.671.67904411968992-0.00904411968991936
71.681.68139615453381-0.00139615453381192
81.681.68875800794527-0.00875800794526915
91.691.69054639552881-0.000546395528808308
101.71.697784648812370.00221535118763394
111.711.707034183512270.00296581648772998
121.721.717006002672390.00299399732761474
131.721.72721926404163-0.00721926404162798
141.731.73006694048904-6.69404890352165e-05
151.731.73769186245804-0.00769186245804154
161.731.73964669090608-0.00964669090607595
171.731.73957725326777-0.00957725326776626
181.741.738842187088060.00115781291193606
191.751.745370936598490.00462906340151026
201.751.75456481585145-0.00456481585145108
211.751.75727204932705-0.00727204932704995
221.761.757628491394510.00237150860548896
231.761.76460917612249-0.00460917612249379
241.761.76657971417256-0.00657971417256031
251.771.766743508021520.0032564919784781
261.781.773726151308450.00627384869154834
271.781.78319272724382-0.00319272724382125
281.791.786092338575410.0039076614245861
291.791.79402997693176-0.00402997693175555
301.791.79636068817785-0.00636068817785329
311.791.7966601187103-0.00666011871030148
321.791.79626417136218-0.00626417136218005
331.831.795667231349640.0343327686503558
341.831.824767017608090.00523298239190706
351.831.83479902418648-0.00479902418647571
361.831.83776657900587-0.00776657900587474
371.841.838172517417780.00182748258221577
381.841.84512915637109-0.00512915637109468
391.841.84705306640001-0.00705306640001302
401.851.847166215768820.00283378423117719
411.851.85410064897258-0.00410064897258322
421.851.85609366875465-0.00609366875465445
431.861.856301049329770.00369895067022963
441.861.86333103239371-0.00333103239370902
451.861.86541293499744-0.00541293499743634
461.871.865700380782620.00429961921737654
471.871.87280155437685-0.00280155437685226
481.881.874946413740980.0050535862590213
491.881.88271914419339-0.00271914419338604
501.881.88509266778933-0.00509266778933126
511.891.885500560924770.00449943907523243
521.891.89265650410329-0.00265650410328777
531.91.894830297036030.00516970296397345
541.911.902621248474730.0073787515252719
551.911.9124378255938-0.00243782559379535
561.911.9155095445142-0.00550954451419572
571.911.91611780787261-0.00611780787261473
581.911.91586452009998-0.00586452009997784
591.921.915344567451650.00465543254835299
601.921.92220464366087-0.00220464366086826
611.921.92431398891608-0.00431398891607659
621.931.92469223371660.00530776628339691
631.941.931898450251830.00810154974816713
641.941.94157499995714-0.00157499995714505
651.941.94466446725597-0.00466446725596614
661.951.945341442374420.00465855762557976
671.951.95259838284698-0.00259838284697955
681.951.95480996499584-0.00480996499584263
691.951.95518521337087-0.00518521337087496
701.961.954924047446470.00507595255353133
711.961.9619011442155-0.00190114421550103
721.971.964071831944420.0059281680555765







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
731.971918145286141.959070859821181.98476543075109
741.97580073715871.959795628642491.99180584567491
751.979683329031261.960541193340441.99882546472208
761.983565920903821.961257826904312.00587401490333
771.987448512776381.961920541267232.01297648428554
781.991331104648951.962515745779892.020146463518
791.995213696521511.963035776707872.02739161633515
801.999096288394071.963476309264152.03471626752399
812.002978880266631.963835007064012.04212275346925
822.006861472139191.964110765182512.04961217909588
832.010744064011761.964303262396172.05718486562734
842.014626655884321.964412685009572.06484062675907

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
73 & 1.97191814528614 & 1.95907085982118 & 1.98476543075109 \tabularnewline
74 & 1.9758007371587 & 1.95979562864249 & 1.99180584567491 \tabularnewline
75 & 1.97968332903126 & 1.96054119334044 & 1.99882546472208 \tabularnewline
76 & 1.98356592090382 & 1.96125782690431 & 2.00587401490333 \tabularnewline
77 & 1.98744851277638 & 1.96192054126723 & 2.01297648428554 \tabularnewline
78 & 1.99133110464895 & 1.96251574577989 & 2.020146463518 \tabularnewline
79 & 1.99521369652151 & 1.96303577670787 & 2.02739161633515 \tabularnewline
80 & 1.99909628839407 & 1.96347630926415 & 2.03471626752399 \tabularnewline
81 & 2.00297888026663 & 1.96383500706401 & 2.04212275346925 \tabularnewline
82 & 2.00686147213919 & 1.96411076518251 & 2.04961217909588 \tabularnewline
83 & 2.01074406401176 & 1.96430326239617 & 2.05718486562734 \tabularnewline
84 & 2.01462665588432 & 1.96441268500957 & 2.06484062675907 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=271816&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]73[/C][C]1.97191814528614[/C][C]1.95907085982118[/C][C]1.98476543075109[/C][/ROW]
[ROW][C]74[/C][C]1.9758007371587[/C][C]1.95979562864249[/C][C]1.99180584567491[/C][/ROW]
[ROW][C]75[/C][C]1.97968332903126[/C][C]1.96054119334044[/C][C]1.99882546472208[/C][/ROW]
[ROW][C]76[/C][C]1.98356592090382[/C][C]1.96125782690431[/C][C]2.00587401490333[/C][/ROW]
[ROW][C]77[/C][C]1.98744851277638[/C][C]1.96192054126723[/C][C]2.01297648428554[/C][/ROW]
[ROW][C]78[/C][C]1.99133110464895[/C][C]1.96251574577989[/C][C]2.020146463518[/C][/ROW]
[ROW][C]79[/C][C]1.99521369652151[/C][C]1.96303577670787[/C][C]2.02739161633515[/C][/ROW]
[ROW][C]80[/C][C]1.99909628839407[/C][C]1.96347630926415[/C][C]2.03471626752399[/C][/ROW]
[ROW][C]81[/C][C]2.00297888026663[/C][C]1.96383500706401[/C][C]2.04212275346925[/C][/ROW]
[ROW][C]82[/C][C]2.00686147213919[/C][C]1.96411076518251[/C][C]2.04961217909588[/C][/ROW]
[ROW][C]83[/C][C]2.01074406401176[/C][C]1.96430326239617[/C][C]2.05718486562734[/C][/ROW]
[ROW][C]84[/C][C]2.01462665588432[/C][C]1.96441268500957[/C][C]2.06484062675907[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=271816&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=271816&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
731.971918145286141.959070859821181.98476543075109
741.97580073715871.959795628642491.99180584567491
751.979683329031261.960541193340441.99882546472208
761.983565920903821.961257826904312.00587401490333
771.987448512776381.961920541267232.01297648428554
781.991331104648951.962515745779892.020146463518
791.995213696521511.963035776707872.02739161633515
801.999096288394071.963476309264152.03471626752399
812.002978880266631.963835007064012.04212275346925
822.006861472139191.964110765182512.04961217909588
832.010744064011761.964303262396172.05718486562734
842.014626655884321.964412685009572.06484062675907



Parameters (Session):
par1 = 12 ; par2 = Double ; par3 = additive ;
Parameters (R input):
par1 = 12 ; par2 = Double ; par3 = additive ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par1, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')