Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_smp.wasp
Title produced by softwareStandard Deviation-Mean Plot
Date of computationSun, 22 Nov 2015 23:14:07 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2015/Nov/22/t14482341332gpymszfmjksgn9.htm/, Retrieved Fri, 01 Nov 2024 00:38:31 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=283914, Retrieved Fri, 01 Nov 2024 00:38:31 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact95
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Standard Deviation-Mean Plot] [] [2015-11-22 23:14:07] [d1a83db1c928d515dd26931964d56abe] [Current]
Feedback Forum

Post a new message
Dataseries X:
90.65
90.93
91.42
91.52
91.76
91.47
91.37
91.35
91.74
91.78
91.88
91.99
92.55
92.94
92.81
93.35
93.72
93.94
94.03
93.66
93.78
94.1
94.85
94.83
95.06
95.87
95.97
95.96
96.3
96.17
96.18
96.55
96.76
97.63
97.86
97.82
98.62
99.24
99.63
100.27
100.84
101.05
100.38
100.02
99.97
99.95
100
100.04
100.51
100.29
100.22
101.29
100.29
100.26
100.39
99.3
98.9
98.76
99.12
99.28




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ wold.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=283914&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ wold.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=283914&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=283914&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Herman Ole Andreas Wold' @ wold.wessa.net







Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
191.48833333333330.3909157857072921.33999999999999
293.71333333333330.7228017876585692.3
396.51083333333330.8650744406574412.8
4100.0008333333330.6501532453385452.42999999999999
599.88416666666670.7821817776791622.53

\begin{tabular}{lllllllll}
\hline
Standard Deviation-Mean Plot \tabularnewline
Section & Mean & Standard Deviation & Range \tabularnewline
1 & 91.4883333333333 & 0.390915785707292 & 1.33999999999999 \tabularnewline
2 & 93.7133333333333 & 0.722801787658569 & 2.3 \tabularnewline
3 & 96.5108333333333 & 0.865074440657441 & 2.8 \tabularnewline
4 & 100.000833333333 & 0.650153245338545 & 2.42999999999999 \tabularnewline
5 & 99.8841666666667 & 0.782181777679162 & 2.53 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=283914&T=1

[TABLE]
[ROW][C]Standard Deviation-Mean Plot[/C][/ROW]
[ROW][C]Section[/C][C]Mean[/C][C]Standard Deviation[/C][C]Range[/C][/ROW]
[ROW][C]1[/C][C]91.4883333333333[/C][C]0.390915785707292[/C][C]1.33999999999999[/C][/ROW]
[ROW][C]2[/C][C]93.7133333333333[/C][C]0.722801787658569[/C][C]2.3[/C][/ROW]
[ROW][C]3[/C][C]96.5108333333333[/C][C]0.865074440657441[/C][C]2.8[/C][/ROW]
[ROW][C]4[/C][C]100.000833333333[/C][C]0.650153245338545[/C][C]2.42999999999999[/C][/ROW]
[ROW][C]5[/C][C]99.8841666666667[/C][C]0.782181777679162[/C][C]2.53[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=283914&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=283914&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
191.48833333333330.3909157857072921.33999999999999
293.71333333333330.7228017876585692.3
396.51083333333330.8650744406574412.8
4100.0008333333330.6501532453385452.42999999999999
599.88416666666670.7821817776791622.53







Regression: S.E.(k) = alpha + beta * Mean(k)
alpha-2.00595015665901
beta0.0279089443369952
S.D.0.0226712117196828
T-STAT1.23103011352345
p-value0.306021549722355

\begin{tabular}{lllllllll}
\hline
Regression: S.E.(k) = alpha + beta * Mean(k) \tabularnewline
alpha & -2.00595015665901 \tabularnewline
beta & 0.0279089443369952 \tabularnewline
S.D. & 0.0226712117196828 \tabularnewline
T-STAT & 1.23103011352345 \tabularnewline
p-value & 0.306021549722355 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=283914&T=2

[TABLE]
[ROW][C]Regression: S.E.(k) = alpha + beta * Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]-2.00595015665901[/C][/ROW]
[ROW][C]beta[/C][C]0.0279089443369952[/C][/ROW]
[ROW][C]S.D.[/C][C]0.0226712117196828[/C][/ROW]
[ROW][C]T-STAT[/C][C]1.23103011352345[/C][/ROW]
[ROW][C]p-value[/C][C]0.306021549722355[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=283914&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=283914&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: S.E.(k) = alpha + beta * Mean(k)
alpha-2.00595015665901
beta0.0279089443369952
S.D.0.0226712117196828
T-STAT1.23103011352345
p-value0.306021549722355







Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha-23.2145197085455
beta4.99172665233635
S.D.3.55263375801378
T-STAT1.40507775142213
p-value0.254645710158198
Lambda-3.99172665233635

\begin{tabular}{lllllllll}
\hline
Regression: ln S.E.(k) = alpha + beta * ln Mean(k) \tabularnewline
alpha & -23.2145197085455 \tabularnewline
beta & 4.99172665233635 \tabularnewline
S.D. & 3.55263375801378 \tabularnewline
T-STAT & 1.40507775142213 \tabularnewline
p-value & 0.254645710158198 \tabularnewline
Lambda & -3.99172665233635 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=283914&T=3

[TABLE]
[ROW][C]Regression: ln S.E.(k) = alpha + beta * ln Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]-23.2145197085455[/C][/ROW]
[ROW][C]beta[/C][C]4.99172665233635[/C][/ROW]
[ROW][C]S.D.[/C][C]3.55263375801378[/C][/ROW]
[ROW][C]T-STAT[/C][C]1.40507775142213[/C][/ROW]
[ROW][C]p-value[/C][C]0.254645710158198[/C][/ROW]
[ROW][C]Lambda[/C][C]-3.99172665233635[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=283914&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=283914&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha-23.2145197085455
beta4.99172665233635
S.D.3.55263375801378
T-STAT1.40507775142213
p-value0.254645710158198
Lambda-3.99172665233635



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
(n <- length(x))
(np <- floor(n / par1))
arr <- array(NA,dim=c(par1,np))
j <- 0
k <- 1
for (i in 1:(np*par1))
{
j = j + 1
arr[j,k] <- x[i]
if (j == par1) {
j = 0
k=k+1
}
}
arr
arr.mean <- array(NA,dim=np)
arr.sd <- array(NA,dim=np)
arr.range <- array(NA,dim=np)
for (j in 1:np)
{
arr.mean[j] <- mean(arr[,j],na.rm=TRUE)
arr.sd[j] <- sd(arr[,j],na.rm=TRUE)
arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE)
}
arr.mean
arr.sd
arr.range
(lm1 <- lm(arr.sd~arr.mean))
(lnlm1 <- lm(log(arr.sd)~log(arr.mean)))
(lm2 <- lm(arr.range~arr.mean))
bitmap(file='test1.png')
plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation')
dev.off()
bitmap(file='test2.png')
plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range')
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Section',header=TRUE)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,'Standard Deviation',header=TRUE)
a<-table.element(a,'Range',header=TRUE)
a<-table.row.end(a)
for (j in 1:np) {
a<-table.row.start(a)
a<-table.element(a,j,header=TRUE)
a<-table.element(a,arr.mean[j])
a<-table.element(a,arr.sd[j] )
a<-table.element(a,arr.range[j] )
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Lambda',header=TRUE)
a<-table.element(a,1-lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')