Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationWed, 09 Dec 2015 11:56:40 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2015/Dec/09/t144966238352ipzb6wnzrofq1.htm/, Retrieved Fri, 01 Nov 2024 00:36:34 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=285637, Retrieved Fri, 01 Nov 2024 00:36:34 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact106
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Exponential Smoothing] [Exponential Smoot...] [2015-12-09 11:56:40] [42f75ab47e982481f307588c9de28675] [Current]
Feedback Forum

Post a new message
Dataseries X:
8.5
8.4
8.5
8.7
8.7
8.6
8.5
8.3
8
8.2
8.1
8.1
8
7.9
7.9
8
8
7.9
8
7.7
7.2
7.5
7.3
7
7
7
7.2
7.3
7.1
6.8
6.4
6.1
6.5
7.7
7.9
7.5
6.9
6.6
6.9
7.7
8
8
7.7
7.3
7.4
8.1
8.3
8.1
7.9
7.9
8.3
8.6
8.7
8.5
8.3
8
8
8.8
8.7
8.5
8.1
7.8
7.7
7.5
7.2
6.9
6.6
6.5
6.6
7.7
8
7.7
7.3
7
7
7.3
7.3
7.1
7.1
7
7
7.5
7.8
7.9
8.1
8.3
8.4
8.6
8.5
8.4
8.3
8
8
8.7
8.7
8.6
8.5
8.5
8.6
8.8
8.7
8.6
8.4
8.1
8.1
8.7
8.7
8.6
8.6
8.5
8.6
8.8
8.8
8.7
8.5
8.3
8.3
8.9
9
8.8




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=285637&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=285637&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=285637&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.999933893038648
betaFALSE
gammaFALSE

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 0.999933893038648 \tabularnewline
beta & FALSE \tabularnewline
gamma & FALSE \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=285637&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]0.999933893038648[/C][/ROW]
[ROW][C]beta[/C][C]FALSE[/C][/ROW]
[ROW][C]gamma[/C][C]FALSE[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=285637&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=285637&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.999933893038648
betaFALSE
gammaFALSE







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
28.48.5-0.0999999999999996
38.58.400006610696130.0999933893038651
48.78.499993389740880.200006610259122
58.78.699986778170741.32218292545616e-05
68.68.69999999912594-0.099999999125945
78.58.60000661069608-0.100006610696077
88.38.50000661113315-0.200006611133148
988.30001322182931-0.300013221829314
108.28.000019832962460.199980167037539
118.18.19998677991883-0.0999867799188259
128.18.1000066098222-6.60982219713446e-06
1388.10000000043696-0.100000000436955
147.98.00000661069616-0.100006610696164
157.97.90000661113315-6.61113314848194e-06
1687.900000000437040.0999999995629572
1787.999993389303896.61069610607967e-06
187.97.99999999956299-0.0999999995629866
1987.900006610696110.0999933893038936
207.77.99999338974088-0.299993389740878
217.27.70001983165142-0.500019831651421
227.57.200033054791690.299966945208314
237.37.49998017009675-0.199980170096747
2477.30001322008138-0.300013220081375
2577.00001983296235-1.9832962345312e-05
2677.0000000013111-1.31109700873822e-09
277.27.000000000000090.199999999999913
287.37.199986778607730.10001322139227
297.17.29999338842984-0.199993388429839
306.87.1000132209552-0.3000132209552
316.46.8000198329624-0.400019832962402
326.16.40002644409564-0.300026444095638
336.56.100019833836540.399980166163456
347.76.499973558526611.20002644147339
357.97.699920669898410.200079330101588
367.57.89998677336346-0.399986773363458
376.97.50002644191017-0.600026441910168
386.66.90003966592481-0.300039665924807
396.96.60001983471060.299980165289401
407.76.899980169222810.800019830777193
4187.699947113119970.300052886880034
4287.99998016441541.98355845961729e-05
437.77.99999999868873-0.29999999868873
447.37.70001983208832-0.400019832088319
457.47.300026444095580.0999735559044215
468.17.3999933910520.700006608947995
478.38.099953724690160.200046275309845
488.18.29998677554861-0.199986775548611
497.98.10001322051804-0.200013220518041
507.97.90001322226624-1.32222662392323e-05
518.37.900000000874080.399999999125916
528.68.299973557215520.300026442784482
538.78.599980166163540.100019833836457
548.58.69999338799271-0.199993387992709
558.38.50001322095517-0.200013220955169
5688.30001322226627-0.300013222266269
5788.00001983296249-1.9832962490085e-05
588.88.00000000131110.799999998688904
598.78.79994711443101-0.0999471144310071
608.58.70000660720003-0.200006607200029
618.18.50001322182905-0.400013221829052
627.88.1000264436586-0.300026443658596
637.77.80001983383652-0.100019833836516
647.57.70000661200729-0.200006612007289
657.27.50001322182937-0.30001322182937
666.97.20001983296246-0.300019832962461
676.66.9000198333995-0.300019833399504
686.56.60001983339953-0.100019833399531
696.66.500006612007260.0999933879927379
707.76.599993389740961.10000661025904
7187.699927281905530.300072718094471
727.77.99998016310442-0.299980163104422
737.37.70001983077705-0.400019830777048
7477.30002644409549-0.300026444095493
7577.00001983383654-1.98338365446915e-05
767.37.000000001311150.299999998688845
777.37.299980167911681.98320883191272e-05
787.17.29999999868896-0.199999998688961
797.17.10001322139218-1.32213921837376e-05
8077.10000000087403-0.100000000874026
8177.00000661069619-6.61069619312116e-06
827.57.000000000437010.499999999562987
837.87.499966946519350.300033053480647
847.97.799980165726530.100019834273471
858.17.899993387992680.200006612007318
868.38.099986778170630.200013221829371
878.48.299986777733680.100013222266325
888.68.399993388429780.200006611570219
898.58.59998677817066-0.0999867781706598
908.48.50000660982208-0.10000660982208
918.38.40000661113309-0.10000661113309
9288.30000661113318-0.300006611133178
9388.00001983252545-1.98325254476828e-05
948.78.000000001311070.699999998688931
958.78.699953725127144.62748728597973e-05
968.68.69999999694091-0.0999999969409071
978.58.60000661069593-0.100006610695933
988.58.50000661113315-6.61113314848194e-06
998.68.500000000437040.0999999995629572
1008.88.599993389303890.200006610696107
1018.78.79998677817072-0.0999867781707184
1028.68.70000660982208-0.10000660982208
1038.48.60000661113309-0.200006611133091
1048.18.40001322182931-0.300013221829312
1058.18.10001983296246-1.98329624616633e-05
1068.78.10000000131110.599999998688903
1078.78.699960335823273.96641767252959e-05
1088.68.69999999737792-0.0999999973779211
1098.68.60000661069596-6.61069596219477e-06
1108.58.60000000043701-0.100000000437014
1118.68.500006610696160.0999933893038349
1128.88.599993389740880.200006610259123
1138.88.799986778170751.32218292545616e-05
1148.78.79999999912595-0.0999999991259468
1158.58.70000661069608-0.200006610696077
1168.38.50001322182928-0.200013221829282
1178.38.30001322226633-1.32222663253856e-05
1188.98.300000000874090.599999999125915
11998.899960335823250.100039664176752
1208.88.99999338668179-0.199993386681786

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
2 & 8.4 & 8.5 & -0.0999999999999996 \tabularnewline
3 & 8.5 & 8.40000661069613 & 0.0999933893038651 \tabularnewline
4 & 8.7 & 8.49999338974088 & 0.200006610259122 \tabularnewline
5 & 8.7 & 8.69998677817074 & 1.32218292545616e-05 \tabularnewline
6 & 8.6 & 8.69999999912594 & -0.099999999125945 \tabularnewline
7 & 8.5 & 8.60000661069608 & -0.100006610696077 \tabularnewline
8 & 8.3 & 8.50000661113315 & -0.200006611133148 \tabularnewline
9 & 8 & 8.30001322182931 & -0.300013221829314 \tabularnewline
10 & 8.2 & 8.00001983296246 & 0.199980167037539 \tabularnewline
11 & 8.1 & 8.19998677991883 & -0.0999867799188259 \tabularnewline
12 & 8.1 & 8.1000066098222 & -6.60982219713446e-06 \tabularnewline
13 & 8 & 8.10000000043696 & -0.100000000436955 \tabularnewline
14 & 7.9 & 8.00000661069616 & -0.100006610696164 \tabularnewline
15 & 7.9 & 7.90000661113315 & -6.61113314848194e-06 \tabularnewline
16 & 8 & 7.90000000043704 & 0.0999999995629572 \tabularnewline
17 & 8 & 7.99999338930389 & 6.61069610607967e-06 \tabularnewline
18 & 7.9 & 7.99999999956299 & -0.0999999995629866 \tabularnewline
19 & 8 & 7.90000661069611 & 0.0999933893038936 \tabularnewline
20 & 7.7 & 7.99999338974088 & -0.299993389740878 \tabularnewline
21 & 7.2 & 7.70001983165142 & -0.500019831651421 \tabularnewline
22 & 7.5 & 7.20003305479169 & 0.299966945208314 \tabularnewline
23 & 7.3 & 7.49998017009675 & -0.199980170096747 \tabularnewline
24 & 7 & 7.30001322008138 & -0.300013220081375 \tabularnewline
25 & 7 & 7.00001983296235 & -1.9832962345312e-05 \tabularnewline
26 & 7 & 7.0000000013111 & -1.31109700873822e-09 \tabularnewline
27 & 7.2 & 7.00000000000009 & 0.199999999999913 \tabularnewline
28 & 7.3 & 7.19998677860773 & 0.10001322139227 \tabularnewline
29 & 7.1 & 7.29999338842984 & -0.199993388429839 \tabularnewline
30 & 6.8 & 7.1000132209552 & -0.3000132209552 \tabularnewline
31 & 6.4 & 6.8000198329624 & -0.400019832962402 \tabularnewline
32 & 6.1 & 6.40002644409564 & -0.300026444095638 \tabularnewline
33 & 6.5 & 6.10001983383654 & 0.399980166163456 \tabularnewline
34 & 7.7 & 6.49997355852661 & 1.20002644147339 \tabularnewline
35 & 7.9 & 7.69992066989841 & 0.200079330101588 \tabularnewline
36 & 7.5 & 7.89998677336346 & -0.399986773363458 \tabularnewline
37 & 6.9 & 7.50002644191017 & -0.600026441910168 \tabularnewline
38 & 6.6 & 6.90003966592481 & -0.300039665924807 \tabularnewline
39 & 6.9 & 6.6000198347106 & 0.299980165289401 \tabularnewline
40 & 7.7 & 6.89998016922281 & 0.800019830777193 \tabularnewline
41 & 8 & 7.69994711311997 & 0.300052886880034 \tabularnewline
42 & 8 & 7.9999801644154 & 1.98355845961729e-05 \tabularnewline
43 & 7.7 & 7.99999999868873 & -0.29999999868873 \tabularnewline
44 & 7.3 & 7.70001983208832 & -0.400019832088319 \tabularnewline
45 & 7.4 & 7.30002644409558 & 0.0999735559044215 \tabularnewline
46 & 8.1 & 7.399993391052 & 0.700006608947995 \tabularnewline
47 & 8.3 & 8.09995372469016 & 0.200046275309845 \tabularnewline
48 & 8.1 & 8.29998677554861 & -0.199986775548611 \tabularnewline
49 & 7.9 & 8.10001322051804 & -0.200013220518041 \tabularnewline
50 & 7.9 & 7.90001322226624 & -1.32222662392323e-05 \tabularnewline
51 & 8.3 & 7.90000000087408 & 0.399999999125916 \tabularnewline
52 & 8.6 & 8.29997355721552 & 0.300026442784482 \tabularnewline
53 & 8.7 & 8.59998016616354 & 0.100019833836457 \tabularnewline
54 & 8.5 & 8.69999338799271 & -0.199993387992709 \tabularnewline
55 & 8.3 & 8.50001322095517 & -0.200013220955169 \tabularnewline
56 & 8 & 8.30001322226627 & -0.300013222266269 \tabularnewline
57 & 8 & 8.00001983296249 & -1.9832962490085e-05 \tabularnewline
58 & 8.8 & 8.0000000013111 & 0.799999998688904 \tabularnewline
59 & 8.7 & 8.79994711443101 & -0.0999471144310071 \tabularnewline
60 & 8.5 & 8.70000660720003 & -0.200006607200029 \tabularnewline
61 & 8.1 & 8.50001322182905 & -0.400013221829052 \tabularnewline
62 & 7.8 & 8.1000264436586 & -0.300026443658596 \tabularnewline
63 & 7.7 & 7.80001983383652 & -0.100019833836516 \tabularnewline
64 & 7.5 & 7.70000661200729 & -0.200006612007289 \tabularnewline
65 & 7.2 & 7.50001322182937 & -0.30001322182937 \tabularnewline
66 & 6.9 & 7.20001983296246 & -0.300019832962461 \tabularnewline
67 & 6.6 & 6.9000198333995 & -0.300019833399504 \tabularnewline
68 & 6.5 & 6.60001983339953 & -0.100019833399531 \tabularnewline
69 & 6.6 & 6.50000661200726 & 0.0999933879927379 \tabularnewline
70 & 7.7 & 6.59999338974096 & 1.10000661025904 \tabularnewline
71 & 8 & 7.69992728190553 & 0.300072718094471 \tabularnewline
72 & 7.7 & 7.99998016310442 & -0.299980163104422 \tabularnewline
73 & 7.3 & 7.70001983077705 & -0.400019830777048 \tabularnewline
74 & 7 & 7.30002644409549 & -0.300026444095493 \tabularnewline
75 & 7 & 7.00001983383654 & -1.98338365446915e-05 \tabularnewline
76 & 7.3 & 7.00000000131115 & 0.299999998688845 \tabularnewline
77 & 7.3 & 7.29998016791168 & 1.98320883191272e-05 \tabularnewline
78 & 7.1 & 7.29999999868896 & -0.199999998688961 \tabularnewline
79 & 7.1 & 7.10001322139218 & -1.32213921837376e-05 \tabularnewline
80 & 7 & 7.10000000087403 & -0.100000000874026 \tabularnewline
81 & 7 & 7.00000661069619 & -6.61069619312116e-06 \tabularnewline
82 & 7.5 & 7.00000000043701 & 0.499999999562987 \tabularnewline
83 & 7.8 & 7.49996694651935 & 0.300033053480647 \tabularnewline
84 & 7.9 & 7.79998016572653 & 0.100019834273471 \tabularnewline
85 & 8.1 & 7.89999338799268 & 0.200006612007318 \tabularnewline
86 & 8.3 & 8.09998677817063 & 0.200013221829371 \tabularnewline
87 & 8.4 & 8.29998677773368 & 0.100013222266325 \tabularnewline
88 & 8.6 & 8.39999338842978 & 0.200006611570219 \tabularnewline
89 & 8.5 & 8.59998677817066 & -0.0999867781706598 \tabularnewline
90 & 8.4 & 8.50000660982208 & -0.10000660982208 \tabularnewline
91 & 8.3 & 8.40000661113309 & -0.10000661113309 \tabularnewline
92 & 8 & 8.30000661113318 & -0.300006611133178 \tabularnewline
93 & 8 & 8.00001983252545 & -1.98325254476828e-05 \tabularnewline
94 & 8.7 & 8.00000000131107 & 0.699999998688931 \tabularnewline
95 & 8.7 & 8.69995372512714 & 4.62748728597973e-05 \tabularnewline
96 & 8.6 & 8.69999999694091 & -0.0999999969409071 \tabularnewline
97 & 8.5 & 8.60000661069593 & -0.100006610695933 \tabularnewline
98 & 8.5 & 8.50000661113315 & -6.61113314848194e-06 \tabularnewline
99 & 8.6 & 8.50000000043704 & 0.0999999995629572 \tabularnewline
100 & 8.8 & 8.59999338930389 & 0.200006610696107 \tabularnewline
101 & 8.7 & 8.79998677817072 & -0.0999867781707184 \tabularnewline
102 & 8.6 & 8.70000660982208 & -0.10000660982208 \tabularnewline
103 & 8.4 & 8.60000661113309 & -0.200006611133091 \tabularnewline
104 & 8.1 & 8.40001322182931 & -0.300013221829312 \tabularnewline
105 & 8.1 & 8.10001983296246 & -1.98329624616633e-05 \tabularnewline
106 & 8.7 & 8.1000000013111 & 0.599999998688903 \tabularnewline
107 & 8.7 & 8.69996033582327 & 3.96641767252959e-05 \tabularnewline
108 & 8.6 & 8.69999999737792 & -0.0999999973779211 \tabularnewline
109 & 8.6 & 8.60000661069596 & -6.61069596219477e-06 \tabularnewline
110 & 8.5 & 8.60000000043701 & -0.100000000437014 \tabularnewline
111 & 8.6 & 8.50000661069616 & 0.0999933893038349 \tabularnewline
112 & 8.8 & 8.59999338974088 & 0.200006610259123 \tabularnewline
113 & 8.8 & 8.79998677817075 & 1.32218292545616e-05 \tabularnewline
114 & 8.7 & 8.79999999912595 & -0.0999999991259468 \tabularnewline
115 & 8.5 & 8.70000661069608 & -0.200006610696077 \tabularnewline
116 & 8.3 & 8.50001322182928 & -0.200013221829282 \tabularnewline
117 & 8.3 & 8.30001322226633 & -1.32222663253856e-05 \tabularnewline
118 & 8.9 & 8.30000000087409 & 0.599999999125915 \tabularnewline
119 & 9 & 8.89996033582325 & 0.100039664176752 \tabularnewline
120 & 8.8 & 8.99999338668179 & -0.199993386681786 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=285637&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]2[/C][C]8.4[/C][C]8.5[/C][C]-0.0999999999999996[/C][/ROW]
[ROW][C]3[/C][C]8.5[/C][C]8.40000661069613[/C][C]0.0999933893038651[/C][/ROW]
[ROW][C]4[/C][C]8.7[/C][C]8.49999338974088[/C][C]0.200006610259122[/C][/ROW]
[ROW][C]5[/C][C]8.7[/C][C]8.69998677817074[/C][C]1.32218292545616e-05[/C][/ROW]
[ROW][C]6[/C][C]8.6[/C][C]8.69999999912594[/C][C]-0.099999999125945[/C][/ROW]
[ROW][C]7[/C][C]8.5[/C][C]8.60000661069608[/C][C]-0.100006610696077[/C][/ROW]
[ROW][C]8[/C][C]8.3[/C][C]8.50000661113315[/C][C]-0.200006611133148[/C][/ROW]
[ROW][C]9[/C][C]8[/C][C]8.30001322182931[/C][C]-0.300013221829314[/C][/ROW]
[ROW][C]10[/C][C]8.2[/C][C]8.00001983296246[/C][C]0.199980167037539[/C][/ROW]
[ROW][C]11[/C][C]8.1[/C][C]8.19998677991883[/C][C]-0.0999867799188259[/C][/ROW]
[ROW][C]12[/C][C]8.1[/C][C]8.1000066098222[/C][C]-6.60982219713446e-06[/C][/ROW]
[ROW][C]13[/C][C]8[/C][C]8.10000000043696[/C][C]-0.100000000436955[/C][/ROW]
[ROW][C]14[/C][C]7.9[/C][C]8.00000661069616[/C][C]-0.100006610696164[/C][/ROW]
[ROW][C]15[/C][C]7.9[/C][C]7.90000661113315[/C][C]-6.61113314848194e-06[/C][/ROW]
[ROW][C]16[/C][C]8[/C][C]7.90000000043704[/C][C]0.0999999995629572[/C][/ROW]
[ROW][C]17[/C][C]8[/C][C]7.99999338930389[/C][C]6.61069610607967e-06[/C][/ROW]
[ROW][C]18[/C][C]7.9[/C][C]7.99999999956299[/C][C]-0.0999999995629866[/C][/ROW]
[ROW][C]19[/C][C]8[/C][C]7.90000661069611[/C][C]0.0999933893038936[/C][/ROW]
[ROW][C]20[/C][C]7.7[/C][C]7.99999338974088[/C][C]-0.299993389740878[/C][/ROW]
[ROW][C]21[/C][C]7.2[/C][C]7.70001983165142[/C][C]-0.500019831651421[/C][/ROW]
[ROW][C]22[/C][C]7.5[/C][C]7.20003305479169[/C][C]0.299966945208314[/C][/ROW]
[ROW][C]23[/C][C]7.3[/C][C]7.49998017009675[/C][C]-0.199980170096747[/C][/ROW]
[ROW][C]24[/C][C]7[/C][C]7.30001322008138[/C][C]-0.300013220081375[/C][/ROW]
[ROW][C]25[/C][C]7[/C][C]7.00001983296235[/C][C]-1.9832962345312e-05[/C][/ROW]
[ROW][C]26[/C][C]7[/C][C]7.0000000013111[/C][C]-1.31109700873822e-09[/C][/ROW]
[ROW][C]27[/C][C]7.2[/C][C]7.00000000000009[/C][C]0.199999999999913[/C][/ROW]
[ROW][C]28[/C][C]7.3[/C][C]7.19998677860773[/C][C]0.10001322139227[/C][/ROW]
[ROW][C]29[/C][C]7.1[/C][C]7.29999338842984[/C][C]-0.199993388429839[/C][/ROW]
[ROW][C]30[/C][C]6.8[/C][C]7.1000132209552[/C][C]-0.3000132209552[/C][/ROW]
[ROW][C]31[/C][C]6.4[/C][C]6.8000198329624[/C][C]-0.400019832962402[/C][/ROW]
[ROW][C]32[/C][C]6.1[/C][C]6.40002644409564[/C][C]-0.300026444095638[/C][/ROW]
[ROW][C]33[/C][C]6.5[/C][C]6.10001983383654[/C][C]0.399980166163456[/C][/ROW]
[ROW][C]34[/C][C]7.7[/C][C]6.49997355852661[/C][C]1.20002644147339[/C][/ROW]
[ROW][C]35[/C][C]7.9[/C][C]7.69992066989841[/C][C]0.200079330101588[/C][/ROW]
[ROW][C]36[/C][C]7.5[/C][C]7.89998677336346[/C][C]-0.399986773363458[/C][/ROW]
[ROW][C]37[/C][C]6.9[/C][C]7.50002644191017[/C][C]-0.600026441910168[/C][/ROW]
[ROW][C]38[/C][C]6.6[/C][C]6.90003966592481[/C][C]-0.300039665924807[/C][/ROW]
[ROW][C]39[/C][C]6.9[/C][C]6.6000198347106[/C][C]0.299980165289401[/C][/ROW]
[ROW][C]40[/C][C]7.7[/C][C]6.89998016922281[/C][C]0.800019830777193[/C][/ROW]
[ROW][C]41[/C][C]8[/C][C]7.69994711311997[/C][C]0.300052886880034[/C][/ROW]
[ROW][C]42[/C][C]8[/C][C]7.9999801644154[/C][C]1.98355845961729e-05[/C][/ROW]
[ROW][C]43[/C][C]7.7[/C][C]7.99999999868873[/C][C]-0.29999999868873[/C][/ROW]
[ROW][C]44[/C][C]7.3[/C][C]7.70001983208832[/C][C]-0.400019832088319[/C][/ROW]
[ROW][C]45[/C][C]7.4[/C][C]7.30002644409558[/C][C]0.0999735559044215[/C][/ROW]
[ROW][C]46[/C][C]8.1[/C][C]7.399993391052[/C][C]0.700006608947995[/C][/ROW]
[ROW][C]47[/C][C]8.3[/C][C]8.09995372469016[/C][C]0.200046275309845[/C][/ROW]
[ROW][C]48[/C][C]8.1[/C][C]8.29998677554861[/C][C]-0.199986775548611[/C][/ROW]
[ROW][C]49[/C][C]7.9[/C][C]8.10001322051804[/C][C]-0.200013220518041[/C][/ROW]
[ROW][C]50[/C][C]7.9[/C][C]7.90001322226624[/C][C]-1.32222662392323e-05[/C][/ROW]
[ROW][C]51[/C][C]8.3[/C][C]7.90000000087408[/C][C]0.399999999125916[/C][/ROW]
[ROW][C]52[/C][C]8.6[/C][C]8.29997355721552[/C][C]0.300026442784482[/C][/ROW]
[ROW][C]53[/C][C]8.7[/C][C]8.59998016616354[/C][C]0.100019833836457[/C][/ROW]
[ROW][C]54[/C][C]8.5[/C][C]8.69999338799271[/C][C]-0.199993387992709[/C][/ROW]
[ROW][C]55[/C][C]8.3[/C][C]8.50001322095517[/C][C]-0.200013220955169[/C][/ROW]
[ROW][C]56[/C][C]8[/C][C]8.30001322226627[/C][C]-0.300013222266269[/C][/ROW]
[ROW][C]57[/C][C]8[/C][C]8.00001983296249[/C][C]-1.9832962490085e-05[/C][/ROW]
[ROW][C]58[/C][C]8.8[/C][C]8.0000000013111[/C][C]0.799999998688904[/C][/ROW]
[ROW][C]59[/C][C]8.7[/C][C]8.79994711443101[/C][C]-0.0999471144310071[/C][/ROW]
[ROW][C]60[/C][C]8.5[/C][C]8.70000660720003[/C][C]-0.200006607200029[/C][/ROW]
[ROW][C]61[/C][C]8.1[/C][C]8.50001322182905[/C][C]-0.400013221829052[/C][/ROW]
[ROW][C]62[/C][C]7.8[/C][C]8.1000264436586[/C][C]-0.300026443658596[/C][/ROW]
[ROW][C]63[/C][C]7.7[/C][C]7.80001983383652[/C][C]-0.100019833836516[/C][/ROW]
[ROW][C]64[/C][C]7.5[/C][C]7.70000661200729[/C][C]-0.200006612007289[/C][/ROW]
[ROW][C]65[/C][C]7.2[/C][C]7.50001322182937[/C][C]-0.30001322182937[/C][/ROW]
[ROW][C]66[/C][C]6.9[/C][C]7.20001983296246[/C][C]-0.300019832962461[/C][/ROW]
[ROW][C]67[/C][C]6.6[/C][C]6.9000198333995[/C][C]-0.300019833399504[/C][/ROW]
[ROW][C]68[/C][C]6.5[/C][C]6.60001983339953[/C][C]-0.100019833399531[/C][/ROW]
[ROW][C]69[/C][C]6.6[/C][C]6.50000661200726[/C][C]0.0999933879927379[/C][/ROW]
[ROW][C]70[/C][C]7.7[/C][C]6.59999338974096[/C][C]1.10000661025904[/C][/ROW]
[ROW][C]71[/C][C]8[/C][C]7.69992728190553[/C][C]0.300072718094471[/C][/ROW]
[ROW][C]72[/C][C]7.7[/C][C]7.99998016310442[/C][C]-0.299980163104422[/C][/ROW]
[ROW][C]73[/C][C]7.3[/C][C]7.70001983077705[/C][C]-0.400019830777048[/C][/ROW]
[ROW][C]74[/C][C]7[/C][C]7.30002644409549[/C][C]-0.300026444095493[/C][/ROW]
[ROW][C]75[/C][C]7[/C][C]7.00001983383654[/C][C]-1.98338365446915e-05[/C][/ROW]
[ROW][C]76[/C][C]7.3[/C][C]7.00000000131115[/C][C]0.299999998688845[/C][/ROW]
[ROW][C]77[/C][C]7.3[/C][C]7.29998016791168[/C][C]1.98320883191272e-05[/C][/ROW]
[ROW][C]78[/C][C]7.1[/C][C]7.29999999868896[/C][C]-0.199999998688961[/C][/ROW]
[ROW][C]79[/C][C]7.1[/C][C]7.10001322139218[/C][C]-1.32213921837376e-05[/C][/ROW]
[ROW][C]80[/C][C]7[/C][C]7.10000000087403[/C][C]-0.100000000874026[/C][/ROW]
[ROW][C]81[/C][C]7[/C][C]7.00000661069619[/C][C]-6.61069619312116e-06[/C][/ROW]
[ROW][C]82[/C][C]7.5[/C][C]7.00000000043701[/C][C]0.499999999562987[/C][/ROW]
[ROW][C]83[/C][C]7.8[/C][C]7.49996694651935[/C][C]0.300033053480647[/C][/ROW]
[ROW][C]84[/C][C]7.9[/C][C]7.79998016572653[/C][C]0.100019834273471[/C][/ROW]
[ROW][C]85[/C][C]8.1[/C][C]7.89999338799268[/C][C]0.200006612007318[/C][/ROW]
[ROW][C]86[/C][C]8.3[/C][C]8.09998677817063[/C][C]0.200013221829371[/C][/ROW]
[ROW][C]87[/C][C]8.4[/C][C]8.29998677773368[/C][C]0.100013222266325[/C][/ROW]
[ROW][C]88[/C][C]8.6[/C][C]8.39999338842978[/C][C]0.200006611570219[/C][/ROW]
[ROW][C]89[/C][C]8.5[/C][C]8.59998677817066[/C][C]-0.0999867781706598[/C][/ROW]
[ROW][C]90[/C][C]8.4[/C][C]8.50000660982208[/C][C]-0.10000660982208[/C][/ROW]
[ROW][C]91[/C][C]8.3[/C][C]8.40000661113309[/C][C]-0.10000661113309[/C][/ROW]
[ROW][C]92[/C][C]8[/C][C]8.30000661113318[/C][C]-0.300006611133178[/C][/ROW]
[ROW][C]93[/C][C]8[/C][C]8.00001983252545[/C][C]-1.98325254476828e-05[/C][/ROW]
[ROW][C]94[/C][C]8.7[/C][C]8.00000000131107[/C][C]0.699999998688931[/C][/ROW]
[ROW][C]95[/C][C]8.7[/C][C]8.69995372512714[/C][C]4.62748728597973e-05[/C][/ROW]
[ROW][C]96[/C][C]8.6[/C][C]8.69999999694091[/C][C]-0.0999999969409071[/C][/ROW]
[ROW][C]97[/C][C]8.5[/C][C]8.60000661069593[/C][C]-0.100006610695933[/C][/ROW]
[ROW][C]98[/C][C]8.5[/C][C]8.50000661113315[/C][C]-6.61113314848194e-06[/C][/ROW]
[ROW][C]99[/C][C]8.6[/C][C]8.50000000043704[/C][C]0.0999999995629572[/C][/ROW]
[ROW][C]100[/C][C]8.8[/C][C]8.59999338930389[/C][C]0.200006610696107[/C][/ROW]
[ROW][C]101[/C][C]8.7[/C][C]8.79998677817072[/C][C]-0.0999867781707184[/C][/ROW]
[ROW][C]102[/C][C]8.6[/C][C]8.70000660982208[/C][C]-0.10000660982208[/C][/ROW]
[ROW][C]103[/C][C]8.4[/C][C]8.60000661113309[/C][C]-0.200006611133091[/C][/ROW]
[ROW][C]104[/C][C]8.1[/C][C]8.40001322182931[/C][C]-0.300013221829312[/C][/ROW]
[ROW][C]105[/C][C]8.1[/C][C]8.10001983296246[/C][C]-1.98329624616633e-05[/C][/ROW]
[ROW][C]106[/C][C]8.7[/C][C]8.1000000013111[/C][C]0.599999998688903[/C][/ROW]
[ROW][C]107[/C][C]8.7[/C][C]8.69996033582327[/C][C]3.96641767252959e-05[/C][/ROW]
[ROW][C]108[/C][C]8.6[/C][C]8.69999999737792[/C][C]-0.0999999973779211[/C][/ROW]
[ROW][C]109[/C][C]8.6[/C][C]8.60000661069596[/C][C]-6.61069596219477e-06[/C][/ROW]
[ROW][C]110[/C][C]8.5[/C][C]8.60000000043701[/C][C]-0.100000000437014[/C][/ROW]
[ROW][C]111[/C][C]8.6[/C][C]8.50000661069616[/C][C]0.0999933893038349[/C][/ROW]
[ROW][C]112[/C][C]8.8[/C][C]8.59999338974088[/C][C]0.200006610259123[/C][/ROW]
[ROW][C]113[/C][C]8.8[/C][C]8.79998677817075[/C][C]1.32218292545616e-05[/C][/ROW]
[ROW][C]114[/C][C]8.7[/C][C]8.79999999912595[/C][C]-0.0999999991259468[/C][/ROW]
[ROW][C]115[/C][C]8.5[/C][C]8.70000661069608[/C][C]-0.200006610696077[/C][/ROW]
[ROW][C]116[/C][C]8.3[/C][C]8.50001322182928[/C][C]-0.200013221829282[/C][/ROW]
[ROW][C]117[/C][C]8.3[/C][C]8.30001322226633[/C][C]-1.32222663253856e-05[/C][/ROW]
[ROW][C]118[/C][C]8.9[/C][C]8.30000000087409[/C][C]0.599999999125915[/C][/ROW]
[ROW][C]119[/C][C]9[/C][C]8.89996033582325[/C][C]0.100039664176752[/C][/ROW]
[ROW][C]120[/C][C]8.8[/C][C]8.99999338668179[/C][C]-0.199993386681786[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=285637&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=285637&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
28.48.5-0.0999999999999996
38.58.400006610696130.0999933893038651
48.78.499993389740880.200006610259122
58.78.699986778170741.32218292545616e-05
68.68.69999999912594-0.099999999125945
78.58.60000661069608-0.100006610696077
88.38.50000661113315-0.200006611133148
988.30001322182931-0.300013221829314
108.28.000019832962460.199980167037539
118.18.19998677991883-0.0999867799188259
128.18.1000066098222-6.60982219713446e-06
1388.10000000043696-0.100000000436955
147.98.00000661069616-0.100006610696164
157.97.90000661113315-6.61113314848194e-06
1687.900000000437040.0999999995629572
1787.999993389303896.61069610607967e-06
187.97.99999999956299-0.0999999995629866
1987.900006610696110.0999933893038936
207.77.99999338974088-0.299993389740878
217.27.70001983165142-0.500019831651421
227.57.200033054791690.299966945208314
237.37.49998017009675-0.199980170096747
2477.30001322008138-0.300013220081375
2577.00001983296235-1.9832962345312e-05
2677.0000000013111-1.31109700873822e-09
277.27.000000000000090.199999999999913
287.37.199986778607730.10001322139227
297.17.29999338842984-0.199993388429839
306.87.1000132209552-0.3000132209552
316.46.8000198329624-0.400019832962402
326.16.40002644409564-0.300026444095638
336.56.100019833836540.399980166163456
347.76.499973558526611.20002644147339
357.97.699920669898410.200079330101588
367.57.89998677336346-0.399986773363458
376.97.50002644191017-0.600026441910168
386.66.90003966592481-0.300039665924807
396.96.60001983471060.299980165289401
407.76.899980169222810.800019830777193
4187.699947113119970.300052886880034
4287.99998016441541.98355845961729e-05
437.77.99999999868873-0.29999999868873
447.37.70001983208832-0.400019832088319
457.47.300026444095580.0999735559044215
468.17.3999933910520.700006608947995
478.38.099953724690160.200046275309845
488.18.29998677554861-0.199986775548611
497.98.10001322051804-0.200013220518041
507.97.90001322226624-1.32222662392323e-05
518.37.900000000874080.399999999125916
528.68.299973557215520.300026442784482
538.78.599980166163540.100019833836457
548.58.69999338799271-0.199993387992709
558.38.50001322095517-0.200013220955169
5688.30001322226627-0.300013222266269
5788.00001983296249-1.9832962490085e-05
588.88.00000000131110.799999998688904
598.78.79994711443101-0.0999471144310071
608.58.70000660720003-0.200006607200029
618.18.50001322182905-0.400013221829052
627.88.1000264436586-0.300026443658596
637.77.80001983383652-0.100019833836516
647.57.70000661200729-0.200006612007289
657.27.50001322182937-0.30001322182937
666.97.20001983296246-0.300019832962461
676.66.9000198333995-0.300019833399504
686.56.60001983339953-0.100019833399531
696.66.500006612007260.0999933879927379
707.76.599993389740961.10000661025904
7187.699927281905530.300072718094471
727.77.99998016310442-0.299980163104422
737.37.70001983077705-0.400019830777048
7477.30002644409549-0.300026444095493
7577.00001983383654-1.98338365446915e-05
767.37.000000001311150.299999998688845
777.37.299980167911681.98320883191272e-05
787.17.29999999868896-0.199999998688961
797.17.10001322139218-1.32213921837376e-05
8077.10000000087403-0.100000000874026
8177.00000661069619-6.61069619312116e-06
827.57.000000000437010.499999999562987
837.87.499966946519350.300033053480647
847.97.799980165726530.100019834273471
858.17.899993387992680.200006612007318
868.38.099986778170630.200013221829371
878.48.299986777733680.100013222266325
888.68.399993388429780.200006611570219
898.58.59998677817066-0.0999867781706598
908.48.50000660982208-0.10000660982208
918.38.40000661113309-0.10000661113309
9288.30000661113318-0.300006611133178
9388.00001983252545-1.98325254476828e-05
948.78.000000001311070.699999998688931
958.78.699953725127144.62748728597973e-05
968.68.69999999694091-0.0999999969409071
978.58.60000661069593-0.100006610695933
988.58.50000661113315-6.61113314848194e-06
998.68.500000000437040.0999999995629572
1008.88.599993389303890.200006610696107
1018.78.79998677817072-0.0999867781707184
1028.68.70000660982208-0.10000660982208
1038.48.60000661113309-0.200006611133091
1048.18.40001322182931-0.300013221829312
1058.18.10001983296246-1.98329624616633e-05
1068.78.10000000131110.599999998688903
1078.78.699960335823273.96641767252959e-05
1088.68.69999999737792-0.0999999973779211
1098.68.60000661069596-6.61069596219477e-06
1108.58.60000000043701-0.100000000437014
1118.68.500006610696160.0999933893038349
1128.88.599993389740880.200006610259123
1138.88.799986778170751.32218292545616e-05
1148.78.79999999912595-0.0999999991259468
1158.58.70000661069608-0.200006610696077
1168.38.50001322182928-0.200013221829282
1178.38.30001322226633-1.32222663253856e-05
1188.98.300000000874090.599999999125915
11998.899960335823250.100039664176752
1208.88.99999338668179-0.199993386681786







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1218.800013220955098.202420758732059.39760568317812
1228.800013220955097.954917789914479.6451086519957
1238.800013220955097.764998330131939.83502811177824
1248.800013220955097.604887553552039.99513888835814
1258.800013220955097.4638265208470710.1361999210631
1268.800013220955097.3362972532190410.2637291886911
1278.800013220955097.219021769091610.3810046728186
1288.800013220955097.1098642607964410.4901621811137
1298.800013220955097.0073411806238710.5926852612863
1308.800013220955096.9103723606736310.6896540812365
1318.800013220955096.8181423579811210.7818840839291
1328.800013220955096.7300176523209110.8700087895893

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
121 & 8.80001322095509 & 8.20242075873205 & 9.39760568317812 \tabularnewline
122 & 8.80001322095509 & 7.95491778991447 & 9.6451086519957 \tabularnewline
123 & 8.80001322095509 & 7.76499833013193 & 9.83502811177824 \tabularnewline
124 & 8.80001322095509 & 7.60488755355203 & 9.99513888835814 \tabularnewline
125 & 8.80001322095509 & 7.46382652084707 & 10.1361999210631 \tabularnewline
126 & 8.80001322095509 & 7.33629725321904 & 10.2637291886911 \tabularnewline
127 & 8.80001322095509 & 7.2190217690916 & 10.3810046728186 \tabularnewline
128 & 8.80001322095509 & 7.10986426079644 & 10.4901621811137 \tabularnewline
129 & 8.80001322095509 & 7.00734118062387 & 10.5926852612863 \tabularnewline
130 & 8.80001322095509 & 6.91037236067363 & 10.6896540812365 \tabularnewline
131 & 8.80001322095509 & 6.81814235798112 & 10.7818840839291 \tabularnewline
132 & 8.80001322095509 & 6.73001765232091 & 10.8700087895893 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=285637&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]121[/C][C]8.80001322095509[/C][C]8.20242075873205[/C][C]9.39760568317812[/C][/ROW]
[ROW][C]122[/C][C]8.80001322095509[/C][C]7.95491778991447[/C][C]9.6451086519957[/C][/ROW]
[ROW][C]123[/C][C]8.80001322095509[/C][C]7.76499833013193[/C][C]9.83502811177824[/C][/ROW]
[ROW][C]124[/C][C]8.80001322095509[/C][C]7.60488755355203[/C][C]9.99513888835814[/C][/ROW]
[ROW][C]125[/C][C]8.80001322095509[/C][C]7.46382652084707[/C][C]10.1361999210631[/C][/ROW]
[ROW][C]126[/C][C]8.80001322095509[/C][C]7.33629725321904[/C][C]10.2637291886911[/C][/ROW]
[ROW][C]127[/C][C]8.80001322095509[/C][C]7.2190217690916[/C][C]10.3810046728186[/C][/ROW]
[ROW][C]128[/C][C]8.80001322095509[/C][C]7.10986426079644[/C][C]10.4901621811137[/C][/ROW]
[ROW][C]129[/C][C]8.80001322095509[/C][C]7.00734118062387[/C][C]10.5926852612863[/C][/ROW]
[ROW][C]130[/C][C]8.80001322095509[/C][C]6.91037236067363[/C][C]10.6896540812365[/C][/ROW]
[ROW][C]131[/C][C]8.80001322095509[/C][C]6.81814235798112[/C][C]10.7818840839291[/C][/ROW]
[ROW][C]132[/C][C]8.80001322095509[/C][C]6.73001765232091[/C][C]10.8700087895893[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=285637&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=285637&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1218.800013220955098.202420758732059.39760568317812
1228.800013220955097.954917789914479.6451086519957
1238.800013220955097.764998330131939.83502811177824
1248.800013220955097.604887553552039.99513888835814
1258.800013220955097.4638265208470710.1361999210631
1268.800013220955097.3362972532190410.2637291886911
1278.800013220955097.219021769091610.3810046728186
1288.800013220955097.1098642607964410.4901621811137
1298.800013220955097.0073411806238710.5926852612863
1308.800013220955096.9103723606736310.6896540812365
1318.800013220955096.8181423579811210.7818840839291
1328.800013220955096.7300176523209110.8700087895893



Parameters (Session):
par1 = 12 ; par2 = Single ; par3 = additive ;
Parameters (R input):
par1 = 12 ; par2 = Single ; par3 = additive ;
R code (references can be found in the software module):
par3 <- 'additive'
par2 <- 'Double'
par1 <- '12'
par1 <- as.numeric(par1)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par1, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')