Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_variability.wasp
Title produced by softwareVariability
Date of computationWed, 27 May 2009 11:20:57 -0600
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/May/27/t1243444885nks941wsc27wi9r.htm/, Retrieved Thu, 31 Oct 2024 23:20:14 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=40466, Retrieved Thu, 31 Oct 2024 23:20:14 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact131
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Variability] [opgave 8 - oef 3/...] [2009-05-27 17:20:57] [d41d8cd98f00b204e9800998ecf8427e] [Current]
Feedback Forum

Post a new message
Dataseries X:
266433
267722
266003
262971
265521
264676
270223
269508
268457
265814
266680
263018
269285
269829
270911
266844
271244
269907
271296
270157
271322
267179
264101
265518
269419
268714
272482
268351
268175
270674
272764
272599
270333
270846
270491
269160
274027
273784
276663
274525
271344
271115
270798
273911
273985
271917
273338
270601
273547
275363
281229
277793
279913
282500
280041
282166
290304
283519
287816
285226
287595
289741
289148
288301
290155
289648
288225
289351
294735
305333
309030
310215
321935




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=40466&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=40466&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=40466&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Variability - Ungrouped Data
Absolute range58964
Relative range (unbiased)5.01650988080327
Relative range (biased)5.05122662639478
Variance (unbiased)138156248.239726
Variance (biased)136263696.893976
Standard Deviation (unbiased)11753.9886098178
Standard Deviation (biased)11673.2042256604
Coefficient of Variation (unbiased)0.0425247280092631
Coefficient of Variation (biased)0.0422324583740162
Mean Squared Error (MSE versus 0)76535222877.0959
Mean Squared Error (MSE versus Mean)136263696.893976
Mean Absolute Deviation from Mean (MAD Mean)8956.0330268343
Mean Absolute Deviation from Median (MAD Median)7938.7397260274
Median Absolute Deviation from Mean6984.61643835617
Median Absolute Deviation from Median4019
Mean Squared Deviation from Mean136263696.893976
Mean Squared Deviation from Median161863415.397260
Interquartile Difference (Weighted Average at Xnp)12740.5
Interquartile Difference (Weighted Average at X(n+1)p)13110.5
Interquartile Difference (Empirical Distribution Function)12881
Interquartile Difference (Empirical Distribution Function - Averaging)12881
Interquartile Difference (Empirical Distribution Function - Interpolation)12881
Interquartile Difference (Closest Observation)13006
Interquartile Difference (True Basic - Statistics Graphics Toolkit)13110.5
Interquartile Difference (MS Excel (old versions))13110.5
Semi Interquartile Difference (Weighted Average at Xnp)6370.25
Semi Interquartile Difference (Weighted Average at X(n+1)p)6555.25
Semi Interquartile Difference (Empirical Distribution Function)6440.5
Semi Interquartile Difference (Empirical Distribution Function - Averaging)6440.5
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)6440.5
Semi Interquartile Difference (Closest Observation)6503
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)6555.25
Semi Interquartile Difference (MS Excel (old versions))6555.25
Coefficient of Quartile Variation (Weighted Average at Xnp)0.0231173440411669
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.0237700467133407
Coefficient of Quartile Variation (Empirical Distribution Function)0.0233583763561948
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.0233583763561948
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.0233583763561948
Coefficient of Quartile Variation (Closest Observation)0.0235903984212607
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.0237700467133407
Coefficient of Quartile Variation (MS Excel (old versions))0.0237700467133407
Number of all Pairs of Observations2628
Squared Differences between all Pairs of Observations276312496.479452
Mean Absolute Differences between all Pairs of Observations11883.1590563166
Gini Mean Difference11883.1590563166
Leik Measure of Dispersion0.511276995298649
Index of Diversity0.986276937252872
Index of Qualitative Variation0.999975228048051
Coefficient of Dispersion0.0330061951870478
Observations73

\begin{tabular}{lllllllll}
\hline
Variability - Ungrouped Data \tabularnewline
Absolute range & 58964 \tabularnewline
Relative range (unbiased) & 5.01650988080327 \tabularnewline
Relative range (biased) & 5.05122662639478 \tabularnewline
Variance (unbiased) & 138156248.239726 \tabularnewline
Variance (biased) & 136263696.893976 \tabularnewline
Standard Deviation (unbiased) & 11753.9886098178 \tabularnewline
Standard Deviation (biased) & 11673.2042256604 \tabularnewline
Coefficient of Variation (unbiased) & 0.0425247280092631 \tabularnewline
Coefficient of Variation (biased) & 0.0422324583740162 \tabularnewline
Mean Squared Error (MSE versus 0) & 76535222877.0959 \tabularnewline
Mean Squared Error (MSE versus Mean) & 136263696.893976 \tabularnewline
Mean Absolute Deviation from Mean (MAD Mean) & 8956.0330268343 \tabularnewline
Mean Absolute Deviation from Median (MAD Median) & 7938.7397260274 \tabularnewline
Median Absolute Deviation from Mean & 6984.61643835617 \tabularnewline
Median Absolute Deviation from Median & 4019 \tabularnewline
Mean Squared Deviation from Mean & 136263696.893976 \tabularnewline
Mean Squared Deviation from Median & 161863415.397260 \tabularnewline
Interquartile Difference (Weighted Average at Xnp) & 12740.5 \tabularnewline
Interquartile Difference (Weighted Average at X(n+1)p) & 13110.5 \tabularnewline
Interquartile Difference (Empirical Distribution Function) & 12881 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Averaging) & 12881 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Interpolation) & 12881 \tabularnewline
Interquartile Difference (Closest Observation) & 13006 \tabularnewline
Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 13110.5 \tabularnewline
Interquartile Difference (MS Excel (old versions)) & 13110.5 \tabularnewline
Semi Interquartile Difference (Weighted Average at Xnp) & 6370.25 \tabularnewline
Semi Interquartile Difference (Weighted Average at X(n+1)p) & 6555.25 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function) & 6440.5 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Averaging) & 6440.5 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Interpolation) & 6440.5 \tabularnewline
Semi Interquartile Difference (Closest Observation) & 6503 \tabularnewline
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 6555.25 \tabularnewline
Semi Interquartile Difference (MS Excel (old versions)) & 6555.25 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at Xnp) & 0.0231173440411669 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at X(n+1)p) & 0.0237700467133407 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function) & 0.0233583763561948 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging) & 0.0233583763561948 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation) & 0.0233583763561948 \tabularnewline
Coefficient of Quartile Variation (Closest Observation) & 0.0235903984212607 \tabularnewline
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit) & 0.0237700467133407 \tabularnewline
Coefficient of Quartile Variation (MS Excel (old versions)) & 0.0237700467133407 \tabularnewline
Number of all Pairs of Observations & 2628 \tabularnewline
Squared Differences between all Pairs of Observations & 276312496.479452 \tabularnewline
Mean Absolute Differences between all Pairs of Observations & 11883.1590563166 \tabularnewline
Gini Mean Difference & 11883.1590563166 \tabularnewline
Leik Measure of Dispersion & 0.511276995298649 \tabularnewline
Index of Diversity & 0.986276937252872 \tabularnewline
Index of Qualitative Variation & 0.999975228048051 \tabularnewline
Coefficient of Dispersion & 0.0330061951870478 \tabularnewline
Observations & 73 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=40466&T=1

[TABLE]
[ROW][C]Variability - Ungrouped Data[/C][/ROW]
[ROW][C]Absolute range[/C][C]58964[/C][/ROW]
[ROW][C]Relative range (unbiased)[/C][C]5.01650988080327[/C][/ROW]
[ROW][C]Relative range (biased)[/C][C]5.05122662639478[/C][/ROW]
[ROW][C]Variance (unbiased)[/C][C]138156248.239726[/C][/ROW]
[ROW][C]Variance (biased)[/C][C]136263696.893976[/C][/ROW]
[ROW][C]Standard Deviation (unbiased)[/C][C]11753.9886098178[/C][/ROW]
[ROW][C]Standard Deviation (biased)[/C][C]11673.2042256604[/C][/ROW]
[ROW][C]Coefficient of Variation (unbiased)[/C][C]0.0425247280092631[/C][/ROW]
[ROW][C]Coefficient of Variation (biased)[/C][C]0.0422324583740162[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus 0)[/C][C]76535222877.0959[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus Mean)[/C][C]136263696.893976[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Mean (MAD Mean)[/C][C]8956.0330268343[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Median (MAD Median)[/C][C]7938.7397260274[/C][/ROW]
[ROW][C]Median Absolute Deviation from Mean[/C][C]6984.61643835617[/C][/ROW]
[ROW][C]Median Absolute Deviation from Median[/C][C]4019[/C][/ROW]
[ROW][C]Mean Squared Deviation from Mean[/C][C]136263696.893976[/C][/ROW]
[ROW][C]Mean Squared Deviation from Median[/C][C]161863415.397260[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at Xnp)[/C][C]12740.5[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]13110.5[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function)[/C][C]12881[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]12881[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]12881[/C][/ROW]
[ROW][C]Interquartile Difference (Closest Observation)[/C][C]13006[/C][/ROW]
[ROW][C]Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]13110.5[/C][/ROW]
[ROW][C]Interquartile Difference (MS Excel (old versions))[/C][C]13110.5[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at Xnp)[/C][C]6370.25[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]6555.25[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function)[/C][C]6440.5[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]6440.5[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]6440.5[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Closest Observation)[/C][C]6503[/C][/ROW]
[ROW][C]Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]6555.25[/C][/ROW]
[ROW][C]Semi Interquartile Difference (MS Excel (old versions))[/C][C]6555.25[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at Xnp)[/C][C]0.0231173440411669[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at X(n+1)p)[/C][C]0.0237700467133407[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function)[/C][C]0.0233583763561948[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)[/C][C]0.0233583763561948[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)[/C][C]0.0233583763561948[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Closest Observation)[/C][C]0.0235903984212607[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)[/C][C]0.0237700467133407[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (MS Excel (old versions))[/C][C]0.0237700467133407[/C][/ROW]
[ROW][C]Number of all Pairs of Observations[/C][C]2628[/C][/ROW]
[ROW][C]Squared Differences between all Pairs of Observations[/C][C]276312496.479452[/C][/ROW]
[ROW][C]Mean Absolute Differences between all Pairs of Observations[/C][C]11883.1590563166[/C][/ROW]
[ROW][C]Gini Mean Difference[/C][C]11883.1590563166[/C][/ROW]
[ROW][C]Leik Measure of Dispersion[/C][C]0.511276995298649[/C][/ROW]
[ROW][C]Index of Diversity[/C][C]0.986276937252872[/C][/ROW]
[ROW][C]Index of Qualitative Variation[/C][C]0.999975228048051[/C][/ROW]
[ROW][C]Coefficient of Dispersion[/C][C]0.0330061951870478[/C][/ROW]
[ROW][C]Observations[/C][C]73[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=40466&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=40466&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variability - Ungrouped Data
Absolute range58964
Relative range (unbiased)5.01650988080327
Relative range (biased)5.05122662639478
Variance (unbiased)138156248.239726
Variance (biased)136263696.893976
Standard Deviation (unbiased)11753.9886098178
Standard Deviation (biased)11673.2042256604
Coefficient of Variation (unbiased)0.0425247280092631
Coefficient of Variation (biased)0.0422324583740162
Mean Squared Error (MSE versus 0)76535222877.0959
Mean Squared Error (MSE versus Mean)136263696.893976
Mean Absolute Deviation from Mean (MAD Mean)8956.0330268343
Mean Absolute Deviation from Median (MAD Median)7938.7397260274
Median Absolute Deviation from Mean6984.61643835617
Median Absolute Deviation from Median4019
Mean Squared Deviation from Mean136263696.893976
Mean Squared Deviation from Median161863415.397260
Interquartile Difference (Weighted Average at Xnp)12740.5
Interquartile Difference (Weighted Average at X(n+1)p)13110.5
Interquartile Difference (Empirical Distribution Function)12881
Interquartile Difference (Empirical Distribution Function - Averaging)12881
Interquartile Difference (Empirical Distribution Function - Interpolation)12881
Interquartile Difference (Closest Observation)13006
Interquartile Difference (True Basic - Statistics Graphics Toolkit)13110.5
Interquartile Difference (MS Excel (old versions))13110.5
Semi Interquartile Difference (Weighted Average at Xnp)6370.25
Semi Interquartile Difference (Weighted Average at X(n+1)p)6555.25
Semi Interquartile Difference (Empirical Distribution Function)6440.5
Semi Interquartile Difference (Empirical Distribution Function - Averaging)6440.5
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)6440.5
Semi Interquartile Difference (Closest Observation)6503
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)6555.25
Semi Interquartile Difference (MS Excel (old versions))6555.25
Coefficient of Quartile Variation (Weighted Average at Xnp)0.0231173440411669
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.0237700467133407
Coefficient of Quartile Variation (Empirical Distribution Function)0.0233583763561948
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.0233583763561948
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.0233583763561948
Coefficient of Quartile Variation (Closest Observation)0.0235903984212607
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.0237700467133407
Coefficient of Quartile Variation (MS Excel (old versions))0.0237700467133407
Number of all Pairs of Observations2628
Squared Differences between all Pairs of Observations276312496.479452
Mean Absolute Differences between all Pairs of Observations11883.1590563166
Gini Mean Difference11883.1590563166
Leik Measure of Dispersion0.511276995298649
Index of Diversity0.986276937252872
Index of Qualitative Variation0.999975228048051
Coefficient of Dispersion0.0330061951870478
Observations73



Parameters (Session):
Parameters (R input):
R code (references can be found in the software module):
num <- 50
res <- array(NA,dim=c(num,3))
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
iqd <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
iqdiff <- qvalue3 - qvalue1
return(c(iqdiff,iqdiff/2,iqdiff/(qvalue3 + qvalue1)))
}
range <- max(x) - min(x)
lx <- length(x)
biasf <- (lx-1)/lx
varx <- var(x)
bvarx <- varx*biasf
sdx <- sqrt(varx)
mx <- mean(x)
bsdx <- sqrt(bvarx)
x2 <- x*x
mse0 <- sum(x2)/lx
xmm <- x-mx
xmm2 <- xmm*xmm
msem <- sum(xmm2)/lx
axmm <- abs(x - mx)
medx <- median(x)
axmmed <- abs(x - medx)
xmmed <- x - medx
xmmed2 <- xmmed*xmmed
msemed <- sum(xmmed2)/lx
qarr <- array(NA,dim=c(8,3))
for (j in 1:8) {
qarr[j,] <- iqd(x,j)
}
sdpo <- 0
adpo <- 0
for (i in 1:(lx-1)) {
for (j in (i+1):lx) {
ldi <- x[i]-x[j]
aldi <- abs(ldi)
sdpo = sdpo + ldi * ldi
adpo = adpo + aldi
}
}
denom <- (lx*(lx-1)/2)
sdpo = sdpo / denom
adpo = adpo / denom
gmd <- 0
for (i in 1:lx) {
for (j in 1:lx) {
ldi <- abs(x[i]-x[j])
gmd = gmd + ldi
}
}
gmd <- gmd / (lx*(lx-1))
sumx <- sum(x)
pk <- x / sumx
ck <- cumsum(pk)
dk <- array(NA,dim=lx)
for (i in 1:lx) {
if (ck[i] <= 0.5) dk[i] <- ck[i] else dk[i] <- 1 - ck[i]
}
bigd <- sum(dk) * 2 / (lx-1)
iod <- 1 - sum(pk*pk)
res[1,] <- c('Absolute range','absolute.htm', range)
res[2,] <- c('Relative range (unbiased)','relative.htm', range/sd(x))
res[3,] <- c('Relative range (biased)','relative.htm', range/sqrt(varx*biasf))
res[4,] <- c('Variance (unbiased)','unbiased.htm', varx)
res[5,] <- c('Variance (biased)','biased.htm', bvarx)
res[6,] <- c('Standard Deviation (unbiased)','unbiased1.htm', sdx)
res[7,] <- c('Standard Deviation (biased)','biased1.htm', bsdx)
res[8,] <- c('Coefficient of Variation (unbiased)','variation.htm', sdx/mx)
res[9,] <- c('Coefficient of Variation (biased)','variation.htm', bsdx/mx)
res[10,] <- c('Mean Squared Error (MSE versus 0)','mse.htm', mse0)
res[11,] <- c('Mean Squared Error (MSE versus Mean)','mse.htm', msem)
res[12,] <- c('Mean Absolute Deviation from Mean (MAD Mean)', 'mean2.htm', sum(axmm)/lx)
res[13,] <- c('Mean Absolute Deviation from Median (MAD Median)', 'median1.htm', sum(axmmed)/lx)
res[14,] <- c('Median Absolute Deviation from Mean', 'mean3.htm', median(axmm))
res[15,] <- c('Median Absolute Deviation from Median', 'median2.htm', median(axmmed))
res[16,] <- c('Mean Squared Deviation from Mean', 'mean1.htm', msem)
res[17,] <- c('Mean Squared Deviation from Median', 'median.htm', msemed)
load(file='createtable')
mylink1 <- hyperlink('difference.htm','Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[18,] <- c('', mylink2, qarr[1,1])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[19,] <- c('', mylink2, qarr[2,1])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[20,] <- c('', mylink2, qarr[3,1])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[21,] <- c('', mylink2, qarr[4,1])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[22,] <- c('', mylink2, qarr[5,1])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[23,] <- c('', mylink2, qarr[6,1])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[24,] <- c('', mylink2, qarr[7,1])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[25,] <- c('', mylink2, qarr[8,1])
mylink1 <- hyperlink('deviation.htm','Semi Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[26,] <- c('', mylink2, qarr[1,2])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[27,] <- c('', mylink2, qarr[2,2])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[28,] <- c('', mylink2, qarr[3,2])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[29,] <- c('', mylink2, qarr[4,2])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[30,] <- c('', mylink2, qarr[5,2])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[31,] <- c('', mylink2, qarr[6,2])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[32,] <- c('', mylink2, qarr[7,2])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[33,] <- c('', mylink2, qarr[8,2])
mylink1 <- hyperlink('variation1.htm','Coefficient of Quartile Variation','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[34,] <- c('', mylink2, qarr[1,3])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[35,] <- c('', mylink2, qarr[2,3])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[36,] <- c('', mylink2, qarr[3,3])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[37,] <- c('', mylink2, qarr[4,3])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[38,] <- c('', mylink2, qarr[5,3])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[39,] <- c('', mylink2, qarr[6,3])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[40,] <- c('', mylink2, qarr[7,3])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[41,] <- c('', mylink2, qarr[8,3])
res[42,] <- c('Number of all Pairs of Observations', 'pair_numbers.htm', lx*(lx-1)/2)
res[43,] <- c('Squared Differences between all Pairs of Observations', 'squared_differences.htm', sdpo)
res[44,] <- c('Mean Absolute Differences between all Pairs of Observations', 'mean_abs_differences.htm', adpo)
res[45,] <- c('Gini Mean Difference', 'gini_mean_difference.htm', gmd)
res[46,] <- c('Leik Measure of Dispersion', 'leiks_d.htm', bigd)
res[47,] <- c('Index of Diversity', 'diversity.htm', iod)
res[48,] <- c('Index of Qualitative Variation', 'qualitative_variation.htm', iod*lx/(lx-1))
res[49,] <- c('Coefficient of Dispersion', 'dispersion.htm', sum(axmm)/lx/medx)
res[50,] <- c('Observations', '', lx)
res
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variability - Ungrouped Data',2,TRUE)
a<-table.row.end(a)
for (i in 1:num) {
a<-table.row.start(a)
if (res[i,1] != '') {
a<-table.element(a,hyperlink(res[i,2],res[i,1],''),header=TRUE)
} else {
a<-table.element(a,res[i,2],header=TRUE)
}
a<-table.element(a,res[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')