par1 <- as.numeric(par1) #cut off periods par2 <- as.numeric(par2) #lambda par3 <- as.numeric(par3) #degree of non-seasonal differencing par4 <- as.numeric(par4) #degree of seasonal differencing par5 <- as.numeric(par5) #seasonal period par6 <- as.numeric(par6) #p par7 <- as.numeric(par7) #q par8 <- as.numeric(par8) #P par9 <- as.numeric(par9) #Q if (par10 == 'TRUE') par10 <- TRUE if (par10 == 'FALSE') par10 <- FALSE if (par2 == 0) x <- log(x) if (par2 != 0) x <- x^par2 lx <- length(x) first <- lx - 2*par1 nx <- lx - par1 nx1 <- nx + 1 fx <- lx - nx if (fx < 1) { fx <- par5 nx1 <- lx + fx - 1 first <- lx - 2*fx } first <- 1 if (fx < 3) fx <- round(lx/10,0) (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) (forecast <- predict(arima.out,fx)) (lb <- forecast$pred - 1.96 * forecast$se) (ub <- forecast$pred + 1.96 * forecast$se) if (par2 == 0) { x <- exp(x) forecast$pred <- exp(forecast$pred) lb <- exp(lb) ub <- exp(ub) } if (par2 != 0) { x <- x^(1/par2) forecast$pred <- forecast$pred^(1/par2) lb <- lb^(1/par2) ub <- ub^(1/par2) } if (par2 < 0) { olb <- lb lb <- ub ub <- olb } (actandfor <- c(x[1:nx], forecast$pred)) (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) bitmap(file='test1.png') opar <- par(mar=c(4,4,2,2),las=1) ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) plot(x,ylim=ylim,type='n',xlim=c(first,lx)) usr <- par('usr') rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') abline(h= (-3:3)*2 , col ='gray', lty =3) polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) lines(nx1:lx, lb , lty=2) lines(nx1:lx, ub , lty=2) lines(x, lwd=2) lines(nx1:lx, forecast$pred , lwd=2 , col ='white') box() par(opar) dev.off() prob.dec <- array(NA, dim=fx) prob.sdec <- array(NA, dim=fx) prob.ldec <- array(NA, dim=fx) prob.pval <- array(NA, dim=fx) perf.pe <- array(0, dim=fx) perf.mape <- array(0, dim=fx) perf.se <- array(0, dim=fx) perf.mse <- array(0, dim=fx) perf.rmse <- array(0, dim=fx) for (i in 1:fx) { locSD <- (ub[i] - forecast$pred[i]) / 1.96 perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) perf.se[i] = (x[nx+i] - forecast$pred[i])^2 perf.mse[i] = perf.mse[i] + perf.se[i] prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) } perf.mape = perf.mape / fx perf.mse = perf.mse / fx perf.rmse = sqrt(perf.mse) bitmap(file='test2.png') plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) dum <- forecast$pred dum[1:12] <- x[(nx+1):lx] lines(dum, lty=1) lines(ub,lty=3) lines(lb,lty=3) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'time',1,header=TRUE) a<-table.element(a,'Y[t]',1,header=TRUE) a<-table.element(a,'F[t]',1,header=TRUE) a<-table.element(a,'95% LB',1,header=TRUE) a<-table.element(a,'95% UB',1,header=TRUE) a<-table.element(a,'p-value (H0: Y[t] = F[t])',1,header=TRUE) a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) mylab <- paste('P(F[t]>Y[',nx,sep='') mylab <- paste(mylab,'])',sep='') a<-table.element(a,mylab,1,header=TRUE) a<-table.row.end(a) for (i in (nx-par5):nx) { a<-table.row.start(a) a<-table.element(a,i,header=TRUE) a<-table.element(a,x[i]) a<-table.element(a,'-') a<-table.element(a,'-') a<-table.element(a,'-') a<-table.element(a,'-') a<-table.element(a,'-') a<-table.element(a,'-') a<-table.element(a,'-') a<-table.row.end(a) } for (i in 1:fx) { a<-table.row.start(a) a<-table.element(a,nx+i,header=TRUE) a<-table.element(a,round(x[nx+i],4)) a<-table.element(a,round(forecast$pred[i],4)) a<-table.element(a,round(lb[i],4)) a<-table.element(a,round(ub[i],4)) a<-table.element(a,round((1-prob.pval[i]),4)) a<-table.element(a,round((1-prob.dec[i]),4)) a<-table.element(a,round((1-prob.sdec[i]),4)) a<-table.element(a,round((1-prob.ldec[i]),4)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'time',1,header=TRUE) a<-table.element(a,'% S.E.',1,header=TRUE) a<-table.element(a,'PE',1,header=TRUE) a<-table.element(a,'MAPE',1,header=TRUE) a<-table.element(a,'Sq.E',1,header=TRUE) a<-table.element(a,'MSE',1,header=TRUE) a<-table.element(a,'RMSE',1,header=TRUE) a<-table.row.end(a) for (i in 1:fx) { a<-table.row.start(a) a<-table.element(a,nx+i,header=TRUE) a<-table.element(a,round(perc.se[i],4)) a<-table.element(a,round(perf.pe[i],4)) a<-table.element(a,round(perf.mape[i],4)) a<-table.element(a,round(perf.se[i],4)) a<-table.element(a,round(perf.mse[i],4)) a<-table.element(a,round(perf.rmse[i],4)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable1.tab')
|