Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_variability.wasp
Title produced by softwareVariability
Date of computationMon, 19 Oct 2009 15:38:27 -0600
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Oct/19/t1255988538l016l0qpo6i1iza.htm/, Retrieved Thu, 31 Oct 2024 22:58:32 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=48268, Retrieved Thu, 31 Oct 2024 22:58:32 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsWS3P2ST2BMLDG
Estimated Impact160
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Data Series] [Workshop 3: part ...] [2009-10-19 21:01:57] [7c2a5b25a196bd646844b8f5223c9b3e]
- RMPD    [Variability] [Workshop 3: part ...] [2009-10-19 21:38:27] [3d2053c5f7c50d3c075d87ce0bd87294] [Current]
Feedback Forum

Post a new message
Dataseries X:
-39409
-45240
-40793
-39624
-36609
-35173
-34354
-32800
-33176
-39042
-46217
-46512
-43632
-35745
-32450
-31829
-33028
-29256
-26127
-23773
-24071
-30320
-39963
-44357
-35316
-30613
-26090
-25552
-22508
-20502
-21277
-19213
-18924
-27918
-38250
-42605
-32331
-25784
-23002
-20048
-19840
-17483
-18462
-16073
-18249
-23902
-32511
-36924
-24007
-15978
-9340
-4611
416
4056
9770
11391
11263
7772
-1150
-4832
6075




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'George Udny Yule' @ 72.249.76.132

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'George Udny Yule' @ 72.249.76.132 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=48268&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ 72.249.76.132[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=48268&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=48268&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'George Udny Yule' @ 72.249.76.132







Variability - Ungrouped Data
Absolute range57903
Relative range (unbiased)3.7543356919546
Relative range (biased)3.78549253898119
Variance (unbiased)237867948.187432
Variance (biased)233968473.626982
Standard Deviation (unbiased)15422.9682028925
Standard Deviation (biased)15296.0280343291
Coefficient of Variation (unbiased)-0.633087577269463
Coefficient of Variation (biased)-0.627876891316102
Mean Squared Error (MSE versus 0)827451555.245902
Mean Squared Error (MSE versus Mean)233968473.626982
Mean Absolute Deviation from Mean (MAD Mean)11987.5485084655
Mean Absolute Deviation from Median (MAD Median)11873.5409836066
Median Absolute Deviation from Mean8666.49180327869
Median Absolute Deviation from Median8607
Mean Squared Deviation from Mean233968473.626982
Mean Squared Deviation from Median236956157.540984
Interquartile Difference (Weighted Average at Xnp)17060.25
Interquartile Difference (Weighted Average at X(n+1)p)17175
Interquartile Difference (Empirical Distribution Function)16854
Interquartile Difference (Empirical Distribution Function - Averaging)16854
Interquartile Difference (Empirical Distribution Function - Interpolation)16854
Interquartile Difference (Closest Observation)17283
Interquartile Difference (True Basic - Statistics Graphics Toolkit)17175
Interquartile Difference (MS Excel (old versions))17175
Semi Interquartile Difference (Weighted Average at Xnp)8530.125
Semi Interquartile Difference (Weighted Average at X(n+1)p)8587.5
Semi Interquartile Difference (Empirical Distribution Function)8427
Semi Interquartile Difference (Empirical Distribution Function - Averaging)8427
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)8427
Semi Interquartile Difference (Closest Observation)8641.5
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)8587.5
Semi Interquartile Difference (MS Excel (old versions))8587.5
Coefficient of Quartile Variation (Weighted Average at Xnp)-0.314676221173932
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)-0.318728426678544
Coefficient of Quartile Variation (Empirical Distribution Function)-0.313399531406895
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)-0.313399531406895
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)-0.313399531406895
Coefficient of Quartile Variation (Closest Observation)-0.318833361005036
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)-0.318728426678544
Coefficient of Quartile Variation (MS Excel (old versions))-0.318728426678544
Number of all Pairs of Observations1830
Squared Differences between all Pairs of Observations475735896.374863
Mean Absolute Differences between all Pairs of Observations17118.0775956284
Gini Mean Difference17118.0775956284
Leik Measure of Dispersion0.394892910880642
Index of Diversity0.977143780481168
Index of Qualitative Variation0.993429510155854
Coefficient of Dispersion-0.459469088097565
Observations61

\begin{tabular}{lllllllll}
\hline
Variability - Ungrouped Data \tabularnewline
Absolute range & 57903 \tabularnewline
Relative range (unbiased) & 3.7543356919546 \tabularnewline
Relative range (biased) & 3.78549253898119 \tabularnewline
Variance (unbiased) & 237867948.187432 \tabularnewline
Variance (biased) & 233968473.626982 \tabularnewline
Standard Deviation (unbiased) & 15422.9682028925 \tabularnewline
Standard Deviation (biased) & 15296.0280343291 \tabularnewline
Coefficient of Variation (unbiased) & -0.633087577269463 \tabularnewline
Coefficient of Variation (biased) & -0.627876891316102 \tabularnewline
Mean Squared Error (MSE versus 0) & 827451555.245902 \tabularnewline
Mean Squared Error (MSE versus Mean) & 233968473.626982 \tabularnewline
Mean Absolute Deviation from Mean (MAD Mean) & 11987.5485084655 \tabularnewline
Mean Absolute Deviation from Median (MAD Median) & 11873.5409836066 \tabularnewline
Median Absolute Deviation from Mean & 8666.49180327869 \tabularnewline
Median Absolute Deviation from Median & 8607 \tabularnewline
Mean Squared Deviation from Mean & 233968473.626982 \tabularnewline
Mean Squared Deviation from Median & 236956157.540984 \tabularnewline
Interquartile Difference (Weighted Average at Xnp) & 17060.25 \tabularnewline
Interquartile Difference (Weighted Average at X(n+1)p) & 17175 \tabularnewline
Interquartile Difference (Empirical Distribution Function) & 16854 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Averaging) & 16854 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Interpolation) & 16854 \tabularnewline
Interquartile Difference (Closest Observation) & 17283 \tabularnewline
Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 17175 \tabularnewline
Interquartile Difference (MS Excel (old versions)) & 17175 \tabularnewline
Semi Interquartile Difference (Weighted Average at Xnp) & 8530.125 \tabularnewline
Semi Interquartile Difference (Weighted Average at X(n+1)p) & 8587.5 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function) & 8427 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Averaging) & 8427 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Interpolation) & 8427 \tabularnewline
Semi Interquartile Difference (Closest Observation) & 8641.5 \tabularnewline
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 8587.5 \tabularnewline
Semi Interquartile Difference (MS Excel (old versions)) & 8587.5 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at Xnp) & -0.314676221173932 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at X(n+1)p) & -0.318728426678544 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function) & -0.313399531406895 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging) & -0.313399531406895 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation) & -0.313399531406895 \tabularnewline
Coefficient of Quartile Variation (Closest Observation) & -0.318833361005036 \tabularnewline
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit) & -0.318728426678544 \tabularnewline
Coefficient of Quartile Variation (MS Excel (old versions)) & -0.318728426678544 \tabularnewline
Number of all Pairs of Observations & 1830 \tabularnewline
Squared Differences between all Pairs of Observations & 475735896.374863 \tabularnewline
Mean Absolute Differences between all Pairs of Observations & 17118.0775956284 \tabularnewline
Gini Mean Difference & 17118.0775956284 \tabularnewline
Leik Measure of Dispersion & 0.394892910880642 \tabularnewline
Index of Diversity & 0.977143780481168 \tabularnewline
Index of Qualitative Variation & 0.993429510155854 \tabularnewline
Coefficient of Dispersion & -0.459469088097565 \tabularnewline
Observations & 61 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=48268&T=1

[TABLE]
[ROW][C]Variability - Ungrouped Data[/C][/ROW]
[ROW][C]Absolute range[/C][C]57903[/C][/ROW]
[ROW][C]Relative range (unbiased)[/C][C]3.7543356919546[/C][/ROW]
[ROW][C]Relative range (biased)[/C][C]3.78549253898119[/C][/ROW]
[ROW][C]Variance (unbiased)[/C][C]237867948.187432[/C][/ROW]
[ROW][C]Variance (biased)[/C][C]233968473.626982[/C][/ROW]
[ROW][C]Standard Deviation (unbiased)[/C][C]15422.9682028925[/C][/ROW]
[ROW][C]Standard Deviation (biased)[/C][C]15296.0280343291[/C][/ROW]
[ROW][C]Coefficient of Variation (unbiased)[/C][C]-0.633087577269463[/C][/ROW]
[ROW][C]Coefficient of Variation (biased)[/C][C]-0.627876891316102[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus 0)[/C][C]827451555.245902[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus Mean)[/C][C]233968473.626982[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Mean (MAD Mean)[/C][C]11987.5485084655[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Median (MAD Median)[/C][C]11873.5409836066[/C][/ROW]
[ROW][C]Median Absolute Deviation from Mean[/C][C]8666.49180327869[/C][/ROW]
[ROW][C]Median Absolute Deviation from Median[/C][C]8607[/C][/ROW]
[ROW][C]Mean Squared Deviation from Mean[/C][C]233968473.626982[/C][/ROW]
[ROW][C]Mean Squared Deviation from Median[/C][C]236956157.540984[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at Xnp)[/C][C]17060.25[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]17175[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function)[/C][C]16854[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]16854[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]16854[/C][/ROW]
[ROW][C]Interquartile Difference (Closest Observation)[/C][C]17283[/C][/ROW]
[ROW][C]Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]17175[/C][/ROW]
[ROW][C]Interquartile Difference (MS Excel (old versions))[/C][C]17175[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at Xnp)[/C][C]8530.125[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]8587.5[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function)[/C][C]8427[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]8427[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]8427[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Closest Observation)[/C][C]8641.5[/C][/ROW]
[ROW][C]Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]8587.5[/C][/ROW]
[ROW][C]Semi Interquartile Difference (MS Excel (old versions))[/C][C]8587.5[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at Xnp)[/C][C]-0.314676221173932[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at X(n+1)p)[/C][C]-0.318728426678544[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function)[/C][C]-0.313399531406895[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)[/C][C]-0.313399531406895[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)[/C][C]-0.313399531406895[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Closest Observation)[/C][C]-0.318833361005036[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)[/C][C]-0.318728426678544[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (MS Excel (old versions))[/C][C]-0.318728426678544[/C][/ROW]
[ROW][C]Number of all Pairs of Observations[/C][C]1830[/C][/ROW]
[ROW][C]Squared Differences between all Pairs of Observations[/C][C]475735896.374863[/C][/ROW]
[ROW][C]Mean Absolute Differences between all Pairs of Observations[/C][C]17118.0775956284[/C][/ROW]
[ROW][C]Gini Mean Difference[/C][C]17118.0775956284[/C][/ROW]
[ROW][C]Leik Measure of Dispersion[/C][C]0.394892910880642[/C][/ROW]
[ROW][C]Index of Diversity[/C][C]0.977143780481168[/C][/ROW]
[ROW][C]Index of Qualitative Variation[/C][C]0.993429510155854[/C][/ROW]
[ROW][C]Coefficient of Dispersion[/C][C]-0.459469088097565[/C][/ROW]
[ROW][C]Observations[/C][C]61[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=48268&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=48268&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variability - Ungrouped Data
Absolute range57903
Relative range (unbiased)3.7543356919546
Relative range (biased)3.78549253898119
Variance (unbiased)237867948.187432
Variance (biased)233968473.626982
Standard Deviation (unbiased)15422.9682028925
Standard Deviation (biased)15296.0280343291
Coefficient of Variation (unbiased)-0.633087577269463
Coefficient of Variation (biased)-0.627876891316102
Mean Squared Error (MSE versus 0)827451555.245902
Mean Squared Error (MSE versus Mean)233968473.626982
Mean Absolute Deviation from Mean (MAD Mean)11987.5485084655
Mean Absolute Deviation from Median (MAD Median)11873.5409836066
Median Absolute Deviation from Mean8666.49180327869
Median Absolute Deviation from Median8607
Mean Squared Deviation from Mean233968473.626982
Mean Squared Deviation from Median236956157.540984
Interquartile Difference (Weighted Average at Xnp)17060.25
Interquartile Difference (Weighted Average at X(n+1)p)17175
Interquartile Difference (Empirical Distribution Function)16854
Interquartile Difference (Empirical Distribution Function - Averaging)16854
Interquartile Difference (Empirical Distribution Function - Interpolation)16854
Interquartile Difference (Closest Observation)17283
Interquartile Difference (True Basic - Statistics Graphics Toolkit)17175
Interquartile Difference (MS Excel (old versions))17175
Semi Interquartile Difference (Weighted Average at Xnp)8530.125
Semi Interquartile Difference (Weighted Average at X(n+1)p)8587.5
Semi Interquartile Difference (Empirical Distribution Function)8427
Semi Interquartile Difference (Empirical Distribution Function - Averaging)8427
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)8427
Semi Interquartile Difference (Closest Observation)8641.5
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)8587.5
Semi Interquartile Difference (MS Excel (old versions))8587.5
Coefficient of Quartile Variation (Weighted Average at Xnp)-0.314676221173932
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)-0.318728426678544
Coefficient of Quartile Variation (Empirical Distribution Function)-0.313399531406895
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)-0.313399531406895
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)-0.313399531406895
Coefficient of Quartile Variation (Closest Observation)-0.318833361005036
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)-0.318728426678544
Coefficient of Quartile Variation (MS Excel (old versions))-0.318728426678544
Number of all Pairs of Observations1830
Squared Differences between all Pairs of Observations475735896.374863
Mean Absolute Differences between all Pairs of Observations17118.0775956284
Gini Mean Difference17118.0775956284
Leik Measure of Dispersion0.394892910880642
Index of Diversity0.977143780481168
Index of Qualitative Variation0.993429510155854
Coefficient of Dispersion-0.459469088097565
Observations61



Parameters (Session):
Parameters (R input):
R code (references can be found in the software module):
num <- 50
res <- array(NA,dim=c(num,3))
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
iqd <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
iqdiff <- qvalue3 - qvalue1
return(c(iqdiff,iqdiff/2,iqdiff/(qvalue3 + qvalue1)))
}
range <- max(x) - min(x)
lx <- length(x)
biasf <- (lx-1)/lx
varx <- var(x)
bvarx <- varx*biasf
sdx <- sqrt(varx)
mx <- mean(x)
bsdx <- sqrt(bvarx)
x2 <- x*x
mse0 <- sum(x2)/lx
xmm <- x-mx
xmm2 <- xmm*xmm
msem <- sum(xmm2)/lx
axmm <- abs(x - mx)
medx <- median(x)
axmmed <- abs(x - medx)
xmmed <- x - medx
xmmed2 <- xmmed*xmmed
msemed <- sum(xmmed2)/lx
qarr <- array(NA,dim=c(8,3))
for (j in 1:8) {
qarr[j,] <- iqd(x,j)
}
sdpo <- 0
adpo <- 0
for (i in 1:(lx-1)) {
for (j in (i+1):lx) {
ldi <- x[i]-x[j]
aldi <- abs(ldi)
sdpo = sdpo + ldi * ldi
adpo = adpo + aldi
}
}
denom <- (lx*(lx-1)/2)
sdpo = sdpo / denom
adpo = adpo / denom
gmd <- 0
for (i in 1:lx) {
for (j in 1:lx) {
ldi <- abs(x[i]-x[j])
gmd = gmd + ldi
}
}
gmd <- gmd / (lx*(lx-1))
sumx <- sum(x)
pk <- x / sumx
ck <- cumsum(pk)
dk <- array(NA,dim=lx)
for (i in 1:lx) {
if (ck[i] <= 0.5) dk[i] <- ck[i] else dk[i] <- 1 - ck[i]
}
bigd <- sum(dk) * 2 / (lx-1)
iod <- 1 - sum(pk*pk)
res[1,] <- c('Absolute range','absolute.htm', range)
res[2,] <- c('Relative range (unbiased)','relative.htm', range/sd(x))
res[3,] <- c('Relative range (biased)','relative.htm', range/sqrt(varx*biasf))
res[4,] <- c('Variance (unbiased)','unbiased.htm', varx)
res[5,] <- c('Variance (biased)','biased.htm', bvarx)
res[6,] <- c('Standard Deviation (unbiased)','unbiased1.htm', sdx)
res[7,] <- c('Standard Deviation (biased)','biased1.htm', bsdx)
res[8,] <- c('Coefficient of Variation (unbiased)','variation.htm', sdx/mx)
res[9,] <- c('Coefficient of Variation (biased)','variation.htm', bsdx/mx)
res[10,] <- c('Mean Squared Error (MSE versus 0)','mse.htm', mse0)
res[11,] <- c('Mean Squared Error (MSE versus Mean)','mse.htm', msem)
res[12,] <- c('Mean Absolute Deviation from Mean (MAD Mean)', 'mean2.htm', sum(axmm)/lx)
res[13,] <- c('Mean Absolute Deviation from Median (MAD Median)', 'median1.htm', sum(axmmed)/lx)
res[14,] <- c('Median Absolute Deviation from Mean', 'mean3.htm', median(axmm))
res[15,] <- c('Median Absolute Deviation from Median', 'median2.htm', median(axmmed))
res[16,] <- c('Mean Squared Deviation from Mean', 'mean1.htm', msem)
res[17,] <- c('Mean Squared Deviation from Median', 'median.htm', msemed)
load(file='createtable')
mylink1 <- hyperlink('difference.htm','Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[18,] <- c('', mylink2, qarr[1,1])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[19,] <- c('', mylink2, qarr[2,1])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[20,] <- c('', mylink2, qarr[3,1])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[21,] <- c('', mylink2, qarr[4,1])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[22,] <- c('', mylink2, qarr[5,1])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[23,] <- c('', mylink2, qarr[6,1])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[24,] <- c('', mylink2, qarr[7,1])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[25,] <- c('', mylink2, qarr[8,1])
mylink1 <- hyperlink('deviation.htm','Semi Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[26,] <- c('', mylink2, qarr[1,2])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[27,] <- c('', mylink2, qarr[2,2])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[28,] <- c('', mylink2, qarr[3,2])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[29,] <- c('', mylink2, qarr[4,2])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[30,] <- c('', mylink2, qarr[5,2])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[31,] <- c('', mylink2, qarr[6,2])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[32,] <- c('', mylink2, qarr[7,2])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[33,] <- c('', mylink2, qarr[8,2])
mylink1 <- hyperlink('variation1.htm','Coefficient of Quartile Variation','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[34,] <- c('', mylink2, qarr[1,3])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[35,] <- c('', mylink2, qarr[2,3])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[36,] <- c('', mylink2, qarr[3,3])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[37,] <- c('', mylink2, qarr[4,3])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[38,] <- c('', mylink2, qarr[5,3])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[39,] <- c('', mylink2, qarr[6,3])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[40,] <- c('', mylink2, qarr[7,3])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[41,] <- c('', mylink2, qarr[8,3])
res[42,] <- c('Number of all Pairs of Observations', 'pair_numbers.htm', lx*(lx-1)/2)
res[43,] <- c('Squared Differences between all Pairs of Observations', 'squared_differences.htm', sdpo)
res[44,] <- c('Mean Absolute Differences between all Pairs of Observations', 'mean_abs_differences.htm', adpo)
res[45,] <- c('Gini Mean Difference', 'gini_mean_difference.htm', gmd)
res[46,] <- c('Leik Measure of Dispersion', 'leiks_d.htm', bigd)
res[47,] <- c('Index of Diversity', 'diversity.htm', iod)
res[48,] <- c('Index of Qualitative Variation', 'qualitative_variation.htm', iod*lx/(lx-1))
res[49,] <- c('Coefficient of Dispersion', 'dispersion.htm', sum(axmm)/lx/medx)
res[50,] <- c('Observations', '', lx)
res
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variability - Ungrouped Data',2,TRUE)
a<-table.row.end(a)
for (i in 1:num) {
a<-table.row.start(a)
if (res[i,1] != '') {
a<-table.element(a,hyperlink(res[i,2],res[i,1],''),header=TRUE)
} else {
a<-table.element(a,res[i,2],header=TRUE)
}
a<-table.element(a,res[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')