library(lmtest) par1 <- as.numeric(par1) par2 <- as.numeric(par2) par3 <- as.numeric(par3) par4 <- as.numeric(par4) par5 <- as.numeric(par5) par6 <- as.numeric(par6) par7 <- as.numeric(par7) par8 <- as.numeric(par8) ox <- x oy <- y if (par1 == 0) { x <- log(x) } else { x <- (x ^ par1 - 1) / par1 } if (par5 == 0) { y <- log(y) } else { y <- (y ^ par5 - 1) / par5 } if (par2 > 0) x <- diff(x,lag=1,difference=par2) if (par6 > 0) y <- diff(y,lag=1,difference=par6) if (par3 > 0) x <- diff(x,lag=par4,difference=par3) if (par7 > 0) y <- diff(y,lag=par4,difference=par7) x y (gyx <- grangertest(y ~ x, order=par8)) (gxy <- grangertest(x ~ y, order=par8)) bitmap(file='test1.png') op <- par(mfrow=c(2,1)) (r <- ccf(ox,oy,main='Cross Correlation Function (raw data)',ylab='CCF',xlab='Lag (k)')) (r <- ccf(x,y,main='Cross Correlation Function (transformed and differenced)',ylab='CCF',xlab='Lag (k)')) par(op) dev.off() bitmap(file='test2.png') op <- par(mfrow=c(2,1)) acf(ox,lag.max=round(length(x)/2),main='ACF of x (raw)') acf(x,lag.max=round(length(x)/2),main='ACF of x (transformed and differenced)') par(op) dev.off() bitmap(file='test3.png') op <- par(mfrow=c(2,1)) acf(oy,lag.max=round(length(y)/2),main='ACF of y (raw)') acf(y,lag.max=round(length(y)/2),main='ACF of y (transformed and differenced)') par(op) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Granger Causality Test: Y = f(X)',5,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Model',header=TRUE) a<-table.element(a,'Res.DF',header=TRUE) a<-table.element(a,'Diff. DF',header=TRUE) a<-table.element(a,'F',header=TRUE) a<-table.element(a,'p-value',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Complete model',header=TRUE) a<-table.element(a,gyx$Res.Df[1]) a<-table.element(a,'') a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Reduced model',header=TRUE) a<-table.element(a,gyx$Res.Df[2]) a<-table.element(a,gyx$Df[2]) a<-table.element(a,gyx$F[2]) a<-table.element(a,gyx$Pr[2]) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable1.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Granger Causality Test: X = f(Y)',5,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Model',header=TRUE) a<-table.element(a,'Res.DF',header=TRUE) a<-table.element(a,'Diff. DF',header=TRUE) a<-table.element(a,'F',header=TRUE) a<-table.element(a,'p-value',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Complete model',header=TRUE) a<-table.element(a,gxy$Res.Df[1]) a<-table.element(a,'') a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Reduced model',header=TRUE) a<-table.element(a,gxy$Res.Df[2]) a<-table.element(a,gxy$Df[2]) a<-table.element(a,gxy$F[2]) a<-table.element(a,gxy$Pr[2]) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable2.tab')
|