Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationSat, 12 Dec 2009 04:35:34 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Dec/12/t1260618151s453v4t6ekrgnaf.htm/, Retrieved Fri, 01 Nov 2024 00:32:56 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=66909, Retrieved Fri, 01 Nov 2024 00:32:56 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact204
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [multi lineair reg...] [2009-12-11 16:54:58] [517ac0676608e46c618c738721d88e41]
- R PD    [Multiple Regression] [met lineaire tren...] [2009-12-12 11:35:34] [5d37783481a916b2505b66314b556267] [Current]
Feedback Forum

Post a new message
Dataseries X:
17192.4	0
15386.1	0
14287.1	0
17526.6	0
14497	0
14398.3	0
16629.6	0
16670.7	0
16614.8	0
16869.2	0
15663.9	0
16359.9	0
18447.7	0
16889	0
16505	0
18320.9	0
15052.1	0
15699.8	0
18135.3	0
16768.7	0
18883	0
19021	0
18101.9	0
17776.1	0
21489.9	0
17065.3	0
18690	0
18953.1	0
16398.9	0
16895.6	0
18553	0
19270	0
19422.1	0
17579.4	0
18637.3	0
18076.7	0
20438.6	0
18075.2	0
19563	0
19899.2	0
19227.5	0
17789.6	0
19220.8	0
21968.9	0
21131.5	0
19484.6	0
22168.7	1
20866.8	1
22176.2	1
23533.8	1
21479.6	1
24347.7	1
22751.6	1
20328.3	1
23650.4	1
23335.7	1
19614.9	1
18042.3	1
17282.5	1
16847.2	1
18159.5	1




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 5 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=66909&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]5 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=66909&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=66909&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Multiple Linear Regression - Estimated Regression Equation
Invoer[t] = + 14662.8712459016 + 649.502540983608Dummy[t] + 2134.04735519127M1[t] + 1185.18154644809M2[t] + 1015.16744262295M3[t] + 2634.65333879781M4[t] + 325.499234972678M5[t] -322.674868852462M6[t] + 1807.75102732240M7[t] + 2087.65692349727M8[t] + 1533.04281967213M9[t] + 514.008715846994M10[t] + 470.594103825136M11[t] + 85.0741038251365t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Invoer[t] =  +  14662.8712459016 +  649.502540983608Dummy[t] +  2134.04735519127M1[t] +  1185.18154644809M2[t] +  1015.16744262295M3[t] +  2634.65333879781M4[t] +  325.499234972678M5[t] -322.674868852462M6[t] +  1807.75102732240M7[t] +  2087.65692349727M8[t] +  1533.04281967213M9[t] +  514.008715846994M10[t] +  470.594103825136M11[t] +  85.0741038251365t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=66909&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Invoer[t] =  +  14662.8712459016 +  649.502540983608Dummy[t] +  2134.04735519127M1[t] +  1185.18154644809M2[t] +  1015.16744262295M3[t] +  2634.65333879781M4[t] +  325.499234972678M5[t] -322.674868852462M6[t] +  1807.75102732240M7[t] +  2087.65692349727M8[t] +  1533.04281967213M9[t] +  514.008715846994M10[t] +  470.594103825136M11[t] +  85.0741038251365t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=66909&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=66909&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Invoer[t] = + 14662.8712459016 + 649.502540983608Dummy[t] + 2134.04735519127M1[t] + 1185.18154644809M2[t] + 1015.16744262295M3[t] + 2634.65333879781M4[t] + 325.499234972678M5[t] -322.674868852462M6[t] + 1807.75102732240M7[t] + 2087.65692349727M8[t] + 1533.04281967213M9[t] + 514.008715846994M10[t] + 470.594103825136M11[t] + 85.0741038251365t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)14662.8712459016874.6959216.763400
Dummy649.502540983608749.6133860.86650.3906450.195323
M12134.04735519127994.8642852.14510.0371470.018573
M21185.181546448091044.1101711.13510.2620840.131042
M31015.167442622951043.0348190.97330.3353960.167698
M42634.653338797811042.2794542.52780.0148990.00745
M5325.4992349726781041.8447740.31240.7560990.378049
M6-322.6748688524621041.731179-0.30970.7581210.379061
M71807.751027322401041.9387741.7350.0892970.044648
M82087.656923497271042.4673682.00260.0510070.025503
M91533.042819672131043.3164731.46940.1483880.074194
M10514.0087158469941044.4853060.49210.6249280.312464
M11470.5941038251361037.1575030.45370.6521080.326054
t85.074103825136518.2926784.65072.7e-051.4e-05

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 14662.8712459016 & 874.69592 & 16.7634 & 0 & 0 \tabularnewline
Dummy & 649.502540983608 & 749.613386 & 0.8665 & 0.390645 & 0.195323 \tabularnewline
M1 & 2134.04735519127 & 994.864285 & 2.1451 & 0.037147 & 0.018573 \tabularnewline
M2 & 1185.18154644809 & 1044.110171 & 1.1351 & 0.262084 & 0.131042 \tabularnewline
M3 & 1015.16744262295 & 1043.034819 & 0.9733 & 0.335396 & 0.167698 \tabularnewline
M4 & 2634.65333879781 & 1042.279454 & 2.5278 & 0.014899 & 0.00745 \tabularnewline
M5 & 325.499234972678 & 1041.844774 & 0.3124 & 0.756099 & 0.378049 \tabularnewline
M6 & -322.674868852462 & 1041.731179 & -0.3097 & 0.758121 & 0.379061 \tabularnewline
M7 & 1807.75102732240 & 1041.938774 & 1.735 & 0.089297 & 0.044648 \tabularnewline
M8 & 2087.65692349727 & 1042.467368 & 2.0026 & 0.051007 & 0.025503 \tabularnewline
M9 & 1533.04281967213 & 1043.316473 & 1.4694 & 0.148388 & 0.074194 \tabularnewline
M10 & 514.008715846994 & 1044.485306 & 0.4921 & 0.624928 & 0.312464 \tabularnewline
M11 & 470.594103825136 & 1037.157503 & 0.4537 & 0.652108 & 0.326054 \tabularnewline
t & 85.0741038251365 & 18.292678 & 4.6507 & 2.7e-05 & 1.4e-05 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=66909&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]14662.8712459016[/C][C]874.69592[/C][C]16.7634[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]Dummy[/C][C]649.502540983608[/C][C]749.613386[/C][C]0.8665[/C][C]0.390645[/C][C]0.195323[/C][/ROW]
[ROW][C]M1[/C][C]2134.04735519127[/C][C]994.864285[/C][C]2.1451[/C][C]0.037147[/C][C]0.018573[/C][/ROW]
[ROW][C]M2[/C][C]1185.18154644809[/C][C]1044.110171[/C][C]1.1351[/C][C]0.262084[/C][C]0.131042[/C][/ROW]
[ROW][C]M3[/C][C]1015.16744262295[/C][C]1043.034819[/C][C]0.9733[/C][C]0.335396[/C][C]0.167698[/C][/ROW]
[ROW][C]M4[/C][C]2634.65333879781[/C][C]1042.279454[/C][C]2.5278[/C][C]0.014899[/C][C]0.00745[/C][/ROW]
[ROW][C]M5[/C][C]325.499234972678[/C][C]1041.844774[/C][C]0.3124[/C][C]0.756099[/C][C]0.378049[/C][/ROW]
[ROW][C]M6[/C][C]-322.674868852462[/C][C]1041.731179[/C][C]-0.3097[/C][C]0.758121[/C][C]0.379061[/C][/ROW]
[ROW][C]M7[/C][C]1807.75102732240[/C][C]1041.938774[/C][C]1.735[/C][C]0.089297[/C][C]0.044648[/C][/ROW]
[ROW][C]M8[/C][C]2087.65692349727[/C][C]1042.467368[/C][C]2.0026[/C][C]0.051007[/C][C]0.025503[/C][/ROW]
[ROW][C]M9[/C][C]1533.04281967213[/C][C]1043.316473[/C][C]1.4694[/C][C]0.148388[/C][C]0.074194[/C][/ROW]
[ROW][C]M10[/C][C]514.008715846994[/C][C]1044.485306[/C][C]0.4921[/C][C]0.624928[/C][C]0.312464[/C][/ROW]
[ROW][C]M11[/C][C]470.594103825136[/C][C]1037.157503[/C][C]0.4537[/C][C]0.652108[/C][C]0.326054[/C][/ROW]
[ROW][C]t[/C][C]85.0741038251365[/C][C]18.292678[/C][C]4.6507[/C][C]2.7e-05[/C][C]1.4e-05[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=66909&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=66909&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)14662.8712459016874.6959216.763400
Dummy649.502540983608749.6133860.86650.3906450.195323
M12134.04735519127994.8642852.14510.0371470.018573
M21185.181546448091044.1101711.13510.2620840.131042
M31015.167442622951043.0348190.97330.3353960.167698
M42634.653338797811042.2794542.52780.0148990.00745
M5325.4992349726781041.8447740.31240.7560990.378049
M6-322.6748688524621041.731179-0.30970.7581210.379061
M71807.751027322401041.9387741.7350.0892970.044648
M82087.656923497271042.4673682.00260.0510070.025503
M91533.042819672131043.3164731.46940.1483880.074194
M10514.0087158469941044.4853060.49210.6249280.312464
M11470.5941038251361037.1575030.45370.6521080.326054
t85.074103825136518.2926784.65072.7e-051.4e-05







Multiple Linear Regression - Regression Statistics
Multiple R0.796759760684484
R-squared0.634826116245995
Adjusted R-squared0.533820573931058
F-TEST (value)6.28506220249374
F-TEST (DF numerator)13
F-TEST (DF denominator)47
p-value1.19807218634804e-06
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation1639.6349161624
Sum Squared Residuals126354924.940048

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.796759760684484 \tabularnewline
R-squared & 0.634826116245995 \tabularnewline
Adjusted R-squared & 0.533820573931058 \tabularnewline
F-TEST (value) & 6.28506220249374 \tabularnewline
F-TEST (DF numerator) & 13 \tabularnewline
F-TEST (DF denominator) & 47 \tabularnewline
p-value & 1.19807218634804e-06 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 1639.6349161624 \tabularnewline
Sum Squared Residuals & 126354924.940048 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=66909&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.796759760684484[/C][/ROW]
[ROW][C]R-squared[/C][C]0.634826116245995[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.533820573931058[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]6.28506220249374[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]13[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]47[/C][/ROW]
[ROW][C]p-value[/C][C]1.19807218634804e-06[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]1639.6349161624[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]126354924.940048[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=66909&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=66909&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.796759760684484
R-squared0.634826116245995
Adjusted R-squared0.533820573931058
F-TEST (value)6.28506220249374
F-TEST (DF numerator)13
F-TEST (DF denominator)47
p-value1.19807218634804e-06
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation1639.6349161624
Sum Squared Residuals126354924.940048







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
117192.416881.992704918310.407295082008
215386.116018.201-632.101000000004
314287.115933.261-1646.16100000000
417526.617637.821-111.221000000008
51449715413.741-916.740999999999
614398.314850.641-452.341000000005
716629.617066.141-436.541000000004
816670.717431.121-760.421000000002
916614.816961.581-346.781000000002
1016869.216027.621841.579
1115663.916069.2804918033-405.380491803281
1216359.915683.7604918033676.139508196718
1318447.717902.8819508197544.818049180318
141688917039.0902459016-150.090245901640
151650516954.1502459016-449.15024590164
1618320.918658.7102459016-337.810245901638
1715052.116434.6302459016-1382.53024590164
1815699.815871.5302459016-171.730245901640
1918135.318087.030245901648.2697540983598
2016768.718452.0102459016-1683.31024590164
211888317982.4702459016900.52975409836
221902117048.51024590161972.48975409836
2318101.917090.16973770491011.73026229508
2417776.116704.64973770491071.45026229508
2521489.918923.77119672132566.12880327868
2617065.318059.9794918033-994.679491803278
271869017975.0394918033714.960508196722
2818953.119679.5994918033-726.499491803279
2916398.917455.5194918033-1056.61949180328
3016895.616892.41949180333.18050819672222
311855319107.9194918033-554.919491803277
321927019472.8994918033-202.899491803279
3319422.119003.3594918033418.74050819672
3417579.418069.3994918033-489.999491803277
3518637.318111.0589836066526.241016393441
3618076.717725.5389836066351.161016393443
3720438.619944.6604426230493.93955737704
3818075.219080.8687377049-1005.66873770491
391956318995.9287377049567.071262295085
4019899.220700.4887377049-801.288737704914
4119227.518476.4087377049751.091262295082
4217789.617913.3087377049-123.708737704916
4319220.820128.8087377049-908.008737704917
4421968.920493.78873770491475.11126229509
4521131.520024.24873770491107.25126229508
4619484.619090.2887377049394.311262295082
4722168.719781.45077049182387.2492295082
4820866.819395.93077049181470.86922950820
4922176.221615.0522295082561.147770491796
5023533.820751.26052459022782.53947540984
5121479.620666.3205245902813.279475409836
5224347.722370.88052459021976.81947540984
5322751.620146.80052459022604.79947540983
5420328.319583.7005245902744.599475409839
5523650.421799.20052459021851.19947540984
5623335.722164.18052459021171.51947540984
5719614.921694.6405245902-2079.74052459016
5818042.320760.6805245902-2718.38052459016
5917282.520802.3400163934-3519.84001639344
6016847.220416.8200163934-3569.62001639344
6118159.522635.9414754098-4476.44147540984

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 17192.4 & 16881.992704918 & 310.407295082008 \tabularnewline
2 & 15386.1 & 16018.201 & -632.101000000004 \tabularnewline
3 & 14287.1 & 15933.261 & -1646.16100000000 \tabularnewline
4 & 17526.6 & 17637.821 & -111.221000000008 \tabularnewline
5 & 14497 & 15413.741 & -916.740999999999 \tabularnewline
6 & 14398.3 & 14850.641 & -452.341000000005 \tabularnewline
7 & 16629.6 & 17066.141 & -436.541000000004 \tabularnewline
8 & 16670.7 & 17431.121 & -760.421000000002 \tabularnewline
9 & 16614.8 & 16961.581 & -346.781000000002 \tabularnewline
10 & 16869.2 & 16027.621 & 841.579 \tabularnewline
11 & 15663.9 & 16069.2804918033 & -405.380491803281 \tabularnewline
12 & 16359.9 & 15683.7604918033 & 676.139508196718 \tabularnewline
13 & 18447.7 & 17902.8819508197 & 544.818049180318 \tabularnewline
14 & 16889 & 17039.0902459016 & -150.090245901640 \tabularnewline
15 & 16505 & 16954.1502459016 & -449.15024590164 \tabularnewline
16 & 18320.9 & 18658.7102459016 & -337.810245901638 \tabularnewline
17 & 15052.1 & 16434.6302459016 & -1382.53024590164 \tabularnewline
18 & 15699.8 & 15871.5302459016 & -171.730245901640 \tabularnewline
19 & 18135.3 & 18087.0302459016 & 48.2697540983598 \tabularnewline
20 & 16768.7 & 18452.0102459016 & -1683.31024590164 \tabularnewline
21 & 18883 & 17982.4702459016 & 900.52975409836 \tabularnewline
22 & 19021 & 17048.5102459016 & 1972.48975409836 \tabularnewline
23 & 18101.9 & 17090.1697377049 & 1011.73026229508 \tabularnewline
24 & 17776.1 & 16704.6497377049 & 1071.45026229508 \tabularnewline
25 & 21489.9 & 18923.7711967213 & 2566.12880327868 \tabularnewline
26 & 17065.3 & 18059.9794918033 & -994.679491803278 \tabularnewline
27 & 18690 & 17975.0394918033 & 714.960508196722 \tabularnewline
28 & 18953.1 & 19679.5994918033 & -726.499491803279 \tabularnewline
29 & 16398.9 & 17455.5194918033 & -1056.61949180328 \tabularnewline
30 & 16895.6 & 16892.4194918033 & 3.18050819672222 \tabularnewline
31 & 18553 & 19107.9194918033 & -554.919491803277 \tabularnewline
32 & 19270 & 19472.8994918033 & -202.899491803279 \tabularnewline
33 & 19422.1 & 19003.3594918033 & 418.74050819672 \tabularnewline
34 & 17579.4 & 18069.3994918033 & -489.999491803277 \tabularnewline
35 & 18637.3 & 18111.0589836066 & 526.241016393441 \tabularnewline
36 & 18076.7 & 17725.5389836066 & 351.161016393443 \tabularnewline
37 & 20438.6 & 19944.6604426230 & 493.93955737704 \tabularnewline
38 & 18075.2 & 19080.8687377049 & -1005.66873770491 \tabularnewline
39 & 19563 & 18995.9287377049 & 567.071262295085 \tabularnewline
40 & 19899.2 & 20700.4887377049 & -801.288737704914 \tabularnewline
41 & 19227.5 & 18476.4087377049 & 751.091262295082 \tabularnewline
42 & 17789.6 & 17913.3087377049 & -123.708737704916 \tabularnewline
43 & 19220.8 & 20128.8087377049 & -908.008737704917 \tabularnewline
44 & 21968.9 & 20493.7887377049 & 1475.11126229509 \tabularnewline
45 & 21131.5 & 20024.2487377049 & 1107.25126229508 \tabularnewline
46 & 19484.6 & 19090.2887377049 & 394.311262295082 \tabularnewline
47 & 22168.7 & 19781.4507704918 & 2387.2492295082 \tabularnewline
48 & 20866.8 & 19395.9307704918 & 1470.86922950820 \tabularnewline
49 & 22176.2 & 21615.0522295082 & 561.147770491796 \tabularnewline
50 & 23533.8 & 20751.2605245902 & 2782.53947540984 \tabularnewline
51 & 21479.6 & 20666.3205245902 & 813.279475409836 \tabularnewline
52 & 24347.7 & 22370.8805245902 & 1976.81947540984 \tabularnewline
53 & 22751.6 & 20146.8005245902 & 2604.79947540983 \tabularnewline
54 & 20328.3 & 19583.7005245902 & 744.599475409839 \tabularnewline
55 & 23650.4 & 21799.2005245902 & 1851.19947540984 \tabularnewline
56 & 23335.7 & 22164.1805245902 & 1171.51947540984 \tabularnewline
57 & 19614.9 & 21694.6405245902 & -2079.74052459016 \tabularnewline
58 & 18042.3 & 20760.6805245902 & -2718.38052459016 \tabularnewline
59 & 17282.5 & 20802.3400163934 & -3519.84001639344 \tabularnewline
60 & 16847.2 & 20416.8200163934 & -3569.62001639344 \tabularnewline
61 & 18159.5 & 22635.9414754098 & -4476.44147540984 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=66909&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]17192.4[/C][C]16881.992704918[/C][C]310.407295082008[/C][/ROW]
[ROW][C]2[/C][C]15386.1[/C][C]16018.201[/C][C]-632.101000000004[/C][/ROW]
[ROW][C]3[/C][C]14287.1[/C][C]15933.261[/C][C]-1646.16100000000[/C][/ROW]
[ROW][C]4[/C][C]17526.6[/C][C]17637.821[/C][C]-111.221000000008[/C][/ROW]
[ROW][C]5[/C][C]14497[/C][C]15413.741[/C][C]-916.740999999999[/C][/ROW]
[ROW][C]6[/C][C]14398.3[/C][C]14850.641[/C][C]-452.341000000005[/C][/ROW]
[ROW][C]7[/C][C]16629.6[/C][C]17066.141[/C][C]-436.541000000004[/C][/ROW]
[ROW][C]8[/C][C]16670.7[/C][C]17431.121[/C][C]-760.421000000002[/C][/ROW]
[ROW][C]9[/C][C]16614.8[/C][C]16961.581[/C][C]-346.781000000002[/C][/ROW]
[ROW][C]10[/C][C]16869.2[/C][C]16027.621[/C][C]841.579[/C][/ROW]
[ROW][C]11[/C][C]15663.9[/C][C]16069.2804918033[/C][C]-405.380491803281[/C][/ROW]
[ROW][C]12[/C][C]16359.9[/C][C]15683.7604918033[/C][C]676.139508196718[/C][/ROW]
[ROW][C]13[/C][C]18447.7[/C][C]17902.8819508197[/C][C]544.818049180318[/C][/ROW]
[ROW][C]14[/C][C]16889[/C][C]17039.0902459016[/C][C]-150.090245901640[/C][/ROW]
[ROW][C]15[/C][C]16505[/C][C]16954.1502459016[/C][C]-449.15024590164[/C][/ROW]
[ROW][C]16[/C][C]18320.9[/C][C]18658.7102459016[/C][C]-337.810245901638[/C][/ROW]
[ROW][C]17[/C][C]15052.1[/C][C]16434.6302459016[/C][C]-1382.53024590164[/C][/ROW]
[ROW][C]18[/C][C]15699.8[/C][C]15871.5302459016[/C][C]-171.730245901640[/C][/ROW]
[ROW][C]19[/C][C]18135.3[/C][C]18087.0302459016[/C][C]48.2697540983598[/C][/ROW]
[ROW][C]20[/C][C]16768.7[/C][C]18452.0102459016[/C][C]-1683.31024590164[/C][/ROW]
[ROW][C]21[/C][C]18883[/C][C]17982.4702459016[/C][C]900.52975409836[/C][/ROW]
[ROW][C]22[/C][C]19021[/C][C]17048.5102459016[/C][C]1972.48975409836[/C][/ROW]
[ROW][C]23[/C][C]18101.9[/C][C]17090.1697377049[/C][C]1011.73026229508[/C][/ROW]
[ROW][C]24[/C][C]17776.1[/C][C]16704.6497377049[/C][C]1071.45026229508[/C][/ROW]
[ROW][C]25[/C][C]21489.9[/C][C]18923.7711967213[/C][C]2566.12880327868[/C][/ROW]
[ROW][C]26[/C][C]17065.3[/C][C]18059.9794918033[/C][C]-994.679491803278[/C][/ROW]
[ROW][C]27[/C][C]18690[/C][C]17975.0394918033[/C][C]714.960508196722[/C][/ROW]
[ROW][C]28[/C][C]18953.1[/C][C]19679.5994918033[/C][C]-726.499491803279[/C][/ROW]
[ROW][C]29[/C][C]16398.9[/C][C]17455.5194918033[/C][C]-1056.61949180328[/C][/ROW]
[ROW][C]30[/C][C]16895.6[/C][C]16892.4194918033[/C][C]3.18050819672222[/C][/ROW]
[ROW][C]31[/C][C]18553[/C][C]19107.9194918033[/C][C]-554.919491803277[/C][/ROW]
[ROW][C]32[/C][C]19270[/C][C]19472.8994918033[/C][C]-202.899491803279[/C][/ROW]
[ROW][C]33[/C][C]19422.1[/C][C]19003.3594918033[/C][C]418.74050819672[/C][/ROW]
[ROW][C]34[/C][C]17579.4[/C][C]18069.3994918033[/C][C]-489.999491803277[/C][/ROW]
[ROW][C]35[/C][C]18637.3[/C][C]18111.0589836066[/C][C]526.241016393441[/C][/ROW]
[ROW][C]36[/C][C]18076.7[/C][C]17725.5389836066[/C][C]351.161016393443[/C][/ROW]
[ROW][C]37[/C][C]20438.6[/C][C]19944.6604426230[/C][C]493.93955737704[/C][/ROW]
[ROW][C]38[/C][C]18075.2[/C][C]19080.8687377049[/C][C]-1005.66873770491[/C][/ROW]
[ROW][C]39[/C][C]19563[/C][C]18995.9287377049[/C][C]567.071262295085[/C][/ROW]
[ROW][C]40[/C][C]19899.2[/C][C]20700.4887377049[/C][C]-801.288737704914[/C][/ROW]
[ROW][C]41[/C][C]19227.5[/C][C]18476.4087377049[/C][C]751.091262295082[/C][/ROW]
[ROW][C]42[/C][C]17789.6[/C][C]17913.3087377049[/C][C]-123.708737704916[/C][/ROW]
[ROW][C]43[/C][C]19220.8[/C][C]20128.8087377049[/C][C]-908.008737704917[/C][/ROW]
[ROW][C]44[/C][C]21968.9[/C][C]20493.7887377049[/C][C]1475.11126229509[/C][/ROW]
[ROW][C]45[/C][C]21131.5[/C][C]20024.2487377049[/C][C]1107.25126229508[/C][/ROW]
[ROW][C]46[/C][C]19484.6[/C][C]19090.2887377049[/C][C]394.311262295082[/C][/ROW]
[ROW][C]47[/C][C]22168.7[/C][C]19781.4507704918[/C][C]2387.2492295082[/C][/ROW]
[ROW][C]48[/C][C]20866.8[/C][C]19395.9307704918[/C][C]1470.86922950820[/C][/ROW]
[ROW][C]49[/C][C]22176.2[/C][C]21615.0522295082[/C][C]561.147770491796[/C][/ROW]
[ROW][C]50[/C][C]23533.8[/C][C]20751.2605245902[/C][C]2782.53947540984[/C][/ROW]
[ROW][C]51[/C][C]21479.6[/C][C]20666.3205245902[/C][C]813.279475409836[/C][/ROW]
[ROW][C]52[/C][C]24347.7[/C][C]22370.8805245902[/C][C]1976.81947540984[/C][/ROW]
[ROW][C]53[/C][C]22751.6[/C][C]20146.8005245902[/C][C]2604.79947540983[/C][/ROW]
[ROW][C]54[/C][C]20328.3[/C][C]19583.7005245902[/C][C]744.599475409839[/C][/ROW]
[ROW][C]55[/C][C]23650.4[/C][C]21799.2005245902[/C][C]1851.19947540984[/C][/ROW]
[ROW][C]56[/C][C]23335.7[/C][C]22164.1805245902[/C][C]1171.51947540984[/C][/ROW]
[ROW][C]57[/C][C]19614.9[/C][C]21694.6405245902[/C][C]-2079.74052459016[/C][/ROW]
[ROW][C]58[/C][C]18042.3[/C][C]20760.6805245902[/C][C]-2718.38052459016[/C][/ROW]
[ROW][C]59[/C][C]17282.5[/C][C]20802.3400163934[/C][C]-3519.84001639344[/C][/ROW]
[ROW][C]60[/C][C]16847.2[/C][C]20416.8200163934[/C][C]-3569.62001639344[/C][/ROW]
[ROW][C]61[/C][C]18159.5[/C][C]22635.9414754098[/C][C]-4476.44147540984[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=66909&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=66909&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
117192.416881.992704918310.407295082008
215386.116018.201-632.101000000004
314287.115933.261-1646.16100000000
417526.617637.821-111.221000000008
51449715413.741-916.740999999999
614398.314850.641-452.341000000005
716629.617066.141-436.541000000004
816670.717431.121-760.421000000002
916614.816961.581-346.781000000002
1016869.216027.621841.579
1115663.916069.2804918033-405.380491803281
1216359.915683.7604918033676.139508196718
1318447.717902.8819508197544.818049180318
141688917039.0902459016-150.090245901640
151650516954.1502459016-449.15024590164
1618320.918658.7102459016-337.810245901638
1715052.116434.6302459016-1382.53024590164
1815699.815871.5302459016-171.730245901640
1918135.318087.030245901648.2697540983598
2016768.718452.0102459016-1683.31024590164
211888317982.4702459016900.52975409836
221902117048.51024590161972.48975409836
2318101.917090.16973770491011.73026229508
2417776.116704.64973770491071.45026229508
2521489.918923.77119672132566.12880327868
2617065.318059.9794918033-994.679491803278
271869017975.0394918033714.960508196722
2818953.119679.5994918033-726.499491803279
2916398.917455.5194918033-1056.61949180328
3016895.616892.41949180333.18050819672222
311855319107.9194918033-554.919491803277
321927019472.8994918033-202.899491803279
3319422.119003.3594918033418.74050819672
3417579.418069.3994918033-489.999491803277
3518637.318111.0589836066526.241016393441
3618076.717725.5389836066351.161016393443
3720438.619944.6604426230493.93955737704
3818075.219080.8687377049-1005.66873770491
391956318995.9287377049567.071262295085
4019899.220700.4887377049-801.288737704914
4119227.518476.4087377049751.091262295082
4217789.617913.3087377049-123.708737704916
4319220.820128.8087377049-908.008737704917
4421968.920493.78873770491475.11126229509
4521131.520024.24873770491107.25126229508
4619484.619090.2887377049394.311262295082
4722168.719781.45077049182387.2492295082
4820866.819395.93077049181470.86922950820
4922176.221615.0522295082561.147770491796
5023533.820751.26052459022782.53947540984
5121479.620666.3205245902813.279475409836
5224347.722370.88052459021976.81947540984
5322751.620146.80052459022604.79947540983
5420328.319583.7005245902744.599475409839
5523650.421799.20052459021851.19947540984
5623335.722164.18052459021171.51947540984
5719614.921694.6405245902-2079.74052459016
5818042.320760.6805245902-2718.38052459016
5917282.520802.3400163934-3519.84001639344
6016847.220416.8200163934-3569.62001639344
6118159.522635.9414754098-4476.44147540984







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.0301077645545220.0602155291090440.969892235445478
180.006964508820456870.01392901764091370.993035491179543
190.001549118653851870.003098237307703750.998450881346148
200.002044154221582580.004088308443165170.997955845778417
210.001380366280276310.002760732560552620.998619633719724
220.000643318893407120.001286637786814240.999356681106593
230.0003741890227808420.0007483780455616850.99962581097722
240.0001003505088086420.0002007010176172840.999899649491191
250.0001817240369268850.0003634480738537690.999818275963073
260.0003054503945379320.0006109007890758640.999694549605462
270.0001864693380923480.0003729386761846960.999813530661908
280.0001998509848941590.0003997019697883190.999800149015106
290.0002194435810575270.0004388871621150540.999780556418942
300.0001071261559331140.0002142523118662290.999892873844067
310.0001298131011823500.0002596262023647000.999870186898818
320.0003303099781599950.000660619956319990.99966969002184
330.0003013793627126030.0006027587254252060.999698620637287
340.006765271017629890.01353054203525980.99323472898237
350.003582752545871150.00716550509174230.996417247454129
360.002181696849760530.004363393699521050.99781830315024
370.001368667231372290.002737334462744580.998631332768628
380.003242351996319990.006484703992639980.99675764800368
390.001745550972669970.003491101945339950.99825444902733
400.003080569178882910.006161138357765820.996919430821117
410.007015441334736690.01403088266947340.992984558665263
420.005239622438770230.01047924487754050.99476037756123
430.2966072476106900.5932144952213790.70339275238931
440.9425593466087870.1148813067824260.057440653391213

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
17 & 0.030107764554522 & 0.060215529109044 & 0.969892235445478 \tabularnewline
18 & 0.00696450882045687 & 0.0139290176409137 & 0.993035491179543 \tabularnewline
19 & 0.00154911865385187 & 0.00309823730770375 & 0.998450881346148 \tabularnewline
20 & 0.00204415422158258 & 0.00408830844316517 & 0.997955845778417 \tabularnewline
21 & 0.00138036628027631 & 0.00276073256055262 & 0.998619633719724 \tabularnewline
22 & 0.00064331889340712 & 0.00128663778681424 & 0.999356681106593 \tabularnewline
23 & 0.000374189022780842 & 0.000748378045561685 & 0.99962581097722 \tabularnewline
24 & 0.000100350508808642 & 0.000200701017617284 & 0.999899649491191 \tabularnewline
25 & 0.000181724036926885 & 0.000363448073853769 & 0.999818275963073 \tabularnewline
26 & 0.000305450394537932 & 0.000610900789075864 & 0.999694549605462 \tabularnewline
27 & 0.000186469338092348 & 0.000372938676184696 & 0.999813530661908 \tabularnewline
28 & 0.000199850984894159 & 0.000399701969788319 & 0.999800149015106 \tabularnewline
29 & 0.000219443581057527 & 0.000438887162115054 & 0.999780556418942 \tabularnewline
30 & 0.000107126155933114 & 0.000214252311866229 & 0.999892873844067 \tabularnewline
31 & 0.000129813101182350 & 0.000259626202364700 & 0.999870186898818 \tabularnewline
32 & 0.000330309978159995 & 0.00066061995631999 & 0.99966969002184 \tabularnewline
33 & 0.000301379362712603 & 0.000602758725425206 & 0.999698620637287 \tabularnewline
34 & 0.00676527101762989 & 0.0135305420352598 & 0.99323472898237 \tabularnewline
35 & 0.00358275254587115 & 0.0071655050917423 & 0.996417247454129 \tabularnewline
36 & 0.00218169684976053 & 0.00436339369952105 & 0.99781830315024 \tabularnewline
37 & 0.00136866723137229 & 0.00273733446274458 & 0.998631332768628 \tabularnewline
38 & 0.00324235199631999 & 0.00648470399263998 & 0.99675764800368 \tabularnewline
39 & 0.00174555097266997 & 0.00349110194533995 & 0.99825444902733 \tabularnewline
40 & 0.00308056917888291 & 0.00616113835776582 & 0.996919430821117 \tabularnewline
41 & 0.00701544133473669 & 0.0140308826694734 & 0.992984558665263 \tabularnewline
42 & 0.00523962243877023 & 0.0104792448775405 & 0.99476037756123 \tabularnewline
43 & 0.296607247610690 & 0.593214495221379 & 0.70339275238931 \tabularnewline
44 & 0.942559346608787 & 0.114881306782426 & 0.057440653391213 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=66909&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]17[/C][C]0.030107764554522[/C][C]0.060215529109044[/C][C]0.969892235445478[/C][/ROW]
[ROW][C]18[/C][C]0.00696450882045687[/C][C]0.0139290176409137[/C][C]0.993035491179543[/C][/ROW]
[ROW][C]19[/C][C]0.00154911865385187[/C][C]0.00309823730770375[/C][C]0.998450881346148[/C][/ROW]
[ROW][C]20[/C][C]0.00204415422158258[/C][C]0.00408830844316517[/C][C]0.997955845778417[/C][/ROW]
[ROW][C]21[/C][C]0.00138036628027631[/C][C]0.00276073256055262[/C][C]0.998619633719724[/C][/ROW]
[ROW][C]22[/C][C]0.00064331889340712[/C][C]0.00128663778681424[/C][C]0.999356681106593[/C][/ROW]
[ROW][C]23[/C][C]0.000374189022780842[/C][C]0.000748378045561685[/C][C]0.99962581097722[/C][/ROW]
[ROW][C]24[/C][C]0.000100350508808642[/C][C]0.000200701017617284[/C][C]0.999899649491191[/C][/ROW]
[ROW][C]25[/C][C]0.000181724036926885[/C][C]0.000363448073853769[/C][C]0.999818275963073[/C][/ROW]
[ROW][C]26[/C][C]0.000305450394537932[/C][C]0.000610900789075864[/C][C]0.999694549605462[/C][/ROW]
[ROW][C]27[/C][C]0.000186469338092348[/C][C]0.000372938676184696[/C][C]0.999813530661908[/C][/ROW]
[ROW][C]28[/C][C]0.000199850984894159[/C][C]0.000399701969788319[/C][C]0.999800149015106[/C][/ROW]
[ROW][C]29[/C][C]0.000219443581057527[/C][C]0.000438887162115054[/C][C]0.999780556418942[/C][/ROW]
[ROW][C]30[/C][C]0.000107126155933114[/C][C]0.000214252311866229[/C][C]0.999892873844067[/C][/ROW]
[ROW][C]31[/C][C]0.000129813101182350[/C][C]0.000259626202364700[/C][C]0.999870186898818[/C][/ROW]
[ROW][C]32[/C][C]0.000330309978159995[/C][C]0.00066061995631999[/C][C]0.99966969002184[/C][/ROW]
[ROW][C]33[/C][C]0.000301379362712603[/C][C]0.000602758725425206[/C][C]0.999698620637287[/C][/ROW]
[ROW][C]34[/C][C]0.00676527101762989[/C][C]0.0135305420352598[/C][C]0.99323472898237[/C][/ROW]
[ROW][C]35[/C][C]0.00358275254587115[/C][C]0.0071655050917423[/C][C]0.996417247454129[/C][/ROW]
[ROW][C]36[/C][C]0.00218169684976053[/C][C]0.00436339369952105[/C][C]0.99781830315024[/C][/ROW]
[ROW][C]37[/C][C]0.00136866723137229[/C][C]0.00273733446274458[/C][C]0.998631332768628[/C][/ROW]
[ROW][C]38[/C][C]0.00324235199631999[/C][C]0.00648470399263998[/C][C]0.99675764800368[/C][/ROW]
[ROW][C]39[/C][C]0.00174555097266997[/C][C]0.00349110194533995[/C][C]0.99825444902733[/C][/ROW]
[ROW][C]40[/C][C]0.00308056917888291[/C][C]0.00616113835776582[/C][C]0.996919430821117[/C][/ROW]
[ROW][C]41[/C][C]0.00701544133473669[/C][C]0.0140308826694734[/C][C]0.992984558665263[/C][/ROW]
[ROW][C]42[/C][C]0.00523962243877023[/C][C]0.0104792448775405[/C][C]0.99476037756123[/C][/ROW]
[ROW][C]43[/C][C]0.296607247610690[/C][C]0.593214495221379[/C][C]0.70339275238931[/C][/ROW]
[ROW][C]44[/C][C]0.942559346608787[/C][C]0.114881306782426[/C][C]0.057440653391213[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=66909&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=66909&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.0301077645545220.0602155291090440.969892235445478
180.006964508820456870.01392901764091370.993035491179543
190.001549118653851870.003098237307703750.998450881346148
200.002044154221582580.004088308443165170.997955845778417
210.001380366280276310.002760732560552620.998619633719724
220.000643318893407120.001286637786814240.999356681106593
230.0003741890227808420.0007483780455616850.99962581097722
240.0001003505088086420.0002007010176172840.999899649491191
250.0001817240369268850.0003634480738537690.999818275963073
260.0003054503945379320.0006109007890758640.999694549605462
270.0001864693380923480.0003729386761846960.999813530661908
280.0001998509848941590.0003997019697883190.999800149015106
290.0002194435810575270.0004388871621150540.999780556418942
300.0001071261559331140.0002142523118662290.999892873844067
310.0001298131011823500.0002596262023647000.999870186898818
320.0003303099781599950.000660619956319990.99966969002184
330.0003013793627126030.0006027587254252060.999698620637287
340.006765271017629890.01353054203525980.99323472898237
350.003582752545871150.00716550509174230.996417247454129
360.002181696849760530.004363393699521050.99781830315024
370.001368667231372290.002737334462744580.998631332768628
380.003242351996319990.006484703992639980.99675764800368
390.001745550972669970.003491101945339950.99825444902733
400.003080569178882910.006161138357765820.996919430821117
410.007015441334736690.01403088266947340.992984558665263
420.005239622438770230.01047924487754050.99476037756123
430.2966072476106900.5932144952213790.70339275238931
440.9425593466087870.1148813067824260.057440653391213







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level210.75NOK
5% type I error level250.892857142857143NOK
10% type I error level260.928571428571429NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 21 & 0.75 & NOK \tabularnewline
5% type I error level & 25 & 0.892857142857143 & NOK \tabularnewline
10% type I error level & 26 & 0.928571428571429 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=66909&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]21[/C][C]0.75[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]25[/C][C]0.892857142857143[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]26[/C][C]0.928571428571429[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=66909&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=66909&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level210.75NOK
5% type I error level250.892857142857143NOK
10% type I error level260.928571428571429NOK



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}