Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationMon, 14 Dec 2009 06:04:10 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Dec/14/t1260795896o3stvgon4ypt82w.htm/, Retrieved Sun, 10 Nov 2024 19:42:50 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=67545, Retrieved Sun, 10 Nov 2024 19:42:50 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact147
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Data Series] [data set] [2008-12-01 19:54:57] [b98453cac15ba1066b407e146608df68]
- RMP   [Standard Deviation-Mean Plot] [] [2009-11-27 14:40:44] [b98453cac15ba1066b407e146608df68]
- RMPD    [(Partial) Autocorrelation Function] [] [2009-12-10 16:13:24] [a9a33b1951d9ae87ed6d7d9055d41c93]
-   PD      [(Partial) Autocorrelation Function] [] [2009-12-14 12:53:49] [a9a33b1951d9ae87ed6d7d9055d41c93]
-   P           [(Partial) Autocorrelation Function] [] [2009-12-14 13:04:10] [66ffaa9e54a90d3ae4874684602d24e9] [Current]
Feedback Forum

Post a new message
Dataseries X:
17823.2
17872
17420.4
16704.4
15991.2
16583.6
19123.5
17838.7
17209.4
18586.5
16258.1
15141.6
19202.1
17746.5
19090.1
18040.3
17515.5
17751.8
21072.4
17170
19439.5
19795.4
17574.9
16165.4
19464.6
19932.1
19961.2
17343.4
18924.2
18574.1
21350.6
18594.6
19823.1
20844.4
19640.2
17735.4
19813.6
22160
20664.3
17877.4
20906.5
21164.1
21374.4
22952.3
21343.5
23899.3
22392.9
18274.1
22786.7
22321.5
17842.2
16373.5
15993.8
16446.1
17729
16643
16196.7
18252.1
17570.4




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=67545&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=67545&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=67545&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.5180693.97949.6e-05
20.3469022.66460.004962
30.4402023.38130.000643
40.389162.98920.002037
50.2508181.92660.029427
60.2148291.65010.052115
70.0430190.33040.37112
80.1253110.96250.169855
9-0.051237-0.39360.347663
10-0.165675-1.27260.104081
11-0.0172-0.13210.447672
120.1696981.30350.098738
13-0.067539-0.51880.302929
14-0.16653-1.27910.102928
15-0.069603-0.53460.297457
160.0357880.27490.39218
17-0.074478-0.57210.284723
18-0.070831-0.54410.294225
19-0.03705-0.28460.388479
20-0.065759-0.50510.307683
21-0.165129-1.26840.104822
22-0.159263-1.22330.113036
23-0.097211-0.74670.229107
24-0.00694-0.05330.478834
25-0.092254-0.70860.240676
26-0.231143-1.77540.040491
27-0.124848-0.9590.170741
28-0.036153-0.27770.391107
29-0.139596-1.07230.143985
30-0.138251-1.06190.146299
31-0.072477-0.55670.289916
32-0.192418-1.4780.072364
33-0.194773-1.49610.069982
34-0.164957-1.26710.105057
35-0.186475-1.43230.078662
36-0.103964-0.79860.213873

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.518069 & 3.9794 & 9.6e-05 \tabularnewline
2 & 0.346902 & 2.6646 & 0.004962 \tabularnewline
3 & 0.440202 & 3.3813 & 0.000643 \tabularnewline
4 & 0.38916 & 2.9892 & 0.002037 \tabularnewline
5 & 0.250818 & 1.9266 & 0.029427 \tabularnewline
6 & 0.214829 & 1.6501 & 0.052115 \tabularnewline
7 & 0.043019 & 0.3304 & 0.37112 \tabularnewline
8 & 0.125311 & 0.9625 & 0.169855 \tabularnewline
9 & -0.051237 & -0.3936 & 0.347663 \tabularnewline
10 & -0.165675 & -1.2726 & 0.104081 \tabularnewline
11 & -0.0172 & -0.1321 & 0.447672 \tabularnewline
12 & 0.169698 & 1.3035 & 0.098738 \tabularnewline
13 & -0.067539 & -0.5188 & 0.302929 \tabularnewline
14 & -0.16653 & -1.2791 & 0.102928 \tabularnewline
15 & -0.069603 & -0.5346 & 0.297457 \tabularnewline
16 & 0.035788 & 0.2749 & 0.39218 \tabularnewline
17 & -0.074478 & -0.5721 & 0.284723 \tabularnewline
18 & -0.070831 & -0.5441 & 0.294225 \tabularnewline
19 & -0.03705 & -0.2846 & 0.388479 \tabularnewline
20 & -0.065759 & -0.5051 & 0.307683 \tabularnewline
21 & -0.165129 & -1.2684 & 0.104822 \tabularnewline
22 & -0.159263 & -1.2233 & 0.113036 \tabularnewline
23 & -0.097211 & -0.7467 & 0.229107 \tabularnewline
24 & -0.00694 & -0.0533 & 0.478834 \tabularnewline
25 & -0.092254 & -0.7086 & 0.240676 \tabularnewline
26 & -0.231143 & -1.7754 & 0.040491 \tabularnewline
27 & -0.124848 & -0.959 & 0.170741 \tabularnewline
28 & -0.036153 & -0.2777 & 0.391107 \tabularnewline
29 & -0.139596 & -1.0723 & 0.143985 \tabularnewline
30 & -0.138251 & -1.0619 & 0.146299 \tabularnewline
31 & -0.072477 & -0.5567 & 0.289916 \tabularnewline
32 & -0.192418 & -1.478 & 0.072364 \tabularnewline
33 & -0.194773 & -1.4961 & 0.069982 \tabularnewline
34 & -0.164957 & -1.2671 & 0.105057 \tabularnewline
35 & -0.186475 & -1.4323 & 0.078662 \tabularnewline
36 & -0.103964 & -0.7986 & 0.213873 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=67545&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.518069[/C][C]3.9794[/C][C]9.6e-05[/C][/ROW]
[ROW][C]2[/C][C]0.346902[/C][C]2.6646[/C][C]0.004962[/C][/ROW]
[ROW][C]3[/C][C]0.440202[/C][C]3.3813[/C][C]0.000643[/C][/ROW]
[ROW][C]4[/C][C]0.38916[/C][C]2.9892[/C][C]0.002037[/C][/ROW]
[ROW][C]5[/C][C]0.250818[/C][C]1.9266[/C][C]0.029427[/C][/ROW]
[ROW][C]6[/C][C]0.214829[/C][C]1.6501[/C][C]0.052115[/C][/ROW]
[ROW][C]7[/C][C]0.043019[/C][C]0.3304[/C][C]0.37112[/C][/ROW]
[ROW][C]8[/C][C]0.125311[/C][C]0.9625[/C][C]0.169855[/C][/ROW]
[ROW][C]9[/C][C]-0.051237[/C][C]-0.3936[/C][C]0.347663[/C][/ROW]
[ROW][C]10[/C][C]-0.165675[/C][C]-1.2726[/C][C]0.104081[/C][/ROW]
[ROW][C]11[/C][C]-0.0172[/C][C]-0.1321[/C][C]0.447672[/C][/ROW]
[ROW][C]12[/C][C]0.169698[/C][C]1.3035[/C][C]0.098738[/C][/ROW]
[ROW][C]13[/C][C]-0.067539[/C][C]-0.5188[/C][C]0.302929[/C][/ROW]
[ROW][C]14[/C][C]-0.16653[/C][C]-1.2791[/C][C]0.102928[/C][/ROW]
[ROW][C]15[/C][C]-0.069603[/C][C]-0.5346[/C][C]0.297457[/C][/ROW]
[ROW][C]16[/C][C]0.035788[/C][C]0.2749[/C][C]0.39218[/C][/ROW]
[ROW][C]17[/C][C]-0.074478[/C][C]-0.5721[/C][C]0.284723[/C][/ROW]
[ROW][C]18[/C][C]-0.070831[/C][C]-0.5441[/C][C]0.294225[/C][/ROW]
[ROW][C]19[/C][C]-0.03705[/C][C]-0.2846[/C][C]0.388479[/C][/ROW]
[ROW][C]20[/C][C]-0.065759[/C][C]-0.5051[/C][C]0.307683[/C][/ROW]
[ROW][C]21[/C][C]-0.165129[/C][C]-1.2684[/C][C]0.104822[/C][/ROW]
[ROW][C]22[/C][C]-0.159263[/C][C]-1.2233[/C][C]0.113036[/C][/ROW]
[ROW][C]23[/C][C]-0.097211[/C][C]-0.7467[/C][C]0.229107[/C][/ROW]
[ROW][C]24[/C][C]-0.00694[/C][C]-0.0533[/C][C]0.478834[/C][/ROW]
[ROW][C]25[/C][C]-0.092254[/C][C]-0.7086[/C][C]0.240676[/C][/ROW]
[ROW][C]26[/C][C]-0.231143[/C][C]-1.7754[/C][C]0.040491[/C][/ROW]
[ROW][C]27[/C][C]-0.124848[/C][C]-0.959[/C][C]0.170741[/C][/ROW]
[ROW][C]28[/C][C]-0.036153[/C][C]-0.2777[/C][C]0.391107[/C][/ROW]
[ROW][C]29[/C][C]-0.139596[/C][C]-1.0723[/C][C]0.143985[/C][/ROW]
[ROW][C]30[/C][C]-0.138251[/C][C]-1.0619[/C][C]0.146299[/C][/ROW]
[ROW][C]31[/C][C]-0.072477[/C][C]-0.5567[/C][C]0.289916[/C][/ROW]
[ROW][C]32[/C][C]-0.192418[/C][C]-1.478[/C][C]0.072364[/C][/ROW]
[ROW][C]33[/C][C]-0.194773[/C][C]-1.4961[/C][C]0.069982[/C][/ROW]
[ROW][C]34[/C][C]-0.164957[/C][C]-1.2671[/C][C]0.105057[/C][/ROW]
[ROW][C]35[/C][C]-0.186475[/C][C]-1.4323[/C][C]0.078662[/C][/ROW]
[ROW][C]36[/C][C]-0.103964[/C][C]-0.7986[/C][C]0.213873[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=67545&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=67545&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.5180693.97949.6e-05
20.3469022.66460.004962
30.4402023.38130.000643
40.389162.98920.002037
50.2508181.92660.029427
60.2148291.65010.052115
70.0430190.33040.37112
80.1253110.96250.169855
9-0.051237-0.39360.347663
10-0.165675-1.27260.104081
11-0.0172-0.13210.447672
120.1696981.30350.098738
13-0.067539-0.51880.302929
14-0.16653-1.27910.102928
15-0.069603-0.53460.297457
160.0357880.27490.39218
17-0.074478-0.57210.284723
18-0.070831-0.54410.294225
19-0.03705-0.28460.388479
20-0.065759-0.50510.307683
21-0.165129-1.26840.104822
22-0.159263-1.22330.113036
23-0.097211-0.74670.229107
24-0.00694-0.05330.478834
25-0.092254-0.70860.240676
26-0.231143-1.77540.040491
27-0.124848-0.9590.170741
28-0.036153-0.27770.391107
29-0.139596-1.07230.143985
30-0.138251-1.06190.146299
31-0.072477-0.55670.289916
32-0.192418-1.4780.072364
33-0.194773-1.49610.069982
34-0.164957-1.26710.105057
35-0.186475-1.43230.078662
36-0.103964-0.79860.213873







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.5180693.97949.6e-05
20.1073080.82420.20656
30.3099862.3810.010255
40.0797520.61260.271252
5-0.044594-0.34250.366582
6-0.016889-0.12970.448612
7-0.261181-2.00620.024715
80.1568181.20450.116595
9-0.310285-2.38330.010197
10-0.032462-0.24930.401981
110.1678331.28910.101189
120.3562372.73630.004098
13-0.134162-1.03050.153487
14-0.252742-1.94130.028499
15-0.0127-0.09760.46131
160.0263830.20260.420054
17-0.073298-0.5630.287779
180.0093570.07190.471473
190.1080510.830.204955
20-0.166273-1.27720.103273
21-0.029805-0.22890.409854
220.051240.39360.347655
23-0.036625-0.28130.389725
24-0.09061-0.6960.244585
250.1208240.92810.178578
26-0.076904-0.59070.278484
27-0.066333-0.50950.306147
28-0.02023-0.15540.438524
290.012680.09740.461371
30-0.114136-0.87670.192105
31-0.046742-0.3590.360425
32-0.10063-0.7730.221318
330.0345050.2650.395953
34-0.0035-0.02690.489322
35-0.115492-0.88710.189311
360.0802040.61610.270112

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.518069 & 3.9794 & 9.6e-05 \tabularnewline
2 & 0.107308 & 0.8242 & 0.20656 \tabularnewline
3 & 0.309986 & 2.381 & 0.010255 \tabularnewline
4 & 0.079752 & 0.6126 & 0.271252 \tabularnewline
5 & -0.044594 & -0.3425 & 0.366582 \tabularnewline
6 & -0.016889 & -0.1297 & 0.448612 \tabularnewline
7 & -0.261181 & -2.0062 & 0.024715 \tabularnewline
8 & 0.156818 & 1.2045 & 0.116595 \tabularnewline
9 & -0.310285 & -2.3833 & 0.010197 \tabularnewline
10 & -0.032462 & -0.2493 & 0.401981 \tabularnewline
11 & 0.167833 & 1.2891 & 0.101189 \tabularnewline
12 & 0.356237 & 2.7363 & 0.004098 \tabularnewline
13 & -0.134162 & -1.0305 & 0.153487 \tabularnewline
14 & -0.252742 & -1.9413 & 0.028499 \tabularnewline
15 & -0.0127 & -0.0976 & 0.46131 \tabularnewline
16 & 0.026383 & 0.2026 & 0.420054 \tabularnewline
17 & -0.073298 & -0.563 & 0.287779 \tabularnewline
18 & 0.009357 & 0.0719 & 0.471473 \tabularnewline
19 & 0.108051 & 0.83 & 0.204955 \tabularnewline
20 & -0.166273 & -1.2772 & 0.103273 \tabularnewline
21 & -0.029805 & -0.2289 & 0.409854 \tabularnewline
22 & 0.05124 & 0.3936 & 0.347655 \tabularnewline
23 & -0.036625 & -0.2813 & 0.389725 \tabularnewline
24 & -0.09061 & -0.696 & 0.244585 \tabularnewline
25 & 0.120824 & 0.9281 & 0.178578 \tabularnewline
26 & -0.076904 & -0.5907 & 0.278484 \tabularnewline
27 & -0.066333 & -0.5095 & 0.306147 \tabularnewline
28 & -0.02023 & -0.1554 & 0.438524 \tabularnewline
29 & 0.01268 & 0.0974 & 0.461371 \tabularnewline
30 & -0.114136 & -0.8767 & 0.192105 \tabularnewline
31 & -0.046742 & -0.359 & 0.360425 \tabularnewline
32 & -0.10063 & -0.773 & 0.221318 \tabularnewline
33 & 0.034505 & 0.265 & 0.395953 \tabularnewline
34 & -0.0035 & -0.0269 & 0.489322 \tabularnewline
35 & -0.115492 & -0.8871 & 0.189311 \tabularnewline
36 & 0.080204 & 0.6161 & 0.270112 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=67545&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.518069[/C][C]3.9794[/C][C]9.6e-05[/C][/ROW]
[ROW][C]2[/C][C]0.107308[/C][C]0.8242[/C][C]0.20656[/C][/ROW]
[ROW][C]3[/C][C]0.309986[/C][C]2.381[/C][C]0.010255[/C][/ROW]
[ROW][C]4[/C][C]0.079752[/C][C]0.6126[/C][C]0.271252[/C][/ROW]
[ROW][C]5[/C][C]-0.044594[/C][C]-0.3425[/C][C]0.366582[/C][/ROW]
[ROW][C]6[/C][C]-0.016889[/C][C]-0.1297[/C][C]0.448612[/C][/ROW]
[ROW][C]7[/C][C]-0.261181[/C][C]-2.0062[/C][C]0.024715[/C][/ROW]
[ROW][C]8[/C][C]0.156818[/C][C]1.2045[/C][C]0.116595[/C][/ROW]
[ROW][C]9[/C][C]-0.310285[/C][C]-2.3833[/C][C]0.010197[/C][/ROW]
[ROW][C]10[/C][C]-0.032462[/C][C]-0.2493[/C][C]0.401981[/C][/ROW]
[ROW][C]11[/C][C]0.167833[/C][C]1.2891[/C][C]0.101189[/C][/ROW]
[ROW][C]12[/C][C]0.356237[/C][C]2.7363[/C][C]0.004098[/C][/ROW]
[ROW][C]13[/C][C]-0.134162[/C][C]-1.0305[/C][C]0.153487[/C][/ROW]
[ROW][C]14[/C][C]-0.252742[/C][C]-1.9413[/C][C]0.028499[/C][/ROW]
[ROW][C]15[/C][C]-0.0127[/C][C]-0.0976[/C][C]0.46131[/C][/ROW]
[ROW][C]16[/C][C]0.026383[/C][C]0.2026[/C][C]0.420054[/C][/ROW]
[ROW][C]17[/C][C]-0.073298[/C][C]-0.563[/C][C]0.287779[/C][/ROW]
[ROW][C]18[/C][C]0.009357[/C][C]0.0719[/C][C]0.471473[/C][/ROW]
[ROW][C]19[/C][C]0.108051[/C][C]0.83[/C][C]0.204955[/C][/ROW]
[ROW][C]20[/C][C]-0.166273[/C][C]-1.2772[/C][C]0.103273[/C][/ROW]
[ROW][C]21[/C][C]-0.029805[/C][C]-0.2289[/C][C]0.409854[/C][/ROW]
[ROW][C]22[/C][C]0.05124[/C][C]0.3936[/C][C]0.347655[/C][/ROW]
[ROW][C]23[/C][C]-0.036625[/C][C]-0.2813[/C][C]0.389725[/C][/ROW]
[ROW][C]24[/C][C]-0.09061[/C][C]-0.696[/C][C]0.244585[/C][/ROW]
[ROW][C]25[/C][C]0.120824[/C][C]0.9281[/C][C]0.178578[/C][/ROW]
[ROW][C]26[/C][C]-0.076904[/C][C]-0.5907[/C][C]0.278484[/C][/ROW]
[ROW][C]27[/C][C]-0.066333[/C][C]-0.5095[/C][C]0.306147[/C][/ROW]
[ROW][C]28[/C][C]-0.02023[/C][C]-0.1554[/C][C]0.438524[/C][/ROW]
[ROW][C]29[/C][C]0.01268[/C][C]0.0974[/C][C]0.461371[/C][/ROW]
[ROW][C]30[/C][C]-0.114136[/C][C]-0.8767[/C][C]0.192105[/C][/ROW]
[ROW][C]31[/C][C]-0.046742[/C][C]-0.359[/C][C]0.360425[/C][/ROW]
[ROW][C]32[/C][C]-0.10063[/C][C]-0.773[/C][C]0.221318[/C][/ROW]
[ROW][C]33[/C][C]0.034505[/C][C]0.265[/C][C]0.395953[/C][/ROW]
[ROW][C]34[/C][C]-0.0035[/C][C]-0.0269[/C][C]0.489322[/C][/ROW]
[ROW][C]35[/C][C]-0.115492[/C][C]-0.8871[/C][C]0.189311[/C][/ROW]
[ROW][C]36[/C][C]0.080204[/C][C]0.6161[/C][C]0.270112[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=67545&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=67545&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.5180693.97949.6e-05
20.1073080.82420.20656
30.3099862.3810.010255
40.0797520.61260.271252
5-0.044594-0.34250.366582
6-0.016889-0.12970.448612
7-0.261181-2.00620.024715
80.1568181.20450.116595
9-0.310285-2.38330.010197
10-0.032462-0.24930.401981
110.1678331.28910.101189
120.3562372.73630.004098
13-0.134162-1.03050.153487
14-0.252742-1.94130.028499
15-0.0127-0.09760.46131
160.0263830.20260.420054
17-0.073298-0.5630.287779
180.0093570.07190.471473
190.1080510.830.204955
20-0.166273-1.27720.103273
21-0.029805-0.22890.409854
220.051240.39360.347655
23-0.036625-0.28130.389725
24-0.09061-0.6960.244585
250.1208240.92810.178578
26-0.076904-0.59070.278484
27-0.066333-0.50950.306147
28-0.02023-0.15540.438524
290.012680.09740.461371
30-0.114136-0.87670.192105
31-0.046742-0.3590.360425
32-0.10063-0.7730.221318
330.0345050.2650.395953
34-0.0035-0.02690.489322
35-0.115492-0.88710.189311
360.0802040.61610.270112



Parameters (Session):
par1 = 36 ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = 36 ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep=''))
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF')
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','ACF(k)','click here for more information about the Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','PACF(k)','click here for more information about the Partial Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')