Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationMon, 14 Dec 2009 14:20:32 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Dec/14/t1260828361fbhlbspswc1jr9t.htm/, Retrieved Sun, 10 Nov 2024 18:04:41 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=67714, Retrieved Sun, 10 Nov 2024 18:04:41 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact208
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Q1 The Seatbeltlaw] [2007-11-14 19:27:43] [8cd6641b921d30ebe00b648d1481bba0]
- RMPD  [Multiple Regression] [Seatbelt] [2009-11-12 13:54:52] [b98453cac15ba1066b407e146608df68]
-    D    [Multiple Regression] [] [2009-11-20 17:50:38] [4b0ddbda2a8eb8bbc60159112cb39d44]
-    D        [Multiple Regression] [] [2009-12-14 21:20:32] [8cd69d0f4298074aa572ca2f9b39b6ae] [Current]
Feedback Forum

Post a new message
Dataseries X:
564	-0,9
581	-1
597	-0,7
587	-1,7
536	-1
524	-0,2
537	0,7
536	0,6
533	1,9
528	2,1
516	2,7
502	3,2
506	4,8
518	5,5
534	5,4
528	5,9
478	5,8
469	5,1
490	4,1
493	4,4
508	3,6
517	3,5
514	3,1
510	2,9
527	2,2
542	1,4
565	1,2
555	1,3
499	1,3
511	1,3
526	1,8
532	1,8
549	1,8
561	1,7
557	2,1
566	2
588	1,7
620	1,9
626	2,3
620	2,4
573	2,5
573	2,8
574	2,6
580	2,2
590	2,8
593	2,8
597	2,8
595	2,3
612	2,2
628	3
629	2,9
621	2,7
569	2,7
567	2,3
573	2,4
584	2,8
589	2,3
591	2
595	1,9
594	2,3




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 9 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=67714&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]9 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=67714&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=67714&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 575.794215296264 -8.46459087328886X[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Y[t] =  +  575.794215296264 -8.46459087328886X[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=67714&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Y[t] =  +  575.794215296264 -8.46459087328886X[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=67714&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=67714&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 575.794215296264 -8.46459087328886X[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)575.7942152962648.94796364.349200
X-8.464590873288863.199683-2.64540.0104820.005241

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 575.794215296264 & 8.947963 & 64.3492 & 0 & 0 \tabularnewline
X & -8.46459087328886 & 3.199683 & -2.6454 & 0.010482 & 0.005241 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=67714&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]575.794215296264[/C][C]8.947963[/C][C]64.3492[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]X[/C][C]-8.46459087328886[/C][C]3.199683[/C][C]-2.6454[/C][C]0.010482[/C][C]0.005241[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=67714&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=67714&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)575.7942152962648.94796364.349200
X-8.464590873288863.199683-2.64540.0104820.005241







Multiple Linear Regression - Regression Statistics
Multiple R0.32813137651715
R-squared0.107670200255040
Adjusted R-squared0.0922852037077129
F-TEST (value)6.99838962744175
F-TEST (DF numerator)1
F-TEST (DF denominator)58
p-value0.0104815890361800
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation39.2464920077563
Sum Squared Residuals89336.6538250631

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.32813137651715 \tabularnewline
R-squared & 0.107670200255040 \tabularnewline
Adjusted R-squared & 0.0922852037077129 \tabularnewline
F-TEST (value) & 6.99838962744175 \tabularnewline
F-TEST (DF numerator) & 1 \tabularnewline
F-TEST (DF denominator) & 58 \tabularnewline
p-value & 0.0104815890361800 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 39.2464920077563 \tabularnewline
Sum Squared Residuals & 89336.6538250631 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=67714&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.32813137651715[/C][/ROW]
[ROW][C]R-squared[/C][C]0.107670200255040[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.0922852037077129[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]6.99838962744175[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]1[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]58[/C][/ROW]
[ROW][C]p-value[/C][C]0.0104815890361800[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]39.2464920077563[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]89336.6538250631[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=67714&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=67714&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.32813137651715
R-squared0.107670200255040
Adjusted R-squared0.0922852037077129
F-TEST (value)6.99838962744175
F-TEST (DF numerator)1
F-TEST (DF denominator)58
p-value0.0104815890361800
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation39.2464920077563
Sum Squared Residuals89336.6538250631







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1564583.412347082225-19.4123470822246
2581584.258806169553-3.25880616955296
3597581.71942890756615.2805710924337
4587590.184019780855-3.18401978085519
5536584.258806169553-48.258806169553
6524577.487133470922-53.4871334709219
7537569.869001684962-32.8690016849619
8536570.715460772291-34.7154607722908
9533559.711492637015-26.7114926370153
10528558.018574462357-30.0185744623575
11516552.939819938384-36.9398199383842
12502548.70752450174-46.7075245017398
13506535.164179104478-29.1641791044776
14518529.238965493175-11.2389654931754
15534530.0854245805043.91457541949569
16528525.853129143862.14687085614012
17478526.699588231189-48.6995882311888
18469532.624801842491-63.624801842491
19490541.08939271578-51.0893927157798
20493538.550015453793-45.5500154537932
21508545.321688152424-37.3216881524243
22517546.168147239753-29.1681472397531
23514549.553983589069-35.5539835890687
24510551.246901763726-41.2469017637265
25527557.172115375029-30.1721153750287
26542563.94378807366-21.9437880736597
27565565.636706248318-0.63670624831751
28555564.790247160989-9.79024716098862
29499564.790247160989-65.7902471609886
30511564.790247160989-53.7902471609886
31526560.557951724344-34.5579517243442
32532560.557951724344-28.5579517243442
33549560.557951724344-11.5579517243442
34561561.404410811673-0.404410811673082
35557558.018574462357-1.01857446235754
36566558.8650335496867.13496645031357
37588561.40441081167326.5955891883269
38620559.71149263701560.2885073629847
39626556.325656287769.6743437123002
40620555.47919720037164.5208027996291
41573554.63273811304218.367261886958
42573552.09336085105520.9066391489447
43574553.78627902571320.2137209742869
44580557.17211537502922.8278846249713
45590552.09336085105537.9066391489447
46593552.09336085105540.9066391489447
47597552.09336085105544.9066391489447
48595556.325656287738.6743437123002
49612557.17211537502954.8278846249713
50628550.40044267639877.5995573236024
51629551.24690176372677.7530982362735
52621552.93981993838468.0601800616158
53569552.93981993838416.0601800616158
54567556.325656287710.6743437123002
55573555.47919720037117.5208027996291
56584552.09336085105531.9066391489447
57589556.325656287732.6743437123002
58591558.86503354968632.1349664503136
59595559.71149263701535.2885073629847
60594556.325656287737.6743437123002

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 564 & 583.412347082225 & -19.4123470822246 \tabularnewline
2 & 581 & 584.258806169553 & -3.25880616955296 \tabularnewline
3 & 597 & 581.719428907566 & 15.2805710924337 \tabularnewline
4 & 587 & 590.184019780855 & -3.18401978085519 \tabularnewline
5 & 536 & 584.258806169553 & -48.258806169553 \tabularnewline
6 & 524 & 577.487133470922 & -53.4871334709219 \tabularnewline
7 & 537 & 569.869001684962 & -32.8690016849619 \tabularnewline
8 & 536 & 570.715460772291 & -34.7154607722908 \tabularnewline
9 & 533 & 559.711492637015 & -26.7114926370153 \tabularnewline
10 & 528 & 558.018574462357 & -30.0185744623575 \tabularnewline
11 & 516 & 552.939819938384 & -36.9398199383842 \tabularnewline
12 & 502 & 548.70752450174 & -46.7075245017398 \tabularnewline
13 & 506 & 535.164179104478 & -29.1641791044776 \tabularnewline
14 & 518 & 529.238965493175 & -11.2389654931754 \tabularnewline
15 & 534 & 530.085424580504 & 3.91457541949569 \tabularnewline
16 & 528 & 525.85312914386 & 2.14687085614012 \tabularnewline
17 & 478 & 526.699588231189 & -48.6995882311888 \tabularnewline
18 & 469 & 532.624801842491 & -63.624801842491 \tabularnewline
19 & 490 & 541.08939271578 & -51.0893927157798 \tabularnewline
20 & 493 & 538.550015453793 & -45.5500154537932 \tabularnewline
21 & 508 & 545.321688152424 & -37.3216881524243 \tabularnewline
22 & 517 & 546.168147239753 & -29.1681472397531 \tabularnewline
23 & 514 & 549.553983589069 & -35.5539835890687 \tabularnewline
24 & 510 & 551.246901763726 & -41.2469017637265 \tabularnewline
25 & 527 & 557.172115375029 & -30.1721153750287 \tabularnewline
26 & 542 & 563.94378807366 & -21.9437880736597 \tabularnewline
27 & 565 & 565.636706248318 & -0.63670624831751 \tabularnewline
28 & 555 & 564.790247160989 & -9.79024716098862 \tabularnewline
29 & 499 & 564.790247160989 & -65.7902471609886 \tabularnewline
30 & 511 & 564.790247160989 & -53.7902471609886 \tabularnewline
31 & 526 & 560.557951724344 & -34.5579517243442 \tabularnewline
32 & 532 & 560.557951724344 & -28.5579517243442 \tabularnewline
33 & 549 & 560.557951724344 & -11.5579517243442 \tabularnewline
34 & 561 & 561.404410811673 & -0.404410811673082 \tabularnewline
35 & 557 & 558.018574462357 & -1.01857446235754 \tabularnewline
36 & 566 & 558.865033549686 & 7.13496645031357 \tabularnewline
37 & 588 & 561.404410811673 & 26.5955891883269 \tabularnewline
38 & 620 & 559.711492637015 & 60.2885073629847 \tabularnewline
39 & 626 & 556.3256562877 & 69.6743437123002 \tabularnewline
40 & 620 & 555.479197200371 & 64.5208027996291 \tabularnewline
41 & 573 & 554.632738113042 & 18.367261886958 \tabularnewline
42 & 573 & 552.093360851055 & 20.9066391489447 \tabularnewline
43 & 574 & 553.786279025713 & 20.2137209742869 \tabularnewline
44 & 580 & 557.172115375029 & 22.8278846249713 \tabularnewline
45 & 590 & 552.093360851055 & 37.9066391489447 \tabularnewline
46 & 593 & 552.093360851055 & 40.9066391489447 \tabularnewline
47 & 597 & 552.093360851055 & 44.9066391489447 \tabularnewline
48 & 595 & 556.3256562877 & 38.6743437123002 \tabularnewline
49 & 612 & 557.172115375029 & 54.8278846249713 \tabularnewline
50 & 628 & 550.400442676398 & 77.5995573236024 \tabularnewline
51 & 629 & 551.246901763726 & 77.7530982362735 \tabularnewline
52 & 621 & 552.939819938384 & 68.0601800616158 \tabularnewline
53 & 569 & 552.939819938384 & 16.0601800616158 \tabularnewline
54 & 567 & 556.3256562877 & 10.6743437123002 \tabularnewline
55 & 573 & 555.479197200371 & 17.5208027996291 \tabularnewline
56 & 584 & 552.093360851055 & 31.9066391489447 \tabularnewline
57 & 589 & 556.3256562877 & 32.6743437123002 \tabularnewline
58 & 591 & 558.865033549686 & 32.1349664503136 \tabularnewline
59 & 595 & 559.711492637015 & 35.2885073629847 \tabularnewline
60 & 594 & 556.3256562877 & 37.6743437123002 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=67714&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]564[/C][C]583.412347082225[/C][C]-19.4123470822246[/C][/ROW]
[ROW][C]2[/C][C]581[/C][C]584.258806169553[/C][C]-3.25880616955296[/C][/ROW]
[ROW][C]3[/C][C]597[/C][C]581.719428907566[/C][C]15.2805710924337[/C][/ROW]
[ROW][C]4[/C][C]587[/C][C]590.184019780855[/C][C]-3.18401978085519[/C][/ROW]
[ROW][C]5[/C][C]536[/C][C]584.258806169553[/C][C]-48.258806169553[/C][/ROW]
[ROW][C]6[/C][C]524[/C][C]577.487133470922[/C][C]-53.4871334709219[/C][/ROW]
[ROW][C]7[/C][C]537[/C][C]569.869001684962[/C][C]-32.8690016849619[/C][/ROW]
[ROW][C]8[/C][C]536[/C][C]570.715460772291[/C][C]-34.7154607722908[/C][/ROW]
[ROW][C]9[/C][C]533[/C][C]559.711492637015[/C][C]-26.7114926370153[/C][/ROW]
[ROW][C]10[/C][C]528[/C][C]558.018574462357[/C][C]-30.0185744623575[/C][/ROW]
[ROW][C]11[/C][C]516[/C][C]552.939819938384[/C][C]-36.9398199383842[/C][/ROW]
[ROW][C]12[/C][C]502[/C][C]548.70752450174[/C][C]-46.7075245017398[/C][/ROW]
[ROW][C]13[/C][C]506[/C][C]535.164179104478[/C][C]-29.1641791044776[/C][/ROW]
[ROW][C]14[/C][C]518[/C][C]529.238965493175[/C][C]-11.2389654931754[/C][/ROW]
[ROW][C]15[/C][C]534[/C][C]530.085424580504[/C][C]3.91457541949569[/C][/ROW]
[ROW][C]16[/C][C]528[/C][C]525.85312914386[/C][C]2.14687085614012[/C][/ROW]
[ROW][C]17[/C][C]478[/C][C]526.699588231189[/C][C]-48.6995882311888[/C][/ROW]
[ROW][C]18[/C][C]469[/C][C]532.624801842491[/C][C]-63.624801842491[/C][/ROW]
[ROW][C]19[/C][C]490[/C][C]541.08939271578[/C][C]-51.0893927157798[/C][/ROW]
[ROW][C]20[/C][C]493[/C][C]538.550015453793[/C][C]-45.5500154537932[/C][/ROW]
[ROW][C]21[/C][C]508[/C][C]545.321688152424[/C][C]-37.3216881524243[/C][/ROW]
[ROW][C]22[/C][C]517[/C][C]546.168147239753[/C][C]-29.1681472397531[/C][/ROW]
[ROW][C]23[/C][C]514[/C][C]549.553983589069[/C][C]-35.5539835890687[/C][/ROW]
[ROW][C]24[/C][C]510[/C][C]551.246901763726[/C][C]-41.2469017637265[/C][/ROW]
[ROW][C]25[/C][C]527[/C][C]557.172115375029[/C][C]-30.1721153750287[/C][/ROW]
[ROW][C]26[/C][C]542[/C][C]563.94378807366[/C][C]-21.9437880736597[/C][/ROW]
[ROW][C]27[/C][C]565[/C][C]565.636706248318[/C][C]-0.63670624831751[/C][/ROW]
[ROW][C]28[/C][C]555[/C][C]564.790247160989[/C][C]-9.79024716098862[/C][/ROW]
[ROW][C]29[/C][C]499[/C][C]564.790247160989[/C][C]-65.7902471609886[/C][/ROW]
[ROW][C]30[/C][C]511[/C][C]564.790247160989[/C][C]-53.7902471609886[/C][/ROW]
[ROW][C]31[/C][C]526[/C][C]560.557951724344[/C][C]-34.5579517243442[/C][/ROW]
[ROW][C]32[/C][C]532[/C][C]560.557951724344[/C][C]-28.5579517243442[/C][/ROW]
[ROW][C]33[/C][C]549[/C][C]560.557951724344[/C][C]-11.5579517243442[/C][/ROW]
[ROW][C]34[/C][C]561[/C][C]561.404410811673[/C][C]-0.404410811673082[/C][/ROW]
[ROW][C]35[/C][C]557[/C][C]558.018574462357[/C][C]-1.01857446235754[/C][/ROW]
[ROW][C]36[/C][C]566[/C][C]558.865033549686[/C][C]7.13496645031357[/C][/ROW]
[ROW][C]37[/C][C]588[/C][C]561.404410811673[/C][C]26.5955891883269[/C][/ROW]
[ROW][C]38[/C][C]620[/C][C]559.711492637015[/C][C]60.2885073629847[/C][/ROW]
[ROW][C]39[/C][C]626[/C][C]556.3256562877[/C][C]69.6743437123002[/C][/ROW]
[ROW][C]40[/C][C]620[/C][C]555.479197200371[/C][C]64.5208027996291[/C][/ROW]
[ROW][C]41[/C][C]573[/C][C]554.632738113042[/C][C]18.367261886958[/C][/ROW]
[ROW][C]42[/C][C]573[/C][C]552.093360851055[/C][C]20.9066391489447[/C][/ROW]
[ROW][C]43[/C][C]574[/C][C]553.786279025713[/C][C]20.2137209742869[/C][/ROW]
[ROW][C]44[/C][C]580[/C][C]557.172115375029[/C][C]22.8278846249713[/C][/ROW]
[ROW][C]45[/C][C]590[/C][C]552.093360851055[/C][C]37.9066391489447[/C][/ROW]
[ROW][C]46[/C][C]593[/C][C]552.093360851055[/C][C]40.9066391489447[/C][/ROW]
[ROW][C]47[/C][C]597[/C][C]552.093360851055[/C][C]44.9066391489447[/C][/ROW]
[ROW][C]48[/C][C]595[/C][C]556.3256562877[/C][C]38.6743437123002[/C][/ROW]
[ROW][C]49[/C][C]612[/C][C]557.172115375029[/C][C]54.8278846249713[/C][/ROW]
[ROW][C]50[/C][C]628[/C][C]550.400442676398[/C][C]77.5995573236024[/C][/ROW]
[ROW][C]51[/C][C]629[/C][C]551.246901763726[/C][C]77.7530982362735[/C][/ROW]
[ROW][C]52[/C][C]621[/C][C]552.939819938384[/C][C]68.0601800616158[/C][/ROW]
[ROW][C]53[/C][C]569[/C][C]552.939819938384[/C][C]16.0601800616158[/C][/ROW]
[ROW][C]54[/C][C]567[/C][C]556.3256562877[/C][C]10.6743437123002[/C][/ROW]
[ROW][C]55[/C][C]573[/C][C]555.479197200371[/C][C]17.5208027996291[/C][/ROW]
[ROW][C]56[/C][C]584[/C][C]552.093360851055[/C][C]31.9066391489447[/C][/ROW]
[ROW][C]57[/C][C]589[/C][C]556.3256562877[/C][C]32.6743437123002[/C][/ROW]
[ROW][C]58[/C][C]591[/C][C]558.865033549686[/C][C]32.1349664503136[/C][/ROW]
[ROW][C]59[/C][C]595[/C][C]559.711492637015[/C][C]35.2885073629847[/C][/ROW]
[ROW][C]60[/C][C]594[/C][C]556.3256562877[/C][C]37.6743437123002[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=67714&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=67714&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1564583.412347082225-19.4123470822246
2581584.258806169553-3.25880616955296
3597581.71942890756615.2805710924337
4587590.184019780855-3.18401978085519
5536584.258806169553-48.258806169553
6524577.487133470922-53.4871334709219
7537569.869001684962-32.8690016849619
8536570.715460772291-34.7154607722908
9533559.711492637015-26.7114926370153
10528558.018574462357-30.0185744623575
11516552.939819938384-36.9398199383842
12502548.70752450174-46.7075245017398
13506535.164179104478-29.1641791044776
14518529.238965493175-11.2389654931754
15534530.0854245805043.91457541949569
16528525.853129143862.14687085614012
17478526.699588231189-48.6995882311888
18469532.624801842491-63.624801842491
19490541.08939271578-51.0893927157798
20493538.550015453793-45.5500154537932
21508545.321688152424-37.3216881524243
22517546.168147239753-29.1681472397531
23514549.553983589069-35.5539835890687
24510551.246901763726-41.2469017637265
25527557.172115375029-30.1721153750287
26542563.94378807366-21.9437880736597
27565565.636706248318-0.63670624831751
28555564.790247160989-9.79024716098862
29499564.790247160989-65.7902471609886
30511564.790247160989-53.7902471609886
31526560.557951724344-34.5579517243442
32532560.557951724344-28.5579517243442
33549560.557951724344-11.5579517243442
34561561.404410811673-0.404410811673082
35557558.018574462357-1.01857446235754
36566558.8650335496867.13496645031357
37588561.40441081167326.5955891883269
38620559.71149263701560.2885073629847
39626556.325656287769.6743437123002
40620555.47919720037164.5208027996291
41573554.63273811304218.367261886958
42573552.09336085105520.9066391489447
43574553.78627902571320.2137209742869
44580557.17211537502922.8278846249713
45590552.09336085105537.9066391489447
46593552.09336085105540.9066391489447
47597552.09336085105544.9066391489447
48595556.325656287738.6743437123002
49612557.17211537502954.8278846249713
50628550.40044267639877.5995573236024
51629551.24690176372677.7530982362735
52621552.93981993838468.0601800616158
53569552.93981993838416.0601800616158
54567556.325656287710.6743437123002
55573555.47919720037117.5208027996291
56584552.09336085105531.9066391489447
57589556.325656287732.6743437123002
58591558.86503354968632.1349664503136
59595559.71149263701535.2885073629847
60594556.325656287737.6743437123002







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
50.2930534116471590.5861068232943170.706946588352841
60.2521972717677840.5043945435355690.747802728232216
70.1620962511734040.3241925023468080.837903748826596
80.0933402847243190.1866805694486380.906659715275681
90.06315657931936680.1263131586387340.936843420680633
100.03510227380303650.07020454760607310.964897726196963
110.01826456466163620.03652912932327250.981735435338364
120.00970550886762280.01941101773524560.990294491132377
130.00634505523910890.01269011047821780.99365494476089
140.006334047782647080.01266809556529420.993665952217353
150.007699856154268480.01539971230853700.992300143845732
160.005990041338305720.01198008267661140.994009958661694
170.005676150526888180.01135230105377640.994323849473112
180.01034123728568060.02068247457136120.98965876271432
190.01124448292643330.02248896585286660.988755517073567
200.01352051216614810.02704102433229610.986479487833852
210.01591778455118510.03183556910237030.984082215448815
220.02200243960655710.04400487921311430.977997560393443
230.04130747021149250.0826149404229850.958692529788507
240.1210171654284790.2420343308569580.878982834571521
250.1416104613982370.2832209227964740.858389538601763
260.1040439019688280.2080878039376560.895956098031172
270.1171174621092220.2342349242184450.882882537890778
280.099264499072410.198528998144820.90073550092759
290.1892506183025430.3785012366050870.810749381697457
300.2390994043016920.4781988086033840.760900595698308
310.2931652198675620.5863304397351240.706834780132438
320.3610459803345630.7220919606691260.638954019665437
330.393637161417590.787274322835180.60636283858241
340.419687112142180.839374224284360.58031288785782
350.5044049393308060.9911901213383870.495595060669194
360.5774057844496910.8451884311006190.422594215550309
370.656313337339770.6873733253204610.343686662660231
380.887687099671070.2246258006578590.112312900328929
390.9779118474286640.04417630514267140.0220881525713357
400.993308488013280.01338302397343920.00669151198671958
410.9923944559720250.01521108805595050.00760554402797526
420.9933425136717580.01331497265648430.00665748632824217
430.9932673148656960.01346537026860820.00673268513430412
440.989707975117030.02058404976594110.0102920248829705
450.9866339016447070.02673219671058520.0133660983552926
460.981714087382870.03657182523425890.0182859126171295
470.97376194877230.05247610245539890.0262380512276994
480.9583474557167850.08330508856643010.0416525442832151
490.960041373920040.079917252159920.03995862607996
500.9630612942834050.07387741143319060.0369387057165953
510.9834408960423350.03311820791533030.0165591039576652
520.9987537170586980.002492565882603830.00124628294130192
530.996003911551420.007992176897159460.00399608844857973
540.99736270016830.005274599663401690.00263729983170084
550.9995328822106380.0009342355787230560.000467117789361528

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
5 & 0.293053411647159 & 0.586106823294317 & 0.706946588352841 \tabularnewline
6 & 0.252197271767784 & 0.504394543535569 & 0.747802728232216 \tabularnewline
7 & 0.162096251173404 & 0.324192502346808 & 0.837903748826596 \tabularnewline
8 & 0.093340284724319 & 0.186680569448638 & 0.906659715275681 \tabularnewline
9 & 0.0631565793193668 & 0.126313158638734 & 0.936843420680633 \tabularnewline
10 & 0.0351022738030365 & 0.0702045476060731 & 0.964897726196963 \tabularnewline
11 & 0.0182645646616362 & 0.0365291293232725 & 0.981735435338364 \tabularnewline
12 & 0.0097055088676228 & 0.0194110177352456 & 0.990294491132377 \tabularnewline
13 & 0.0063450552391089 & 0.0126901104782178 & 0.99365494476089 \tabularnewline
14 & 0.00633404778264708 & 0.0126680955652942 & 0.993665952217353 \tabularnewline
15 & 0.00769985615426848 & 0.0153997123085370 & 0.992300143845732 \tabularnewline
16 & 0.00599004133830572 & 0.0119800826766114 & 0.994009958661694 \tabularnewline
17 & 0.00567615052688818 & 0.0113523010537764 & 0.994323849473112 \tabularnewline
18 & 0.0103412372856806 & 0.0206824745713612 & 0.98965876271432 \tabularnewline
19 & 0.0112444829264333 & 0.0224889658528666 & 0.988755517073567 \tabularnewline
20 & 0.0135205121661481 & 0.0270410243322961 & 0.986479487833852 \tabularnewline
21 & 0.0159177845511851 & 0.0318355691023703 & 0.984082215448815 \tabularnewline
22 & 0.0220024396065571 & 0.0440048792131143 & 0.977997560393443 \tabularnewline
23 & 0.0413074702114925 & 0.082614940422985 & 0.958692529788507 \tabularnewline
24 & 0.121017165428479 & 0.242034330856958 & 0.878982834571521 \tabularnewline
25 & 0.141610461398237 & 0.283220922796474 & 0.858389538601763 \tabularnewline
26 & 0.104043901968828 & 0.208087803937656 & 0.895956098031172 \tabularnewline
27 & 0.117117462109222 & 0.234234924218445 & 0.882882537890778 \tabularnewline
28 & 0.09926449907241 & 0.19852899814482 & 0.90073550092759 \tabularnewline
29 & 0.189250618302543 & 0.378501236605087 & 0.810749381697457 \tabularnewline
30 & 0.239099404301692 & 0.478198808603384 & 0.760900595698308 \tabularnewline
31 & 0.293165219867562 & 0.586330439735124 & 0.706834780132438 \tabularnewline
32 & 0.361045980334563 & 0.722091960669126 & 0.638954019665437 \tabularnewline
33 & 0.39363716141759 & 0.78727432283518 & 0.60636283858241 \tabularnewline
34 & 0.41968711214218 & 0.83937422428436 & 0.58031288785782 \tabularnewline
35 & 0.504404939330806 & 0.991190121338387 & 0.495595060669194 \tabularnewline
36 & 0.577405784449691 & 0.845188431100619 & 0.422594215550309 \tabularnewline
37 & 0.65631333733977 & 0.687373325320461 & 0.343686662660231 \tabularnewline
38 & 0.88768709967107 & 0.224625800657859 & 0.112312900328929 \tabularnewline
39 & 0.977911847428664 & 0.0441763051426714 & 0.0220881525713357 \tabularnewline
40 & 0.99330848801328 & 0.0133830239734392 & 0.00669151198671958 \tabularnewline
41 & 0.992394455972025 & 0.0152110880559505 & 0.00760554402797526 \tabularnewline
42 & 0.993342513671758 & 0.0133149726564843 & 0.00665748632824217 \tabularnewline
43 & 0.993267314865696 & 0.0134653702686082 & 0.00673268513430412 \tabularnewline
44 & 0.98970797511703 & 0.0205840497659411 & 0.0102920248829705 \tabularnewline
45 & 0.986633901644707 & 0.0267321967105852 & 0.0133660983552926 \tabularnewline
46 & 0.98171408738287 & 0.0365718252342589 & 0.0182859126171295 \tabularnewline
47 & 0.9737619487723 & 0.0524761024553989 & 0.0262380512276994 \tabularnewline
48 & 0.958347455716785 & 0.0833050885664301 & 0.0416525442832151 \tabularnewline
49 & 0.96004137392004 & 0.07991725215992 & 0.03995862607996 \tabularnewline
50 & 0.963061294283405 & 0.0738774114331906 & 0.0369387057165953 \tabularnewline
51 & 0.983440896042335 & 0.0331182079153303 & 0.0165591039576652 \tabularnewline
52 & 0.998753717058698 & 0.00249256588260383 & 0.00124628294130192 \tabularnewline
53 & 0.99600391155142 & 0.00799217689715946 & 0.00399608844857973 \tabularnewline
54 & 0.9973627001683 & 0.00527459966340169 & 0.00263729983170084 \tabularnewline
55 & 0.999532882210638 & 0.000934235578723056 & 0.000467117789361528 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=67714&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]5[/C][C]0.293053411647159[/C][C]0.586106823294317[/C][C]0.706946588352841[/C][/ROW]
[ROW][C]6[/C][C]0.252197271767784[/C][C]0.504394543535569[/C][C]0.747802728232216[/C][/ROW]
[ROW][C]7[/C][C]0.162096251173404[/C][C]0.324192502346808[/C][C]0.837903748826596[/C][/ROW]
[ROW][C]8[/C][C]0.093340284724319[/C][C]0.186680569448638[/C][C]0.906659715275681[/C][/ROW]
[ROW][C]9[/C][C]0.0631565793193668[/C][C]0.126313158638734[/C][C]0.936843420680633[/C][/ROW]
[ROW][C]10[/C][C]0.0351022738030365[/C][C]0.0702045476060731[/C][C]0.964897726196963[/C][/ROW]
[ROW][C]11[/C][C]0.0182645646616362[/C][C]0.0365291293232725[/C][C]0.981735435338364[/C][/ROW]
[ROW][C]12[/C][C]0.0097055088676228[/C][C]0.0194110177352456[/C][C]0.990294491132377[/C][/ROW]
[ROW][C]13[/C][C]0.0063450552391089[/C][C]0.0126901104782178[/C][C]0.99365494476089[/C][/ROW]
[ROW][C]14[/C][C]0.00633404778264708[/C][C]0.0126680955652942[/C][C]0.993665952217353[/C][/ROW]
[ROW][C]15[/C][C]0.00769985615426848[/C][C]0.0153997123085370[/C][C]0.992300143845732[/C][/ROW]
[ROW][C]16[/C][C]0.00599004133830572[/C][C]0.0119800826766114[/C][C]0.994009958661694[/C][/ROW]
[ROW][C]17[/C][C]0.00567615052688818[/C][C]0.0113523010537764[/C][C]0.994323849473112[/C][/ROW]
[ROW][C]18[/C][C]0.0103412372856806[/C][C]0.0206824745713612[/C][C]0.98965876271432[/C][/ROW]
[ROW][C]19[/C][C]0.0112444829264333[/C][C]0.0224889658528666[/C][C]0.988755517073567[/C][/ROW]
[ROW][C]20[/C][C]0.0135205121661481[/C][C]0.0270410243322961[/C][C]0.986479487833852[/C][/ROW]
[ROW][C]21[/C][C]0.0159177845511851[/C][C]0.0318355691023703[/C][C]0.984082215448815[/C][/ROW]
[ROW][C]22[/C][C]0.0220024396065571[/C][C]0.0440048792131143[/C][C]0.977997560393443[/C][/ROW]
[ROW][C]23[/C][C]0.0413074702114925[/C][C]0.082614940422985[/C][C]0.958692529788507[/C][/ROW]
[ROW][C]24[/C][C]0.121017165428479[/C][C]0.242034330856958[/C][C]0.878982834571521[/C][/ROW]
[ROW][C]25[/C][C]0.141610461398237[/C][C]0.283220922796474[/C][C]0.858389538601763[/C][/ROW]
[ROW][C]26[/C][C]0.104043901968828[/C][C]0.208087803937656[/C][C]0.895956098031172[/C][/ROW]
[ROW][C]27[/C][C]0.117117462109222[/C][C]0.234234924218445[/C][C]0.882882537890778[/C][/ROW]
[ROW][C]28[/C][C]0.09926449907241[/C][C]0.19852899814482[/C][C]0.90073550092759[/C][/ROW]
[ROW][C]29[/C][C]0.189250618302543[/C][C]0.378501236605087[/C][C]0.810749381697457[/C][/ROW]
[ROW][C]30[/C][C]0.239099404301692[/C][C]0.478198808603384[/C][C]0.760900595698308[/C][/ROW]
[ROW][C]31[/C][C]0.293165219867562[/C][C]0.586330439735124[/C][C]0.706834780132438[/C][/ROW]
[ROW][C]32[/C][C]0.361045980334563[/C][C]0.722091960669126[/C][C]0.638954019665437[/C][/ROW]
[ROW][C]33[/C][C]0.39363716141759[/C][C]0.78727432283518[/C][C]0.60636283858241[/C][/ROW]
[ROW][C]34[/C][C]0.41968711214218[/C][C]0.83937422428436[/C][C]0.58031288785782[/C][/ROW]
[ROW][C]35[/C][C]0.504404939330806[/C][C]0.991190121338387[/C][C]0.495595060669194[/C][/ROW]
[ROW][C]36[/C][C]0.577405784449691[/C][C]0.845188431100619[/C][C]0.422594215550309[/C][/ROW]
[ROW][C]37[/C][C]0.65631333733977[/C][C]0.687373325320461[/C][C]0.343686662660231[/C][/ROW]
[ROW][C]38[/C][C]0.88768709967107[/C][C]0.224625800657859[/C][C]0.112312900328929[/C][/ROW]
[ROW][C]39[/C][C]0.977911847428664[/C][C]0.0441763051426714[/C][C]0.0220881525713357[/C][/ROW]
[ROW][C]40[/C][C]0.99330848801328[/C][C]0.0133830239734392[/C][C]0.00669151198671958[/C][/ROW]
[ROW][C]41[/C][C]0.992394455972025[/C][C]0.0152110880559505[/C][C]0.00760554402797526[/C][/ROW]
[ROW][C]42[/C][C]0.993342513671758[/C][C]0.0133149726564843[/C][C]0.00665748632824217[/C][/ROW]
[ROW][C]43[/C][C]0.993267314865696[/C][C]0.0134653702686082[/C][C]0.00673268513430412[/C][/ROW]
[ROW][C]44[/C][C]0.98970797511703[/C][C]0.0205840497659411[/C][C]0.0102920248829705[/C][/ROW]
[ROW][C]45[/C][C]0.986633901644707[/C][C]0.0267321967105852[/C][C]0.0133660983552926[/C][/ROW]
[ROW][C]46[/C][C]0.98171408738287[/C][C]0.0365718252342589[/C][C]0.0182859126171295[/C][/ROW]
[ROW][C]47[/C][C]0.9737619487723[/C][C]0.0524761024553989[/C][C]0.0262380512276994[/C][/ROW]
[ROW][C]48[/C][C]0.958347455716785[/C][C]0.0833050885664301[/C][C]0.0416525442832151[/C][/ROW]
[ROW][C]49[/C][C]0.96004137392004[/C][C]0.07991725215992[/C][C]0.03995862607996[/C][/ROW]
[ROW][C]50[/C][C]0.963061294283405[/C][C]0.0738774114331906[/C][C]0.0369387057165953[/C][/ROW]
[ROW][C]51[/C][C]0.983440896042335[/C][C]0.0331182079153303[/C][C]0.0165591039576652[/C][/ROW]
[ROW][C]52[/C][C]0.998753717058698[/C][C]0.00249256588260383[/C][C]0.00124628294130192[/C][/ROW]
[ROW][C]53[/C][C]0.99600391155142[/C][C]0.00799217689715946[/C][C]0.00399608844857973[/C][/ROW]
[ROW][C]54[/C][C]0.9973627001683[/C][C]0.00527459966340169[/C][C]0.00263729983170084[/C][/ROW]
[ROW][C]55[/C][C]0.999532882210638[/C][C]0.000934235578723056[/C][C]0.000467117789361528[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=67714&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=67714&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
50.2930534116471590.5861068232943170.706946588352841
60.2521972717677840.5043945435355690.747802728232216
70.1620962511734040.3241925023468080.837903748826596
80.0933402847243190.1866805694486380.906659715275681
90.06315657931936680.1263131586387340.936843420680633
100.03510227380303650.07020454760607310.964897726196963
110.01826456466163620.03652912932327250.981735435338364
120.00970550886762280.01941101773524560.990294491132377
130.00634505523910890.01269011047821780.99365494476089
140.006334047782647080.01266809556529420.993665952217353
150.007699856154268480.01539971230853700.992300143845732
160.005990041338305720.01198008267661140.994009958661694
170.005676150526888180.01135230105377640.994323849473112
180.01034123728568060.02068247457136120.98965876271432
190.01124448292643330.02248896585286660.988755517073567
200.01352051216614810.02704102433229610.986479487833852
210.01591778455118510.03183556910237030.984082215448815
220.02200243960655710.04400487921311430.977997560393443
230.04130747021149250.0826149404229850.958692529788507
240.1210171654284790.2420343308569580.878982834571521
250.1416104613982370.2832209227964740.858389538601763
260.1040439019688280.2080878039376560.895956098031172
270.1171174621092220.2342349242184450.882882537890778
280.099264499072410.198528998144820.90073550092759
290.1892506183025430.3785012366050870.810749381697457
300.2390994043016920.4781988086033840.760900595698308
310.2931652198675620.5863304397351240.706834780132438
320.3610459803345630.7220919606691260.638954019665437
330.393637161417590.787274322835180.60636283858241
340.419687112142180.839374224284360.58031288785782
350.5044049393308060.9911901213383870.495595060669194
360.5774057844496910.8451884311006190.422594215550309
370.656313337339770.6873733253204610.343686662660231
380.887687099671070.2246258006578590.112312900328929
390.9779118474286640.04417630514267140.0220881525713357
400.993308488013280.01338302397343920.00669151198671958
410.9923944559720250.01521108805595050.00760554402797526
420.9933425136717580.01331497265648430.00665748632824217
430.9932673148656960.01346537026860820.00673268513430412
440.989707975117030.02058404976594110.0102920248829705
450.9866339016447070.02673219671058520.0133660983552926
460.981714087382870.03657182523425890.0182859126171295
470.97376194877230.05247610245539890.0262380512276994
480.9583474557167850.08330508856643010.0416525442832151
490.960041373920040.079917252159920.03995862607996
500.9630612942834050.07387741143319060.0369387057165953
510.9834408960423350.03311820791533030.0165591039576652
520.9987537170586980.002492565882603830.00124628294130192
530.996003911551420.007992176897159460.00399608844857973
540.99736270016830.005274599663401690.00263729983170084
550.9995328822106380.0009342355787230560.000467117789361528







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level40.0784313725490196NOK
5% type I error level250.490196078431373NOK
10% type I error level310.607843137254902NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 4 & 0.0784313725490196 & NOK \tabularnewline
5% type I error level & 25 & 0.490196078431373 & NOK \tabularnewline
10% type I error level & 31 & 0.607843137254902 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=67714&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]4[/C][C]0.0784313725490196[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]25[/C][C]0.490196078431373[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]31[/C][C]0.607843137254902[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=67714&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=67714&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level40.0784313725490196NOK
5% type I error level250.490196078431373NOK
10% type I error level310.607843137254902NOK



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}