Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationMon, 21 Dec 2009 06:59:31 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Dec/21/t126140402373qn4cc01ju6uo3.htm/, Retrieved Thu, 31 Oct 2024 23:01:56 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=70168, Retrieved Thu, 31 Oct 2024 23:01:56 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact212
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [ARIMA Forecasting] [] [2009-12-07 09:54:52] [b98453cac15ba1066b407e146608df68]
-   PD  [ARIMA Forecasting] [] [2009-12-21 13:53:33] [fef2f8976fa1eef1b54e2cee317fe737]
-   PD      [ARIMA Forecasting] [] [2009-12-21 13:59:31] [2ffc7e281e02b99889abd2ccc65ed6c3] [Current]
- R P         [ARIMA Forecasting] [] [2009-12-21 14:49:51] [fef2f8976fa1eef1b54e2cee317fe737]
- R P           [ARIMA Forecasting] [] [2010-12-23 08:20:17] [91de8b765895d6ee0c73f0d2e284be17]
- R P           [ARIMA Forecasting] [] [2010-12-23 08:22:37] [91de8b765895d6ee0c73f0d2e284be17]
Feedback Forum

Post a new message
Dataseries X:
120.9
119.6
125.9
116.1
107.5
116.7
112.5
113
126.4
114.1
112.5
112.4
113.1
116.3
111.7
118.8
116.5
125.1
113.1
119.6
114.4
114
117.8
117
120.9
115
117.3
119.4
114.9
125.8
117.6
117.6
114.9
121.9
117
106.4
110.5
113.6
114.2
125.4
124.6
120.2
120.8
111.4
124.1
120.2
125.5
116
117
105.7
102
106.4
96.9
107.6
98.8
101.1
105.7
104.6
103.2
101.6




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=70168&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=70168&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=70168&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[32])
20119.6-------
21114.4-------
22114-------
23117.8-------
24117-------
25120.9-------
26115-------
27117.3-------
28119.4-------
29114.9-------
30125.8-------
31117.6-------
32117.6-------
33114.9118.6178110.1747127.06090.19410.59340.83620.5934
34121.9115.925107.4703124.37960.0830.59390.67230.3489
35117116.715108.1258125.30420.47410.11840.40220.42
36106.4118.2934109.7014126.88550.00330.6160.6160.5628
37110.5116.0369107.4259124.64790.10380.98590.13420.361
38113.6116.7472108.0584125.4360.23890.92060.65330.4237
39114.2118.1353109.4443126.82630.18740.84680.57470.548
40125.4116.155107.4526124.85730.01870.67010.23240.3724
41124.6116.7785108.0143125.54280.04010.02690.66280.4271
42120.2117.9969109.2305126.76340.31120.06990.04050.5354
43120.8116.2587107.4864125.03090.15510.18930.38220.3822
44111.4116.8061107.9842125.6280.11490.18740.430.43
45124.1117.8755109.0515126.69960.08340.92480.74570.5244
46120.2116.3497107.5238125.17560.19630.04260.10890.3906
47125.5116.8302107.9642125.69620.02760.22810.4850.4324
48116117.7689108.9009126.6370.34790.04380.9940.5149
49117116.4296107.5624125.29690.44980.53780.9050.3979
50105.7116.8514107.9517125.75120.0070.48690.7630.4345
51102117.6754108.7737126.5773e-040.99580.77790.5066
52106.4116.4998107.6006125.39890.01310.99930.0250.4043
5396.9116.87107.9444125.795600.98930.04480.4363
54107.6117.5932108.6658126.52060.014110.28360.4994
5598.8116.5613107.6376125.485100.97550.17590.4098
56101.1116.8864107.9409125.83183e-0410.88530.4379
57105.7117.5212108.5741126.46820.00480.99980.07480.4931
58104.6116.6154107.6726125.55820.00420.99160.2160.4146
59103.2116.9007107.9401125.86130.00140.99640.030.4392
60101.6117.4579108.4957126.423e-040.99910.62510.4876

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[32]) \tabularnewline
20 & 119.6 & - & - & - & - & - & - & - \tabularnewline
21 & 114.4 & - & - & - & - & - & - & - \tabularnewline
22 & 114 & - & - & - & - & - & - & - \tabularnewline
23 & 117.8 & - & - & - & - & - & - & - \tabularnewline
24 & 117 & - & - & - & - & - & - & - \tabularnewline
25 & 120.9 & - & - & - & - & - & - & - \tabularnewline
26 & 115 & - & - & - & - & - & - & - \tabularnewline
27 & 117.3 & - & - & - & - & - & - & - \tabularnewline
28 & 119.4 & - & - & - & - & - & - & - \tabularnewline
29 & 114.9 & - & - & - & - & - & - & - \tabularnewline
30 & 125.8 & - & - & - & - & - & - & - \tabularnewline
31 & 117.6 & - & - & - & - & - & - & - \tabularnewline
32 & 117.6 & - & - & - & - & - & - & - \tabularnewline
33 & 114.9 & 118.6178 & 110.1747 & 127.0609 & 0.1941 & 0.5934 & 0.8362 & 0.5934 \tabularnewline
34 & 121.9 & 115.925 & 107.4703 & 124.3796 & 0.083 & 0.5939 & 0.6723 & 0.3489 \tabularnewline
35 & 117 & 116.715 & 108.1258 & 125.3042 & 0.4741 & 0.1184 & 0.4022 & 0.42 \tabularnewline
36 & 106.4 & 118.2934 & 109.7014 & 126.8855 & 0.0033 & 0.616 & 0.616 & 0.5628 \tabularnewline
37 & 110.5 & 116.0369 & 107.4259 & 124.6479 & 0.1038 & 0.9859 & 0.1342 & 0.361 \tabularnewline
38 & 113.6 & 116.7472 & 108.0584 & 125.436 & 0.2389 & 0.9206 & 0.6533 & 0.4237 \tabularnewline
39 & 114.2 & 118.1353 & 109.4443 & 126.8263 & 0.1874 & 0.8468 & 0.5747 & 0.548 \tabularnewline
40 & 125.4 & 116.155 & 107.4526 & 124.8573 & 0.0187 & 0.6701 & 0.2324 & 0.3724 \tabularnewline
41 & 124.6 & 116.7785 & 108.0143 & 125.5428 & 0.0401 & 0.0269 & 0.6628 & 0.4271 \tabularnewline
42 & 120.2 & 117.9969 & 109.2305 & 126.7634 & 0.3112 & 0.0699 & 0.0405 & 0.5354 \tabularnewline
43 & 120.8 & 116.2587 & 107.4864 & 125.0309 & 0.1551 & 0.1893 & 0.3822 & 0.3822 \tabularnewline
44 & 111.4 & 116.8061 & 107.9842 & 125.628 & 0.1149 & 0.1874 & 0.43 & 0.43 \tabularnewline
45 & 124.1 & 117.8755 & 109.0515 & 126.6996 & 0.0834 & 0.9248 & 0.7457 & 0.5244 \tabularnewline
46 & 120.2 & 116.3497 & 107.5238 & 125.1756 & 0.1963 & 0.0426 & 0.1089 & 0.3906 \tabularnewline
47 & 125.5 & 116.8302 & 107.9642 & 125.6962 & 0.0276 & 0.2281 & 0.485 & 0.4324 \tabularnewline
48 & 116 & 117.7689 & 108.9009 & 126.637 & 0.3479 & 0.0438 & 0.994 & 0.5149 \tabularnewline
49 & 117 & 116.4296 & 107.5624 & 125.2969 & 0.4498 & 0.5378 & 0.905 & 0.3979 \tabularnewline
50 & 105.7 & 116.8514 & 107.9517 & 125.7512 & 0.007 & 0.4869 & 0.763 & 0.4345 \tabularnewline
51 & 102 & 117.6754 & 108.7737 & 126.577 & 3e-04 & 0.9958 & 0.7779 & 0.5066 \tabularnewline
52 & 106.4 & 116.4998 & 107.6006 & 125.3989 & 0.0131 & 0.9993 & 0.025 & 0.4043 \tabularnewline
53 & 96.9 & 116.87 & 107.9444 & 125.7956 & 0 & 0.9893 & 0.0448 & 0.4363 \tabularnewline
54 & 107.6 & 117.5932 & 108.6658 & 126.5206 & 0.0141 & 1 & 0.2836 & 0.4994 \tabularnewline
55 & 98.8 & 116.5613 & 107.6376 & 125.4851 & 0 & 0.9755 & 0.1759 & 0.4098 \tabularnewline
56 & 101.1 & 116.8864 & 107.9409 & 125.8318 & 3e-04 & 1 & 0.8853 & 0.4379 \tabularnewline
57 & 105.7 & 117.5212 & 108.5741 & 126.4682 & 0.0048 & 0.9998 & 0.0748 & 0.4931 \tabularnewline
58 & 104.6 & 116.6154 & 107.6726 & 125.5582 & 0.0042 & 0.9916 & 0.216 & 0.4146 \tabularnewline
59 & 103.2 & 116.9007 & 107.9401 & 125.8613 & 0.0014 & 0.9964 & 0.03 & 0.4392 \tabularnewline
60 & 101.6 & 117.4579 & 108.4957 & 126.42 & 3e-04 & 0.9991 & 0.6251 & 0.4876 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=70168&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[32])[/C][/ROW]
[ROW][C]20[/C][C]119.6[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]21[/C][C]114.4[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]22[/C][C]114[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]23[/C][C]117.8[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]24[/C][C]117[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]25[/C][C]120.9[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]26[/C][C]115[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]27[/C][C]117.3[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]28[/C][C]119.4[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]29[/C][C]114.9[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]30[/C][C]125.8[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]31[/C][C]117.6[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]32[/C][C]117.6[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]33[/C][C]114.9[/C][C]118.6178[/C][C]110.1747[/C][C]127.0609[/C][C]0.1941[/C][C]0.5934[/C][C]0.8362[/C][C]0.5934[/C][/ROW]
[ROW][C]34[/C][C]121.9[/C][C]115.925[/C][C]107.4703[/C][C]124.3796[/C][C]0.083[/C][C]0.5939[/C][C]0.6723[/C][C]0.3489[/C][/ROW]
[ROW][C]35[/C][C]117[/C][C]116.715[/C][C]108.1258[/C][C]125.3042[/C][C]0.4741[/C][C]0.1184[/C][C]0.4022[/C][C]0.42[/C][/ROW]
[ROW][C]36[/C][C]106.4[/C][C]118.2934[/C][C]109.7014[/C][C]126.8855[/C][C]0.0033[/C][C]0.616[/C][C]0.616[/C][C]0.5628[/C][/ROW]
[ROW][C]37[/C][C]110.5[/C][C]116.0369[/C][C]107.4259[/C][C]124.6479[/C][C]0.1038[/C][C]0.9859[/C][C]0.1342[/C][C]0.361[/C][/ROW]
[ROW][C]38[/C][C]113.6[/C][C]116.7472[/C][C]108.0584[/C][C]125.436[/C][C]0.2389[/C][C]0.9206[/C][C]0.6533[/C][C]0.4237[/C][/ROW]
[ROW][C]39[/C][C]114.2[/C][C]118.1353[/C][C]109.4443[/C][C]126.8263[/C][C]0.1874[/C][C]0.8468[/C][C]0.5747[/C][C]0.548[/C][/ROW]
[ROW][C]40[/C][C]125.4[/C][C]116.155[/C][C]107.4526[/C][C]124.8573[/C][C]0.0187[/C][C]0.6701[/C][C]0.2324[/C][C]0.3724[/C][/ROW]
[ROW][C]41[/C][C]124.6[/C][C]116.7785[/C][C]108.0143[/C][C]125.5428[/C][C]0.0401[/C][C]0.0269[/C][C]0.6628[/C][C]0.4271[/C][/ROW]
[ROW][C]42[/C][C]120.2[/C][C]117.9969[/C][C]109.2305[/C][C]126.7634[/C][C]0.3112[/C][C]0.0699[/C][C]0.0405[/C][C]0.5354[/C][/ROW]
[ROW][C]43[/C][C]120.8[/C][C]116.2587[/C][C]107.4864[/C][C]125.0309[/C][C]0.1551[/C][C]0.1893[/C][C]0.3822[/C][C]0.3822[/C][/ROW]
[ROW][C]44[/C][C]111.4[/C][C]116.8061[/C][C]107.9842[/C][C]125.628[/C][C]0.1149[/C][C]0.1874[/C][C]0.43[/C][C]0.43[/C][/ROW]
[ROW][C]45[/C][C]124.1[/C][C]117.8755[/C][C]109.0515[/C][C]126.6996[/C][C]0.0834[/C][C]0.9248[/C][C]0.7457[/C][C]0.5244[/C][/ROW]
[ROW][C]46[/C][C]120.2[/C][C]116.3497[/C][C]107.5238[/C][C]125.1756[/C][C]0.1963[/C][C]0.0426[/C][C]0.1089[/C][C]0.3906[/C][/ROW]
[ROW][C]47[/C][C]125.5[/C][C]116.8302[/C][C]107.9642[/C][C]125.6962[/C][C]0.0276[/C][C]0.2281[/C][C]0.485[/C][C]0.4324[/C][/ROW]
[ROW][C]48[/C][C]116[/C][C]117.7689[/C][C]108.9009[/C][C]126.637[/C][C]0.3479[/C][C]0.0438[/C][C]0.994[/C][C]0.5149[/C][/ROW]
[ROW][C]49[/C][C]117[/C][C]116.4296[/C][C]107.5624[/C][C]125.2969[/C][C]0.4498[/C][C]0.5378[/C][C]0.905[/C][C]0.3979[/C][/ROW]
[ROW][C]50[/C][C]105.7[/C][C]116.8514[/C][C]107.9517[/C][C]125.7512[/C][C]0.007[/C][C]0.4869[/C][C]0.763[/C][C]0.4345[/C][/ROW]
[ROW][C]51[/C][C]102[/C][C]117.6754[/C][C]108.7737[/C][C]126.577[/C][C]3e-04[/C][C]0.9958[/C][C]0.7779[/C][C]0.5066[/C][/ROW]
[ROW][C]52[/C][C]106.4[/C][C]116.4998[/C][C]107.6006[/C][C]125.3989[/C][C]0.0131[/C][C]0.9993[/C][C]0.025[/C][C]0.4043[/C][/ROW]
[ROW][C]53[/C][C]96.9[/C][C]116.87[/C][C]107.9444[/C][C]125.7956[/C][C]0[/C][C]0.9893[/C][C]0.0448[/C][C]0.4363[/C][/ROW]
[ROW][C]54[/C][C]107.6[/C][C]117.5932[/C][C]108.6658[/C][C]126.5206[/C][C]0.0141[/C][C]1[/C][C]0.2836[/C][C]0.4994[/C][/ROW]
[ROW][C]55[/C][C]98.8[/C][C]116.5613[/C][C]107.6376[/C][C]125.4851[/C][C]0[/C][C]0.9755[/C][C]0.1759[/C][C]0.4098[/C][/ROW]
[ROW][C]56[/C][C]101.1[/C][C]116.8864[/C][C]107.9409[/C][C]125.8318[/C][C]3e-04[/C][C]1[/C][C]0.8853[/C][C]0.4379[/C][/ROW]
[ROW][C]57[/C][C]105.7[/C][C]117.5212[/C][C]108.5741[/C][C]126.4682[/C][C]0.0048[/C][C]0.9998[/C][C]0.0748[/C][C]0.4931[/C][/ROW]
[ROW][C]58[/C][C]104.6[/C][C]116.6154[/C][C]107.6726[/C][C]125.5582[/C][C]0.0042[/C][C]0.9916[/C][C]0.216[/C][C]0.4146[/C][/ROW]
[ROW][C]59[/C][C]103.2[/C][C]116.9007[/C][C]107.9401[/C][C]125.8613[/C][C]0.0014[/C][C]0.9964[/C][C]0.03[/C][C]0.4392[/C][/ROW]
[ROW][C]60[/C][C]101.6[/C][C]117.4579[/C][C]108.4957[/C][C]126.42[/C][C]3e-04[/C][C]0.9991[/C][C]0.6251[/C][C]0.4876[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=70168&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=70168&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[32])
20119.6-------
21114.4-------
22114-------
23117.8-------
24117-------
25120.9-------
26115-------
27117.3-------
28119.4-------
29114.9-------
30125.8-------
31117.6-------
32117.6-------
33114.9118.6178110.1747127.06090.19410.59340.83620.5934
34121.9115.925107.4703124.37960.0830.59390.67230.3489
35117116.715108.1258125.30420.47410.11840.40220.42
36106.4118.2934109.7014126.88550.00330.6160.6160.5628
37110.5116.0369107.4259124.64790.10380.98590.13420.361
38113.6116.7472108.0584125.4360.23890.92060.65330.4237
39114.2118.1353109.4443126.82630.18740.84680.57470.548
40125.4116.155107.4526124.85730.01870.67010.23240.3724
41124.6116.7785108.0143125.54280.04010.02690.66280.4271
42120.2117.9969109.2305126.76340.31120.06990.04050.5354
43120.8116.2587107.4864125.03090.15510.18930.38220.3822
44111.4116.8061107.9842125.6280.11490.18740.430.43
45124.1117.8755109.0515126.69960.08340.92480.74570.5244
46120.2116.3497107.5238125.17560.19630.04260.10890.3906
47125.5116.8302107.9642125.69620.02760.22810.4850.4324
48116117.7689108.9009126.6370.34790.04380.9940.5149
49117116.4296107.5624125.29690.44980.53780.9050.3979
50105.7116.8514107.9517125.75120.0070.48690.7630.4345
51102117.6754108.7737126.5773e-040.99580.77790.5066
52106.4116.4998107.6006125.39890.01310.99930.0250.4043
5396.9116.87107.9444125.795600.98930.04480.4363
54107.6117.5932108.6658126.52060.014110.28360.4994
5598.8116.5613107.6376125.485100.97550.17590.4098
56101.1116.8864107.9409125.83183e-0410.88530.4379
57105.7117.5212108.5741126.46820.00480.99980.07480.4931
58104.6116.6154107.6726125.55820.00420.99160.2160.4146
59103.2116.9007107.9401125.86130.00140.99640.030.4392
60101.6117.4579108.4957126.423e-040.99910.62510.4876







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPESq.EMSERMSE
330.0363-0.0313013.822200
340.03720.05150.041435.70124.76164.9761
350.03750.00240.02840.081216.53484.0663
360.0371-0.10050.0465141.45447.76466.9112
370.0379-0.04770.046730.657444.34326.6591
380.038-0.0270.04349.904938.60346.2132
390.0375-0.03330.04215.486435.3015.9415
400.03820.07960.046785.470541.57226.4477
410.03830.0670.048961.175143.75036.6144
420.03790.01870.04594.853539.86066.3135
430.03850.03910.045320.623638.11186.1735
440.0385-0.04630.045429.225637.37136.1132
450.03820.05280.045938.744337.47696.1218
460.03870.03310.04514.824735.85895.9882
470.03870.07420.04775.16538.47936.2032
480.0384-0.0150.0453.129136.26996.0224
490.03890.00490.04260.325334.15555.8443
500.0389-0.09540.0455124.354439.16666.2583
510.0386-0.13320.0502245.71750.03767.0737
520.039-0.08670.052102.005352.6367.2551
530.039-0.17090.0577398.802469.12018.3139
540.0387-0.0850.058999.864970.51768.3975
550.0391-0.15240.063315.465281.16759.0093
560.039-0.13510.066249.209588.16939.3898
570.0388-0.10060.0673139.739890.23219.4991
580.0391-0.1030.0687144.369592.31439.608
590.0391-0.11720.0705187.709395.84759.7902
600.0389-0.1350.0728251.4726101.405510.07

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & Sq.E & MSE & RMSE \tabularnewline
33 & 0.0363 & -0.0313 & 0 & 13.8222 & 0 & 0 \tabularnewline
34 & 0.0372 & 0.0515 & 0.0414 & 35.701 & 24.7616 & 4.9761 \tabularnewline
35 & 0.0375 & 0.0024 & 0.0284 & 0.0812 & 16.5348 & 4.0663 \tabularnewline
36 & 0.0371 & -0.1005 & 0.0465 & 141.454 & 47.7646 & 6.9112 \tabularnewline
37 & 0.0379 & -0.0477 & 0.0467 & 30.6574 & 44.3432 & 6.6591 \tabularnewline
38 & 0.038 & -0.027 & 0.0434 & 9.9049 & 38.6034 & 6.2132 \tabularnewline
39 & 0.0375 & -0.0333 & 0.042 & 15.4864 & 35.301 & 5.9415 \tabularnewline
40 & 0.0382 & 0.0796 & 0.0467 & 85.4705 & 41.5722 & 6.4477 \tabularnewline
41 & 0.0383 & 0.067 & 0.0489 & 61.1751 & 43.7503 & 6.6144 \tabularnewline
42 & 0.0379 & 0.0187 & 0.0459 & 4.8535 & 39.8606 & 6.3135 \tabularnewline
43 & 0.0385 & 0.0391 & 0.0453 & 20.6236 & 38.1118 & 6.1735 \tabularnewline
44 & 0.0385 & -0.0463 & 0.0454 & 29.2256 & 37.3713 & 6.1132 \tabularnewline
45 & 0.0382 & 0.0528 & 0.0459 & 38.7443 & 37.4769 & 6.1218 \tabularnewline
46 & 0.0387 & 0.0331 & 0.045 & 14.8247 & 35.8589 & 5.9882 \tabularnewline
47 & 0.0387 & 0.0742 & 0.047 & 75.165 & 38.4793 & 6.2032 \tabularnewline
48 & 0.0384 & -0.015 & 0.045 & 3.1291 & 36.2699 & 6.0224 \tabularnewline
49 & 0.0389 & 0.0049 & 0.0426 & 0.3253 & 34.1555 & 5.8443 \tabularnewline
50 & 0.0389 & -0.0954 & 0.0455 & 124.3544 & 39.1666 & 6.2583 \tabularnewline
51 & 0.0386 & -0.1332 & 0.0502 & 245.717 & 50.0376 & 7.0737 \tabularnewline
52 & 0.039 & -0.0867 & 0.052 & 102.0053 & 52.636 & 7.2551 \tabularnewline
53 & 0.039 & -0.1709 & 0.0577 & 398.8024 & 69.1201 & 8.3139 \tabularnewline
54 & 0.0387 & -0.085 & 0.0589 & 99.8649 & 70.5176 & 8.3975 \tabularnewline
55 & 0.0391 & -0.1524 & 0.063 & 315.4652 & 81.1675 & 9.0093 \tabularnewline
56 & 0.039 & -0.1351 & 0.066 & 249.2095 & 88.1693 & 9.3898 \tabularnewline
57 & 0.0388 & -0.1006 & 0.0673 & 139.7398 & 90.2321 & 9.4991 \tabularnewline
58 & 0.0391 & -0.103 & 0.0687 & 144.3695 & 92.3143 & 9.608 \tabularnewline
59 & 0.0391 & -0.1172 & 0.0705 & 187.7093 & 95.8475 & 9.7902 \tabularnewline
60 & 0.0389 & -0.135 & 0.0728 & 251.4726 & 101.4055 & 10.07 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=70168&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][/ROW]
[ROW][C]33[/C][C]0.0363[/C][C]-0.0313[/C][C]0[/C][C]13.8222[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]34[/C][C]0.0372[/C][C]0.0515[/C][C]0.0414[/C][C]35.701[/C][C]24.7616[/C][C]4.9761[/C][/ROW]
[ROW][C]35[/C][C]0.0375[/C][C]0.0024[/C][C]0.0284[/C][C]0.0812[/C][C]16.5348[/C][C]4.0663[/C][/ROW]
[ROW][C]36[/C][C]0.0371[/C][C]-0.1005[/C][C]0.0465[/C][C]141.454[/C][C]47.7646[/C][C]6.9112[/C][/ROW]
[ROW][C]37[/C][C]0.0379[/C][C]-0.0477[/C][C]0.0467[/C][C]30.6574[/C][C]44.3432[/C][C]6.6591[/C][/ROW]
[ROW][C]38[/C][C]0.038[/C][C]-0.027[/C][C]0.0434[/C][C]9.9049[/C][C]38.6034[/C][C]6.2132[/C][/ROW]
[ROW][C]39[/C][C]0.0375[/C][C]-0.0333[/C][C]0.042[/C][C]15.4864[/C][C]35.301[/C][C]5.9415[/C][/ROW]
[ROW][C]40[/C][C]0.0382[/C][C]0.0796[/C][C]0.0467[/C][C]85.4705[/C][C]41.5722[/C][C]6.4477[/C][/ROW]
[ROW][C]41[/C][C]0.0383[/C][C]0.067[/C][C]0.0489[/C][C]61.1751[/C][C]43.7503[/C][C]6.6144[/C][/ROW]
[ROW][C]42[/C][C]0.0379[/C][C]0.0187[/C][C]0.0459[/C][C]4.8535[/C][C]39.8606[/C][C]6.3135[/C][/ROW]
[ROW][C]43[/C][C]0.0385[/C][C]0.0391[/C][C]0.0453[/C][C]20.6236[/C][C]38.1118[/C][C]6.1735[/C][/ROW]
[ROW][C]44[/C][C]0.0385[/C][C]-0.0463[/C][C]0.0454[/C][C]29.2256[/C][C]37.3713[/C][C]6.1132[/C][/ROW]
[ROW][C]45[/C][C]0.0382[/C][C]0.0528[/C][C]0.0459[/C][C]38.7443[/C][C]37.4769[/C][C]6.1218[/C][/ROW]
[ROW][C]46[/C][C]0.0387[/C][C]0.0331[/C][C]0.045[/C][C]14.8247[/C][C]35.8589[/C][C]5.9882[/C][/ROW]
[ROW][C]47[/C][C]0.0387[/C][C]0.0742[/C][C]0.047[/C][C]75.165[/C][C]38.4793[/C][C]6.2032[/C][/ROW]
[ROW][C]48[/C][C]0.0384[/C][C]-0.015[/C][C]0.045[/C][C]3.1291[/C][C]36.2699[/C][C]6.0224[/C][/ROW]
[ROW][C]49[/C][C]0.0389[/C][C]0.0049[/C][C]0.0426[/C][C]0.3253[/C][C]34.1555[/C][C]5.8443[/C][/ROW]
[ROW][C]50[/C][C]0.0389[/C][C]-0.0954[/C][C]0.0455[/C][C]124.3544[/C][C]39.1666[/C][C]6.2583[/C][/ROW]
[ROW][C]51[/C][C]0.0386[/C][C]-0.1332[/C][C]0.0502[/C][C]245.717[/C][C]50.0376[/C][C]7.0737[/C][/ROW]
[ROW][C]52[/C][C]0.039[/C][C]-0.0867[/C][C]0.052[/C][C]102.0053[/C][C]52.636[/C][C]7.2551[/C][/ROW]
[ROW][C]53[/C][C]0.039[/C][C]-0.1709[/C][C]0.0577[/C][C]398.8024[/C][C]69.1201[/C][C]8.3139[/C][/ROW]
[ROW][C]54[/C][C]0.0387[/C][C]-0.085[/C][C]0.0589[/C][C]99.8649[/C][C]70.5176[/C][C]8.3975[/C][/ROW]
[ROW][C]55[/C][C]0.0391[/C][C]-0.1524[/C][C]0.063[/C][C]315.4652[/C][C]81.1675[/C][C]9.0093[/C][/ROW]
[ROW][C]56[/C][C]0.039[/C][C]-0.1351[/C][C]0.066[/C][C]249.2095[/C][C]88.1693[/C][C]9.3898[/C][/ROW]
[ROW][C]57[/C][C]0.0388[/C][C]-0.1006[/C][C]0.0673[/C][C]139.7398[/C][C]90.2321[/C][C]9.4991[/C][/ROW]
[ROW][C]58[/C][C]0.0391[/C][C]-0.103[/C][C]0.0687[/C][C]144.3695[/C][C]92.3143[/C][C]9.608[/C][/ROW]
[ROW][C]59[/C][C]0.0391[/C][C]-0.1172[/C][C]0.0705[/C][C]187.7093[/C][C]95.8475[/C][C]9.7902[/C][/ROW]
[ROW][C]60[/C][C]0.0389[/C][C]-0.135[/C][C]0.0728[/C][C]251.4726[/C][C]101.4055[/C][C]10.07[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=70168&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=70168&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPESq.EMSERMSE
330.0363-0.0313013.822200
340.03720.05150.041435.70124.76164.9761
350.03750.00240.02840.081216.53484.0663
360.0371-0.10050.0465141.45447.76466.9112
370.0379-0.04770.046730.657444.34326.6591
380.038-0.0270.04349.904938.60346.2132
390.0375-0.03330.04215.486435.3015.9415
400.03820.07960.046785.470541.57226.4477
410.03830.0670.048961.175143.75036.6144
420.03790.01870.04594.853539.86066.3135
430.03850.03910.045320.623638.11186.1735
440.0385-0.04630.045429.225637.37136.1132
450.03820.05280.045938.744337.47696.1218
460.03870.03310.04514.824735.85895.9882
470.03870.07420.04775.16538.47936.2032
480.0384-0.0150.0453.129136.26996.0224
490.03890.00490.04260.325334.15555.8443
500.0389-0.09540.0455124.354439.16666.2583
510.0386-0.13320.0502245.71750.03767.0737
520.039-0.08670.052102.005352.6367.2551
530.039-0.17090.0577398.802469.12018.3139
540.0387-0.0850.058999.864970.51768.3975
550.0391-0.15240.063315.465281.16759.0093
560.039-0.13510.066249.209588.16939.3898
570.0388-0.10060.0673139.739890.23219.4991
580.0391-0.1030.0687144.369592.31439.608
590.0391-0.11720.0705187.709395.84759.7902
600.0389-0.1350.0728251.4726101.405510.07



Parameters (Session):
par1 = 24 ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = 0 ; par7 = 1 ; par8 = 0 ; par9 = 0 ; par10 = FALSE ;
Parameters (R input):
par1 = 24 ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = 0 ; par7 = 1 ; par8 = 0 ; par9 = 0 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par1 <- 28
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par6 <- 3
par7 <- as.numeric(par7) #q
par7 <- 3
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,par1))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i]
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.mse[1] = abs(perf.se[1])
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')