Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_variability.wasp
Title produced by softwareVariability
Date of computationWed, 06 Jan 2010 04:33:06 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Jan/06/t1262777654m22lr1ohylyl7a0.htm/, Retrieved Thu, 31 Oct 2024 23:00:52 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=71663, Retrieved Thu, 31 Oct 2024 23:00:52 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsKDGP2W83
Estimated Impact154
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Variability] [] [2010-01-06 11:33:06] [32a63dbffc7be1ee879fd4b0dabe8489] [Current]
Feedback Forum

Post a new message
Dataseries X:
6550
8728
12026
14395
14587
13791
9498
8251
7049
9545
9364
8456
7237
9374
11837
13784
15926
13821
11143
7975
7610
1015
12759
8816
10677
10947
15200
17010
20900
16205
12143
8997
5568
11474
12256
10583
10862
10965
14405
20379
20128
17816
12268
8642
7962
13932
15936
12628
12267
12470
18944
21259
22015
18581
15175
10306
10792
14752
13754
11738
12181
12965
19990
23125
23541
21247
15189
14767
10895
17130
17697
16611
12674
12760
20249
22135
20677
19933
15388
15113
13401
16135
17562
14720
12225
11608
20985
19692
24081
22114
14220
13434
13598
17187
16119
13713
13210
14251
20139
21725
26099
21084
18024
16722
14385
21342
17180
14577




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=71663&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=71663&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=71663&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Variability - Ungrouped Data
Absolute range25084
Relative range (unbiased)5.34816416708703
Relative range (biased)5.37309746852971
Variance (unbiased)21998046.9408100
Variance (biased)21794361.3209877
Standard Deviation (unbiased)4690.20755839333
Standard Deviation (biased)4668.44313674138
Coefficient of Variation (unbiased)0.323200067573772
Coefficient of Variation (biased)0.321700291186258
Mean Squared Error (MSE versus 0)232386055.592593
Mean Squared Error (MSE versus Mean)21794361.3209877
Mean Absolute Deviation from Mean (MAD Mean)3741.01646090535
Mean Absolute Deviation from Median (MAD Median)3724.29629629630
Median Absolute Deviation from Mean3117.72222222222
Median Absolute Deviation from Median3111
Mean Squared Deviation from Mean21794361.3209877
Mean Squared Deviation from Median21984263.5925926
Interquartile Difference (Weighted Average at Xnp)6419
Interquartile Difference (Weighted Average at X(n+1)p)6437.5
Interquartile Difference (Empirical Distribution Function)6419
Interquartile Difference (Empirical Distribution Function - Averaging)6321
Interquartile Difference (Empirical Distribution Function - Interpolation)6204.5
Interquartile Difference (Closest Observation)6419
Interquartile Difference (True Basic - Statistics Graphics Toolkit)6204.5
Interquartile Difference (MS Excel (old versions))6554
Semi Interquartile Difference (Weighted Average at Xnp)3209.5
Semi Interquartile Difference (Weighted Average at X(n+1)p)3218.75
Semi Interquartile Difference (Empirical Distribution Function)3209.5
Semi Interquartile Difference (Empirical Distribution Function - Averaging)3160.5
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)3102.25
Semi Interquartile Difference (Closest Observation)3209.5
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)3102.25
Semi Interquartile Difference (MS Excel (old versions))3277
Coefficient of Quartile Variation (Weighted Average at Xnp)0.223619578470650
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.222835681401225
Coefficient of Quartile Variation (Empirical Distribution Function)0.223619578470650
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.218432510885341
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.214044226722324
Coefficient of Quartile Variation (Closest Observation)0.223619578470650
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.214044226722324
Coefficient of Quartile Variation (MS Excel (old versions))0.227253814147018
Number of all Pairs of Observations5778
Squared Differences between all Pairs of Observations43996093.8816199
Mean Absolute Differences between all Pairs of Observations5324.87365870543
Gini Mean Difference5324.87365870543
Leik Measure of Dispersion0.481301553653821
Index of Diversity0.989782490024543
Index of Qualitative Variation0.999032793669632
Coefficient of Dispersion0.265772695432321
Observations108

\begin{tabular}{lllllllll}
\hline
Variability - Ungrouped Data \tabularnewline
Absolute range & 25084 \tabularnewline
Relative range (unbiased) & 5.34816416708703 \tabularnewline
Relative range (biased) & 5.37309746852971 \tabularnewline
Variance (unbiased) & 21998046.9408100 \tabularnewline
Variance (biased) & 21794361.3209877 \tabularnewline
Standard Deviation (unbiased) & 4690.20755839333 \tabularnewline
Standard Deviation (biased) & 4668.44313674138 \tabularnewline
Coefficient of Variation (unbiased) & 0.323200067573772 \tabularnewline
Coefficient of Variation (biased) & 0.321700291186258 \tabularnewline
Mean Squared Error (MSE versus 0) & 232386055.592593 \tabularnewline
Mean Squared Error (MSE versus Mean) & 21794361.3209877 \tabularnewline
Mean Absolute Deviation from Mean (MAD Mean) & 3741.01646090535 \tabularnewline
Mean Absolute Deviation from Median (MAD Median) & 3724.29629629630 \tabularnewline
Median Absolute Deviation from Mean & 3117.72222222222 \tabularnewline
Median Absolute Deviation from Median & 3111 \tabularnewline
Mean Squared Deviation from Mean & 21794361.3209877 \tabularnewline
Mean Squared Deviation from Median & 21984263.5925926 \tabularnewline
Interquartile Difference (Weighted Average at Xnp) & 6419 \tabularnewline
Interquartile Difference (Weighted Average at X(n+1)p) & 6437.5 \tabularnewline
Interquartile Difference (Empirical Distribution Function) & 6419 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Averaging) & 6321 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Interpolation) & 6204.5 \tabularnewline
Interquartile Difference (Closest Observation) & 6419 \tabularnewline
Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 6204.5 \tabularnewline
Interquartile Difference (MS Excel (old versions)) & 6554 \tabularnewline
Semi Interquartile Difference (Weighted Average at Xnp) & 3209.5 \tabularnewline
Semi Interquartile Difference (Weighted Average at X(n+1)p) & 3218.75 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function) & 3209.5 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Averaging) & 3160.5 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Interpolation) & 3102.25 \tabularnewline
Semi Interquartile Difference (Closest Observation) & 3209.5 \tabularnewline
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 3102.25 \tabularnewline
Semi Interquartile Difference (MS Excel (old versions)) & 3277 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at Xnp) & 0.223619578470650 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at X(n+1)p) & 0.222835681401225 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function) & 0.223619578470650 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging) & 0.218432510885341 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation) & 0.214044226722324 \tabularnewline
Coefficient of Quartile Variation (Closest Observation) & 0.223619578470650 \tabularnewline
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit) & 0.214044226722324 \tabularnewline
Coefficient of Quartile Variation (MS Excel (old versions)) & 0.227253814147018 \tabularnewline
Number of all Pairs of Observations & 5778 \tabularnewline
Squared Differences between all Pairs of Observations & 43996093.8816199 \tabularnewline
Mean Absolute Differences between all Pairs of Observations & 5324.87365870543 \tabularnewline
Gini Mean Difference & 5324.87365870543 \tabularnewline
Leik Measure of Dispersion & 0.481301553653821 \tabularnewline
Index of Diversity & 0.989782490024543 \tabularnewline
Index of Qualitative Variation & 0.999032793669632 \tabularnewline
Coefficient of Dispersion & 0.265772695432321 \tabularnewline
Observations & 108 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=71663&T=1

[TABLE]
[ROW][C]Variability - Ungrouped Data[/C][/ROW]
[ROW][C]Absolute range[/C][C]25084[/C][/ROW]
[ROW][C]Relative range (unbiased)[/C][C]5.34816416708703[/C][/ROW]
[ROW][C]Relative range (biased)[/C][C]5.37309746852971[/C][/ROW]
[ROW][C]Variance (unbiased)[/C][C]21998046.9408100[/C][/ROW]
[ROW][C]Variance (biased)[/C][C]21794361.3209877[/C][/ROW]
[ROW][C]Standard Deviation (unbiased)[/C][C]4690.20755839333[/C][/ROW]
[ROW][C]Standard Deviation (biased)[/C][C]4668.44313674138[/C][/ROW]
[ROW][C]Coefficient of Variation (unbiased)[/C][C]0.323200067573772[/C][/ROW]
[ROW][C]Coefficient of Variation (biased)[/C][C]0.321700291186258[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus 0)[/C][C]232386055.592593[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus Mean)[/C][C]21794361.3209877[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Mean (MAD Mean)[/C][C]3741.01646090535[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Median (MAD Median)[/C][C]3724.29629629630[/C][/ROW]
[ROW][C]Median Absolute Deviation from Mean[/C][C]3117.72222222222[/C][/ROW]
[ROW][C]Median Absolute Deviation from Median[/C][C]3111[/C][/ROW]
[ROW][C]Mean Squared Deviation from Mean[/C][C]21794361.3209877[/C][/ROW]
[ROW][C]Mean Squared Deviation from Median[/C][C]21984263.5925926[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at Xnp)[/C][C]6419[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]6437.5[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function)[/C][C]6419[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]6321[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]6204.5[/C][/ROW]
[ROW][C]Interquartile Difference (Closest Observation)[/C][C]6419[/C][/ROW]
[ROW][C]Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]6204.5[/C][/ROW]
[ROW][C]Interquartile Difference (MS Excel (old versions))[/C][C]6554[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at Xnp)[/C][C]3209.5[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]3218.75[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function)[/C][C]3209.5[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]3160.5[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]3102.25[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Closest Observation)[/C][C]3209.5[/C][/ROW]
[ROW][C]Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]3102.25[/C][/ROW]
[ROW][C]Semi Interquartile Difference (MS Excel (old versions))[/C][C]3277[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at Xnp)[/C][C]0.223619578470650[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at X(n+1)p)[/C][C]0.222835681401225[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function)[/C][C]0.223619578470650[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)[/C][C]0.218432510885341[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)[/C][C]0.214044226722324[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Closest Observation)[/C][C]0.223619578470650[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)[/C][C]0.214044226722324[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (MS Excel (old versions))[/C][C]0.227253814147018[/C][/ROW]
[ROW][C]Number of all Pairs of Observations[/C][C]5778[/C][/ROW]
[ROW][C]Squared Differences between all Pairs of Observations[/C][C]43996093.8816199[/C][/ROW]
[ROW][C]Mean Absolute Differences between all Pairs of Observations[/C][C]5324.87365870543[/C][/ROW]
[ROW][C]Gini Mean Difference[/C][C]5324.87365870543[/C][/ROW]
[ROW][C]Leik Measure of Dispersion[/C][C]0.481301553653821[/C][/ROW]
[ROW][C]Index of Diversity[/C][C]0.989782490024543[/C][/ROW]
[ROW][C]Index of Qualitative Variation[/C][C]0.999032793669632[/C][/ROW]
[ROW][C]Coefficient of Dispersion[/C][C]0.265772695432321[/C][/ROW]
[ROW][C]Observations[/C][C]108[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=71663&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=71663&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variability - Ungrouped Data
Absolute range25084
Relative range (unbiased)5.34816416708703
Relative range (biased)5.37309746852971
Variance (unbiased)21998046.9408100
Variance (biased)21794361.3209877
Standard Deviation (unbiased)4690.20755839333
Standard Deviation (biased)4668.44313674138
Coefficient of Variation (unbiased)0.323200067573772
Coefficient of Variation (biased)0.321700291186258
Mean Squared Error (MSE versus 0)232386055.592593
Mean Squared Error (MSE versus Mean)21794361.3209877
Mean Absolute Deviation from Mean (MAD Mean)3741.01646090535
Mean Absolute Deviation from Median (MAD Median)3724.29629629630
Median Absolute Deviation from Mean3117.72222222222
Median Absolute Deviation from Median3111
Mean Squared Deviation from Mean21794361.3209877
Mean Squared Deviation from Median21984263.5925926
Interquartile Difference (Weighted Average at Xnp)6419
Interquartile Difference (Weighted Average at X(n+1)p)6437.5
Interquartile Difference (Empirical Distribution Function)6419
Interquartile Difference (Empirical Distribution Function - Averaging)6321
Interquartile Difference (Empirical Distribution Function - Interpolation)6204.5
Interquartile Difference (Closest Observation)6419
Interquartile Difference (True Basic - Statistics Graphics Toolkit)6204.5
Interquartile Difference (MS Excel (old versions))6554
Semi Interquartile Difference (Weighted Average at Xnp)3209.5
Semi Interquartile Difference (Weighted Average at X(n+1)p)3218.75
Semi Interquartile Difference (Empirical Distribution Function)3209.5
Semi Interquartile Difference (Empirical Distribution Function - Averaging)3160.5
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)3102.25
Semi Interquartile Difference (Closest Observation)3209.5
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)3102.25
Semi Interquartile Difference (MS Excel (old versions))3277
Coefficient of Quartile Variation (Weighted Average at Xnp)0.223619578470650
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.222835681401225
Coefficient of Quartile Variation (Empirical Distribution Function)0.223619578470650
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.218432510885341
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.214044226722324
Coefficient of Quartile Variation (Closest Observation)0.223619578470650
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.214044226722324
Coefficient of Quartile Variation (MS Excel (old versions))0.227253814147018
Number of all Pairs of Observations5778
Squared Differences between all Pairs of Observations43996093.8816199
Mean Absolute Differences between all Pairs of Observations5324.87365870543
Gini Mean Difference5324.87365870543
Leik Measure of Dispersion0.481301553653821
Index of Diversity0.989782490024543
Index of Qualitative Variation0.999032793669632
Coefficient of Dispersion0.265772695432321
Observations108



Parameters (Session):
Parameters (R input):
R code (references can be found in the software module):
num <- 50
res <- array(NA,dim=c(num,3))
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
iqd <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
iqdiff <- qvalue3 - qvalue1
return(c(iqdiff,iqdiff/2,iqdiff/(qvalue3 + qvalue1)))
}
range <- max(x) - min(x)
lx <- length(x)
biasf <- (lx-1)/lx
varx <- var(x)
bvarx <- varx*biasf
sdx <- sqrt(varx)
mx <- mean(x)
bsdx <- sqrt(bvarx)
x2 <- x*x
mse0 <- sum(x2)/lx
xmm <- x-mx
xmm2 <- xmm*xmm
msem <- sum(xmm2)/lx
axmm <- abs(x - mx)
medx <- median(x)
axmmed <- abs(x - medx)
xmmed <- x - medx
xmmed2 <- xmmed*xmmed
msemed <- sum(xmmed2)/lx
qarr <- array(NA,dim=c(8,3))
for (j in 1:8) {
qarr[j,] <- iqd(x,j)
}
sdpo <- 0
adpo <- 0
for (i in 1:(lx-1)) {
for (j in (i+1):lx) {
ldi <- x[i]-x[j]
aldi <- abs(ldi)
sdpo = sdpo + ldi * ldi
adpo = adpo + aldi
}
}
denom <- (lx*(lx-1)/2)
sdpo = sdpo / denom
adpo = adpo / denom
gmd <- 0
for (i in 1:lx) {
for (j in 1:lx) {
ldi <- abs(x[i]-x[j])
gmd = gmd + ldi
}
}
gmd <- gmd / (lx*(lx-1))
sumx <- sum(x)
pk <- x / sumx
ck <- cumsum(pk)
dk <- array(NA,dim=lx)
for (i in 1:lx) {
if (ck[i] <= 0.5) dk[i] <- ck[i] else dk[i] <- 1 - ck[i]
}
bigd <- sum(dk) * 2 / (lx-1)
iod <- 1 - sum(pk*pk)
res[1,] <- c('Absolute range','absolute.htm', range)
res[2,] <- c('Relative range (unbiased)','relative.htm', range/sd(x))
res[3,] <- c('Relative range (biased)','relative.htm', range/sqrt(varx*biasf))
res[4,] <- c('Variance (unbiased)','unbiased.htm', varx)
res[5,] <- c('Variance (biased)','biased.htm', bvarx)
res[6,] <- c('Standard Deviation (unbiased)','unbiased1.htm', sdx)
res[7,] <- c('Standard Deviation (biased)','biased1.htm', bsdx)
res[8,] <- c('Coefficient of Variation (unbiased)','variation.htm', sdx/mx)
res[9,] <- c('Coefficient of Variation (biased)','variation.htm', bsdx/mx)
res[10,] <- c('Mean Squared Error (MSE versus 0)','mse.htm', mse0)
res[11,] <- c('Mean Squared Error (MSE versus Mean)','mse.htm', msem)
res[12,] <- c('Mean Absolute Deviation from Mean (MAD Mean)', 'mean2.htm', sum(axmm)/lx)
res[13,] <- c('Mean Absolute Deviation from Median (MAD Median)', 'median1.htm', sum(axmmed)/lx)
res[14,] <- c('Median Absolute Deviation from Mean', 'mean3.htm', median(axmm))
res[15,] <- c('Median Absolute Deviation from Median', 'median2.htm', median(axmmed))
res[16,] <- c('Mean Squared Deviation from Mean', 'mean1.htm', msem)
res[17,] <- c('Mean Squared Deviation from Median', 'median.htm', msemed)
load(file='createtable')
mylink1 <- hyperlink('difference.htm','Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[18,] <- c('', mylink2, qarr[1,1])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[19,] <- c('', mylink2, qarr[2,1])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[20,] <- c('', mylink2, qarr[3,1])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[21,] <- c('', mylink2, qarr[4,1])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[22,] <- c('', mylink2, qarr[5,1])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[23,] <- c('', mylink2, qarr[6,1])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[24,] <- c('', mylink2, qarr[7,1])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[25,] <- c('', mylink2, qarr[8,1])
mylink1 <- hyperlink('deviation.htm','Semi Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[26,] <- c('', mylink2, qarr[1,2])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[27,] <- c('', mylink2, qarr[2,2])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[28,] <- c('', mylink2, qarr[3,2])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[29,] <- c('', mylink2, qarr[4,2])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[30,] <- c('', mylink2, qarr[5,2])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[31,] <- c('', mylink2, qarr[6,2])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[32,] <- c('', mylink2, qarr[7,2])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[33,] <- c('', mylink2, qarr[8,2])
mylink1 <- hyperlink('variation1.htm','Coefficient of Quartile Variation','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[34,] <- c('', mylink2, qarr[1,3])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[35,] <- c('', mylink2, qarr[2,3])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[36,] <- c('', mylink2, qarr[3,3])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[37,] <- c('', mylink2, qarr[4,3])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[38,] <- c('', mylink2, qarr[5,3])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[39,] <- c('', mylink2, qarr[6,3])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[40,] <- c('', mylink2, qarr[7,3])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[41,] <- c('', mylink2, qarr[8,3])
res[42,] <- c('Number of all Pairs of Observations', 'pair_numbers.htm', lx*(lx-1)/2)
res[43,] <- c('Squared Differences between all Pairs of Observations', 'squared_differences.htm', sdpo)
res[44,] <- c('Mean Absolute Differences between all Pairs of Observations', 'mean_abs_differences.htm', adpo)
res[45,] <- c('Gini Mean Difference', 'gini_mean_difference.htm', gmd)
res[46,] <- c('Leik Measure of Dispersion', 'leiks_d.htm', bigd)
res[47,] <- c('Index of Diversity', 'diversity.htm', iod)
res[48,] <- c('Index of Qualitative Variation', 'qualitative_variation.htm', iod*lx/(lx-1))
res[49,] <- c('Coefficient of Dispersion', 'dispersion.htm', sum(axmm)/lx/medx)
res[50,] <- c('Observations', '', lx)
res
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variability - Ungrouped Data',2,TRUE)
a<-table.row.end(a)
for (i in 1:num) {
a<-table.row.start(a)
if (res[i,1] != '') {
a<-table.element(a,hyperlink(res[i,2],res[i,1],''),header=TRUE)
} else {
a<-table.element(a,res[i,2],header=TRUE)
}
a<-table.element(a,res[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')