Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_variability.wasp
Title produced by softwareVariability
Date of computationTue, 17 Aug 2010 14:12:46 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Aug/17/t1282054386pwjaqh56fbq4dox.htm/, Retrieved Thu, 31 Oct 2024 23:44:57 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=79130, Retrieved Thu, 31 Oct 2024 23:44:57 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsQuaglia Laura
Estimated Impact139
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Variability] [Tijdreeks B - Sta...] [2010-08-17 14:12:46] [f9e29edf9cfe01f572cce0cb5a360ea2] [Current]
Feedback Forum

Post a new message
Dataseries X:
93
92
91
89
87
86
87
89
90
90
91
93
93
87
89
92
98
92
92
87
92
98
101
102
102
90
87
92
105
90
88
83
98
109
118
118
115
107
101
111
128
115
111
105
120
132
135
142
139
127
113
130
143
139
137
134
139
157
152
153
147
132
117
123
139
134
134
128
118
144
140
151
144
135
122
124
146
146
147
148
132
161
159
173




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time0 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 0 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=79130&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]0 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=79130&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=79130&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time0 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Variability - Ungrouped Data
Absolute range90
Relative range (unbiased)3.77615019825113
Relative range (biased)3.79882998293779
Variance (unbiased)568.04991394148
Variance (biased)561.287414965986
Standard Deviation (unbiased)23.8337977238517
Standard Deviation (biased)23.6915051224270
Coefficient of Variation (unbiased)0.204081448399954
Coefficient of Variation (biased)0.202863040803657
Mean Squared Error (MSE versus 0)14200.1904761905
Mean Squared Error (MSE versus Mean)561.287414965986
Mean Absolute Deviation from Mean (MAD Mean)21
Mean Absolute Deviation from Median (MAD Median)21
Median Absolute Deviation from Mean23.5
Median Absolute Deviation from Median23
Mean Squared Deviation from Mean561.287414965986
Mean Squared Deviation from Median561.904761904762
Interquartile Difference (Weighted Average at Xnp)45
Interquartile Difference (Weighted Average at X(n+1)p)46.5
Interquartile Difference (Empirical Distribution Function)45
Interquartile Difference (Empirical Distribution Function - Averaging)46
Interquartile Difference (Empirical Distribution Function - Interpolation)45.5
Interquartile Difference (Closest Observation)45
Interquartile Difference (True Basic - Statistics Graphics Toolkit)45.5
Interquartile Difference (MS Excel (old versions))47
Semi Interquartile Difference (Weighted Average at Xnp)22.5
Semi Interquartile Difference (Weighted Average at X(n+1)p)23.25
Semi Interquartile Difference (Empirical Distribution Function)22.5
Semi Interquartile Difference (Empirical Distribution Function - Averaging)23
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)22.75
Semi Interquartile Difference (Closest Observation)22.5
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)22.75
Semi Interquartile Difference (MS Excel (old versions))23.5
Coefficient of Quartile Variation (Weighted Average at Xnp)0.196506550218341
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.201735357917570
Coefficient of Quartile Variation (Empirical Distribution Function)0.196506550218341
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.2
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.198257080610022
Coefficient of Quartile Variation (Closest Observation)0.196506550218341
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.198257080610022
Coefficient of Quartile Variation (MS Excel (old versions))0.203463203463203
Number of all Pairs of Observations3486
Squared Differences between all Pairs of Observations1136.09982788296
Mean Absolute Differences between all Pairs of Observations27.3195639701664
Gini Mean Difference27.3195639701664
Leik Measure of Dispersion0.49073603281628
Index of Diversity0.987605316508046
Index of Qualitative Variation0.999504175743083
Coefficient of Dispersion0.181034482758621
Observations84

\begin{tabular}{lllllllll}
\hline
Variability - Ungrouped Data \tabularnewline
Absolute range & 90 \tabularnewline
Relative range (unbiased) & 3.77615019825113 \tabularnewline
Relative range (biased) & 3.79882998293779 \tabularnewline
Variance (unbiased) & 568.04991394148 \tabularnewline
Variance (biased) & 561.287414965986 \tabularnewline
Standard Deviation (unbiased) & 23.8337977238517 \tabularnewline
Standard Deviation (biased) & 23.6915051224270 \tabularnewline
Coefficient of Variation (unbiased) & 0.204081448399954 \tabularnewline
Coefficient of Variation (biased) & 0.202863040803657 \tabularnewline
Mean Squared Error (MSE versus 0) & 14200.1904761905 \tabularnewline
Mean Squared Error (MSE versus Mean) & 561.287414965986 \tabularnewline
Mean Absolute Deviation from Mean (MAD Mean) & 21 \tabularnewline
Mean Absolute Deviation from Median (MAD Median) & 21 \tabularnewline
Median Absolute Deviation from Mean & 23.5 \tabularnewline
Median Absolute Deviation from Median & 23 \tabularnewline
Mean Squared Deviation from Mean & 561.287414965986 \tabularnewline
Mean Squared Deviation from Median & 561.904761904762 \tabularnewline
Interquartile Difference (Weighted Average at Xnp) & 45 \tabularnewline
Interquartile Difference (Weighted Average at X(n+1)p) & 46.5 \tabularnewline
Interquartile Difference (Empirical Distribution Function) & 45 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Averaging) & 46 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Interpolation) & 45.5 \tabularnewline
Interquartile Difference (Closest Observation) & 45 \tabularnewline
Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 45.5 \tabularnewline
Interquartile Difference (MS Excel (old versions)) & 47 \tabularnewline
Semi Interquartile Difference (Weighted Average at Xnp) & 22.5 \tabularnewline
Semi Interquartile Difference (Weighted Average at X(n+1)p) & 23.25 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function) & 22.5 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Averaging) & 23 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Interpolation) & 22.75 \tabularnewline
Semi Interquartile Difference (Closest Observation) & 22.5 \tabularnewline
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 22.75 \tabularnewline
Semi Interquartile Difference (MS Excel (old versions)) & 23.5 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at Xnp) & 0.196506550218341 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at X(n+1)p) & 0.201735357917570 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function) & 0.196506550218341 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging) & 0.2 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation) & 0.198257080610022 \tabularnewline
Coefficient of Quartile Variation (Closest Observation) & 0.196506550218341 \tabularnewline
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit) & 0.198257080610022 \tabularnewline
Coefficient of Quartile Variation (MS Excel (old versions)) & 0.203463203463203 \tabularnewline
Number of all Pairs of Observations & 3486 \tabularnewline
Squared Differences between all Pairs of Observations & 1136.09982788296 \tabularnewline
Mean Absolute Differences between all Pairs of Observations & 27.3195639701664 \tabularnewline
Gini Mean Difference & 27.3195639701664 \tabularnewline
Leik Measure of Dispersion & 0.49073603281628 \tabularnewline
Index of Diversity & 0.987605316508046 \tabularnewline
Index of Qualitative Variation & 0.999504175743083 \tabularnewline
Coefficient of Dispersion & 0.181034482758621 \tabularnewline
Observations & 84 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=79130&T=1

[TABLE]
[ROW][C]Variability - Ungrouped Data[/C][/ROW]
[ROW][C]Absolute range[/C][C]90[/C][/ROW]
[ROW][C]Relative range (unbiased)[/C][C]3.77615019825113[/C][/ROW]
[ROW][C]Relative range (biased)[/C][C]3.79882998293779[/C][/ROW]
[ROW][C]Variance (unbiased)[/C][C]568.04991394148[/C][/ROW]
[ROW][C]Variance (biased)[/C][C]561.287414965986[/C][/ROW]
[ROW][C]Standard Deviation (unbiased)[/C][C]23.8337977238517[/C][/ROW]
[ROW][C]Standard Deviation (biased)[/C][C]23.6915051224270[/C][/ROW]
[ROW][C]Coefficient of Variation (unbiased)[/C][C]0.204081448399954[/C][/ROW]
[ROW][C]Coefficient of Variation (biased)[/C][C]0.202863040803657[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus 0)[/C][C]14200.1904761905[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus Mean)[/C][C]561.287414965986[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Mean (MAD Mean)[/C][C]21[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Median (MAD Median)[/C][C]21[/C][/ROW]
[ROW][C]Median Absolute Deviation from Mean[/C][C]23.5[/C][/ROW]
[ROW][C]Median Absolute Deviation from Median[/C][C]23[/C][/ROW]
[ROW][C]Mean Squared Deviation from Mean[/C][C]561.287414965986[/C][/ROW]
[ROW][C]Mean Squared Deviation from Median[/C][C]561.904761904762[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at Xnp)[/C][C]45[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]46.5[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function)[/C][C]45[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]46[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]45.5[/C][/ROW]
[ROW][C]Interquartile Difference (Closest Observation)[/C][C]45[/C][/ROW]
[ROW][C]Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]45.5[/C][/ROW]
[ROW][C]Interquartile Difference (MS Excel (old versions))[/C][C]47[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at Xnp)[/C][C]22.5[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]23.25[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function)[/C][C]22.5[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]23[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]22.75[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Closest Observation)[/C][C]22.5[/C][/ROW]
[ROW][C]Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]22.75[/C][/ROW]
[ROW][C]Semi Interquartile Difference (MS Excel (old versions))[/C][C]23.5[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at Xnp)[/C][C]0.196506550218341[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at X(n+1)p)[/C][C]0.201735357917570[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function)[/C][C]0.196506550218341[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)[/C][C]0.2[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)[/C][C]0.198257080610022[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Closest Observation)[/C][C]0.196506550218341[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)[/C][C]0.198257080610022[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (MS Excel (old versions))[/C][C]0.203463203463203[/C][/ROW]
[ROW][C]Number of all Pairs of Observations[/C][C]3486[/C][/ROW]
[ROW][C]Squared Differences between all Pairs of Observations[/C][C]1136.09982788296[/C][/ROW]
[ROW][C]Mean Absolute Differences between all Pairs of Observations[/C][C]27.3195639701664[/C][/ROW]
[ROW][C]Gini Mean Difference[/C][C]27.3195639701664[/C][/ROW]
[ROW][C]Leik Measure of Dispersion[/C][C]0.49073603281628[/C][/ROW]
[ROW][C]Index of Diversity[/C][C]0.987605316508046[/C][/ROW]
[ROW][C]Index of Qualitative Variation[/C][C]0.999504175743083[/C][/ROW]
[ROW][C]Coefficient of Dispersion[/C][C]0.181034482758621[/C][/ROW]
[ROW][C]Observations[/C][C]84[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=79130&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=79130&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variability - Ungrouped Data
Absolute range90
Relative range (unbiased)3.77615019825113
Relative range (biased)3.79882998293779
Variance (unbiased)568.04991394148
Variance (biased)561.287414965986
Standard Deviation (unbiased)23.8337977238517
Standard Deviation (biased)23.6915051224270
Coefficient of Variation (unbiased)0.204081448399954
Coefficient of Variation (biased)0.202863040803657
Mean Squared Error (MSE versus 0)14200.1904761905
Mean Squared Error (MSE versus Mean)561.287414965986
Mean Absolute Deviation from Mean (MAD Mean)21
Mean Absolute Deviation from Median (MAD Median)21
Median Absolute Deviation from Mean23.5
Median Absolute Deviation from Median23
Mean Squared Deviation from Mean561.287414965986
Mean Squared Deviation from Median561.904761904762
Interquartile Difference (Weighted Average at Xnp)45
Interquartile Difference (Weighted Average at X(n+1)p)46.5
Interquartile Difference (Empirical Distribution Function)45
Interquartile Difference (Empirical Distribution Function - Averaging)46
Interquartile Difference (Empirical Distribution Function - Interpolation)45.5
Interquartile Difference (Closest Observation)45
Interquartile Difference (True Basic - Statistics Graphics Toolkit)45.5
Interquartile Difference (MS Excel (old versions))47
Semi Interquartile Difference (Weighted Average at Xnp)22.5
Semi Interquartile Difference (Weighted Average at X(n+1)p)23.25
Semi Interquartile Difference (Empirical Distribution Function)22.5
Semi Interquartile Difference (Empirical Distribution Function - Averaging)23
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)22.75
Semi Interquartile Difference (Closest Observation)22.5
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)22.75
Semi Interquartile Difference (MS Excel (old versions))23.5
Coefficient of Quartile Variation (Weighted Average at Xnp)0.196506550218341
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.201735357917570
Coefficient of Quartile Variation (Empirical Distribution Function)0.196506550218341
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.2
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.198257080610022
Coefficient of Quartile Variation (Closest Observation)0.196506550218341
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.198257080610022
Coefficient of Quartile Variation (MS Excel (old versions))0.203463203463203
Number of all Pairs of Observations3486
Squared Differences between all Pairs of Observations1136.09982788296
Mean Absolute Differences between all Pairs of Observations27.3195639701664
Gini Mean Difference27.3195639701664
Leik Measure of Dispersion0.49073603281628
Index of Diversity0.987605316508046
Index of Qualitative Variation0.999504175743083
Coefficient of Dispersion0.181034482758621
Observations84



Parameters (Session):
Parameters (R input):
R code (references can be found in the software module):
num <- 50
res <- array(NA,dim=c(num,3))
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
iqd <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
iqdiff <- qvalue3 - qvalue1
return(c(iqdiff,iqdiff/2,iqdiff/(qvalue3 + qvalue1)))
}
range <- max(x) - min(x)
lx <- length(x)
biasf <- (lx-1)/lx
varx <- var(x)
bvarx <- varx*biasf
sdx <- sqrt(varx)
mx <- mean(x)
bsdx <- sqrt(bvarx)
x2 <- x*x
mse0 <- sum(x2)/lx
xmm <- x-mx
xmm2 <- xmm*xmm
msem <- sum(xmm2)/lx
axmm <- abs(x - mx)
medx <- median(x)
axmmed <- abs(x - medx)
xmmed <- x - medx
xmmed2 <- xmmed*xmmed
msemed <- sum(xmmed2)/lx
qarr <- array(NA,dim=c(8,3))
for (j in 1:8) {
qarr[j,] <- iqd(x,j)
}
sdpo <- 0
adpo <- 0
for (i in 1:(lx-1)) {
for (j in (i+1):lx) {
ldi <- x[i]-x[j]
aldi <- abs(ldi)
sdpo = sdpo + ldi * ldi
adpo = adpo + aldi
}
}
denom <- (lx*(lx-1)/2)
sdpo = sdpo / denom
adpo = adpo / denom
gmd <- 0
for (i in 1:lx) {
for (j in 1:lx) {
ldi <- abs(x[i]-x[j])
gmd = gmd + ldi
}
}
gmd <- gmd / (lx*(lx-1))
sumx <- sum(x)
pk <- x / sumx
ck <- cumsum(pk)
dk <- array(NA,dim=lx)
for (i in 1:lx) {
if (ck[i] <= 0.5) dk[i] <- ck[i] else dk[i] <- 1 - ck[i]
}
bigd <- sum(dk) * 2 / (lx-1)
iod <- 1 - sum(pk*pk)
res[1,] <- c('Absolute range','absolute.htm', range)
res[2,] <- c('Relative range (unbiased)','relative.htm', range/sd(x))
res[3,] <- c('Relative range (biased)','relative.htm', range/sqrt(varx*biasf))
res[4,] <- c('Variance (unbiased)','unbiased.htm', varx)
res[5,] <- c('Variance (biased)','biased.htm', bvarx)
res[6,] <- c('Standard Deviation (unbiased)','unbiased1.htm', sdx)
res[7,] <- c('Standard Deviation (biased)','biased1.htm', bsdx)
res[8,] <- c('Coefficient of Variation (unbiased)','variation.htm', sdx/mx)
res[9,] <- c('Coefficient of Variation (biased)','variation.htm', bsdx/mx)
res[10,] <- c('Mean Squared Error (MSE versus 0)','mse.htm', mse0)
res[11,] <- c('Mean Squared Error (MSE versus Mean)','mse.htm', msem)
res[12,] <- c('Mean Absolute Deviation from Mean (MAD Mean)', 'mean2.htm', sum(axmm)/lx)
res[13,] <- c('Mean Absolute Deviation from Median (MAD Median)', 'median1.htm', sum(axmmed)/lx)
res[14,] <- c('Median Absolute Deviation from Mean', 'mean3.htm', median(axmm))
res[15,] <- c('Median Absolute Deviation from Median', 'median2.htm', median(axmmed))
res[16,] <- c('Mean Squared Deviation from Mean', 'mean1.htm', msem)
res[17,] <- c('Mean Squared Deviation from Median', 'median.htm', msemed)
load(file='createtable')
mylink1 <- hyperlink('difference.htm','Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[18,] <- c('', mylink2, qarr[1,1])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[19,] <- c('', mylink2, qarr[2,1])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[20,] <- c('', mylink2, qarr[3,1])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[21,] <- c('', mylink2, qarr[4,1])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[22,] <- c('', mylink2, qarr[5,1])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[23,] <- c('', mylink2, qarr[6,1])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[24,] <- c('', mylink2, qarr[7,1])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[25,] <- c('', mylink2, qarr[8,1])
mylink1 <- hyperlink('deviation.htm','Semi Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[26,] <- c('', mylink2, qarr[1,2])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[27,] <- c('', mylink2, qarr[2,2])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[28,] <- c('', mylink2, qarr[3,2])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[29,] <- c('', mylink2, qarr[4,2])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[30,] <- c('', mylink2, qarr[5,2])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[31,] <- c('', mylink2, qarr[6,2])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[32,] <- c('', mylink2, qarr[7,2])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[33,] <- c('', mylink2, qarr[8,2])
mylink1 <- hyperlink('variation1.htm','Coefficient of Quartile Variation','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[34,] <- c('', mylink2, qarr[1,3])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[35,] <- c('', mylink2, qarr[2,3])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[36,] <- c('', mylink2, qarr[3,3])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[37,] <- c('', mylink2, qarr[4,3])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[38,] <- c('', mylink2, qarr[5,3])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[39,] <- c('', mylink2, qarr[6,3])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[40,] <- c('', mylink2, qarr[7,3])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[41,] <- c('', mylink2, qarr[8,3])
res[42,] <- c('Number of all Pairs of Observations', 'pair_numbers.htm', lx*(lx-1)/2)
res[43,] <- c('Squared Differences between all Pairs of Observations', 'squared_differences.htm', sdpo)
res[44,] <- c('Mean Absolute Differences between all Pairs of Observations', 'mean_abs_differences.htm', adpo)
res[45,] <- c('Gini Mean Difference', 'gini_mean_difference.htm', gmd)
res[46,] <- c('Leik Measure of Dispersion', 'leiks_d.htm', bigd)
res[47,] <- c('Index of Diversity', 'diversity.htm', iod)
res[48,] <- c('Index of Qualitative Variation', 'qualitative_variation.htm', iod*lx/(lx-1))
res[49,] <- c('Coefficient of Dispersion', 'dispersion.htm', sum(axmm)/lx/medx)
res[50,] <- c('Observations', '', lx)
res
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variability - Ungrouped Data',2,TRUE)
a<-table.row.end(a)
for (i in 1:num) {
a<-table.row.start(a)
if (res[i,1] != '') {
a<-table.element(a,hyperlink(res[i,2],res[i,1],''),header=TRUE)
} else {
a<-table.element(a,res[i,2],header=TRUE)
}
a<-table.element(a,res[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')