Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_harrell_davies.wasp
Title produced by softwareHarrell-Davis Quantiles
Date of computationWed, 17 Oct 2007 11:38:35 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2007/Oct/17/ac1ejeqlhx03may1192646126.htm/, Retrieved Thu, 31 Oct 2024 23:53:03 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=853, Retrieved Thu, 31 Oct 2024 23:53:03 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsHarrell-Davis Quantiles file, voorbeeld theorie
Estimated Impact309
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Harrell-Davis Quantiles] [Harrell-Davis Qua...] [2007-10-17 18:38:35] [d41d8cd98f00b204e9800998ecf8427e] [Current]
Feedback Forum

Post a new message
Dataseries X:
2443.6
2460.2
2448.2
2470.4
2484.7
2466.8
2487.9
2508.4
2510.5
2497.4
2532.5
2556.8
2561
2547.3
2541.5
2558.5
2587.9
2580.5
2579.6
2589.3
2595
2595.6
2588.8
2591.7
2601.7
2585.4
2573.3
2597.4
2600.6
2570.6
2569.4
2584.9
2608.8
2617.2
2621
2540.5
2554.5
2601.9
2623
2640.7
2640.7
2619.8
2624.2
2638.2
2645.7
2679.6
2669
2664.6
2663.3
2667.4
2653.2
2630.8
2626.6
2641.9
2625.8
2606
2594.4
2583.6
2588.7
2600.3
2579.5
2576.6
2597.8
2595.6
2599
2621.7
2645.6
2644.2
2625.6
2624.6
2596.2
2599.5
2584.1
2570.8
2555
2574.5
2576.7
2579
2588.7
2601.1
2575.7
2559.5
2561.1
2528.3
2514.7
2558.5
2553.3
2577.1
2566
2549.5
2527.8
2540.9
2534.2
2538
2559
2554.9
2575.5
2546.5
2561.6
2546.6
2502.9
2463.1
2472.6
2463.5
2446.3
2456.2
2471.5
2447.5
2428.6
2420.2
2414.9
2420.2
2423.8
2407
2388.7
2409.6
2392
2380.2
2423.3
2451.6
2440.8
2432.9
2413.6
2391.6
2358.1
2345.4
2384.4
2384.4
2384.4
2418.7
2420
2493.1
2493.1
2492.8




Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of compuational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=853&T=0

[TABLE]
[ROW][C]Summary of compuational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=853&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=853&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Harrell-Davis Quantiles
quantilesvaluestandard error
0.012357.1443647554514.9481124596899
0.022371.6716356580511.8828029753432
0.032380.988605744327.07621727420757
0.042386.463577768206.52695266800164
0.052391.023106006818.56199990880743
0.062395.9900026347910.5007718309523
0.072401.3417254994211.2414633810019
0.082406.5779065837310.7287869730394
0.092411.283158436739.57133328064758
0.12415.341766100538.55152141110057
0.112418.909794640248.22279023178397
0.122422.272346132508.70272238463312
0.132425.6967739519.72853715108955
0.142429.3426012457510.8956786222397
0.152433.2411602017711.8757301400128
0.162437.3288065547212.5079184868743
0.172441.5042785349912.8059344684236
0.182445.6808038216712.9150905898019
0.192449.8148600405512.9974854202305
0.22453.9092175688213.1825094002567
0.212457.9992345347713.5408115914328
0.222462.1341074117814.0625030996232
0.232466.3611350728714.7289244088425
0.242470.716013358315.4877227364136
0.252475.2189829108216.2734441640649
0.262479.8754481483817.0383376842074
0.272484.6791830689817.7533118875051
0.282489.615793405918.4025591957402
0.292494.6641850687518.9641765708527
0.32499.7949992529419.4043020378825
0.312504.9670273719619.6576850699188
0.322510.1243350754519.6560203339739
0.332515.1970372982119.3331406269033
0.342520.1071328730318.6688357540104
0.352524.7783839032217.6884985836029
0.362529.1472625107116.4653093750509
0.372533.1714780792315.1057376984550
0.382536.8336645382513.7139672617629
0.392540.1397732282812.3852661382176
0.42543.1135899210311.1767522996650
0.412545.7898025540610.110689192076
0.422548.207940832279.20322898830764
0.432550.408553684498.4407427096503
0.442552.431731673557.82740071530819
0.452554.317065294517.36696442302478
0.462556.103699699747.06131517974401
0.472557.829366365506.90350688821617
0.482559.527965121236.88590632436667
0.492561.226116922186.96007516749798
0.52562.939768768747.07765917366896
0.512564.672155876197.16570287585253
0.522566.414127478057.18939776832108
0.532568.147129066757.10879822990334
0.542569.848267580306.91283393362155
0.552571.496187056526.62647777161754
0.562573.076206036896.29624312131316
0.572574.583407558375.96226457481738
0.582576.023028221965.67480630702239
0.592577.408320156255.45798749224019
0.62578.756769890595.3261789905128
0.612580.085924461345.26421453532719
0.622581.410005229145.24720120606967
0.632582.73804646425.25715452635538
0.642584.073667050465.26233947543326
0.652585.416017137795.25238489023925
0.662586.761155195745.21983938910012
0.672588.103205166425.15986815831914
0.682589.435049529985.0678252544751
0.692590.748815870514.94731197409154
0.72592.036751803754.79231420021349
0.712593.293089181664.61417891150676
0.722594.517180491044.43368469430295
0.732595.717685273704.28899461490726
0.742596.917022550514.24100654389986
0.752598.154720281184.34485695423305
0.762599.487713960464.68097600186504
0.772600.985340095755.27335039172932
0.782602.717367014566.09784579340341
0.792604.735586027357.04975763782447
0.82607.053208106047.96185462398576
0.812609.630114415308.62938352002791
0.822612.373248846508.88836673460216
0.832615.157818525928.66987773691912
0.842617.866521696088.06977906539387
0.852620.43391299597.29902428735196
0.862622.876239459506.6617982100802
0.872625.288201550276.42010565757015
0.882627.799712049566.60857909179767
0.892630.507100207097.01344710319607
0.92633.417012652237.26786750031467
0.912636.451132464857.1290912105778
0.922639.53687786326.68312205080524
0.932642.747437822966.40821541874604
0.942646.373081026616.8888467523266
0.952650.767515610728.03326956561368
0.962655.955524260268.68402715822326
0.972661.416181336837.62646422001588
0.982666.835505211165.55078287830195
0.992673.349785024206.4553643984079

\begin{tabular}{lllllllll}
\hline
Harrell-Davis Quantiles \tabularnewline
quantiles & value & standard error \tabularnewline
0.01 & 2357.14436475545 & 14.9481124596899 \tabularnewline
0.02 & 2371.67163565805 & 11.8828029753432 \tabularnewline
0.03 & 2380.98860574432 & 7.07621727420757 \tabularnewline
0.04 & 2386.46357776820 & 6.52695266800164 \tabularnewline
0.05 & 2391.02310600681 & 8.56199990880743 \tabularnewline
0.06 & 2395.99000263479 & 10.5007718309523 \tabularnewline
0.07 & 2401.34172549942 & 11.2414633810019 \tabularnewline
0.08 & 2406.57790658373 & 10.7287869730394 \tabularnewline
0.09 & 2411.28315843673 & 9.57133328064758 \tabularnewline
0.1 & 2415.34176610053 & 8.55152141110057 \tabularnewline
0.11 & 2418.90979464024 & 8.22279023178397 \tabularnewline
0.12 & 2422.27234613250 & 8.70272238463312 \tabularnewline
0.13 & 2425.696773951 & 9.72853715108955 \tabularnewline
0.14 & 2429.34260124575 & 10.8956786222397 \tabularnewline
0.15 & 2433.24116020177 & 11.8757301400128 \tabularnewline
0.16 & 2437.32880655472 & 12.5079184868743 \tabularnewline
0.17 & 2441.50427853499 & 12.8059344684236 \tabularnewline
0.18 & 2445.68080382167 & 12.9150905898019 \tabularnewline
0.19 & 2449.81486004055 & 12.9974854202305 \tabularnewline
0.2 & 2453.90921756882 & 13.1825094002567 \tabularnewline
0.21 & 2457.99923453477 & 13.5408115914328 \tabularnewline
0.22 & 2462.13410741178 & 14.0625030996232 \tabularnewline
0.23 & 2466.36113507287 & 14.7289244088425 \tabularnewline
0.24 & 2470.7160133583 & 15.4877227364136 \tabularnewline
0.25 & 2475.21898291082 & 16.2734441640649 \tabularnewline
0.26 & 2479.87544814838 & 17.0383376842074 \tabularnewline
0.27 & 2484.67918306898 & 17.7533118875051 \tabularnewline
0.28 & 2489.6157934059 & 18.4025591957402 \tabularnewline
0.29 & 2494.66418506875 & 18.9641765708527 \tabularnewline
0.3 & 2499.79499925294 & 19.4043020378825 \tabularnewline
0.31 & 2504.96702737196 & 19.6576850699188 \tabularnewline
0.32 & 2510.12433507545 & 19.6560203339739 \tabularnewline
0.33 & 2515.19703729821 & 19.3331406269033 \tabularnewline
0.34 & 2520.10713287303 & 18.6688357540104 \tabularnewline
0.35 & 2524.77838390322 & 17.6884985836029 \tabularnewline
0.36 & 2529.14726251071 & 16.4653093750509 \tabularnewline
0.37 & 2533.17147807923 & 15.1057376984550 \tabularnewline
0.38 & 2536.83366453825 & 13.7139672617629 \tabularnewline
0.39 & 2540.13977322828 & 12.3852661382176 \tabularnewline
0.4 & 2543.11358992103 & 11.1767522996650 \tabularnewline
0.41 & 2545.78980255406 & 10.110689192076 \tabularnewline
0.42 & 2548.20794083227 & 9.20322898830764 \tabularnewline
0.43 & 2550.40855368449 & 8.4407427096503 \tabularnewline
0.44 & 2552.43173167355 & 7.82740071530819 \tabularnewline
0.45 & 2554.31706529451 & 7.36696442302478 \tabularnewline
0.46 & 2556.10369969974 & 7.06131517974401 \tabularnewline
0.47 & 2557.82936636550 & 6.90350688821617 \tabularnewline
0.48 & 2559.52796512123 & 6.88590632436667 \tabularnewline
0.49 & 2561.22611692218 & 6.96007516749798 \tabularnewline
0.5 & 2562.93976876874 & 7.07765917366896 \tabularnewline
0.51 & 2564.67215587619 & 7.16570287585253 \tabularnewline
0.52 & 2566.41412747805 & 7.18939776832108 \tabularnewline
0.53 & 2568.14712906675 & 7.10879822990334 \tabularnewline
0.54 & 2569.84826758030 & 6.91283393362155 \tabularnewline
0.55 & 2571.49618705652 & 6.62647777161754 \tabularnewline
0.56 & 2573.07620603689 & 6.29624312131316 \tabularnewline
0.57 & 2574.58340755837 & 5.96226457481738 \tabularnewline
0.58 & 2576.02302822196 & 5.67480630702239 \tabularnewline
0.59 & 2577.40832015625 & 5.45798749224019 \tabularnewline
0.6 & 2578.75676989059 & 5.3261789905128 \tabularnewline
0.61 & 2580.08592446134 & 5.26421453532719 \tabularnewline
0.62 & 2581.41000522914 & 5.24720120606967 \tabularnewline
0.63 & 2582.7380464642 & 5.25715452635538 \tabularnewline
0.64 & 2584.07366705046 & 5.26233947543326 \tabularnewline
0.65 & 2585.41601713779 & 5.25238489023925 \tabularnewline
0.66 & 2586.76115519574 & 5.21983938910012 \tabularnewline
0.67 & 2588.10320516642 & 5.15986815831914 \tabularnewline
0.68 & 2589.43504952998 & 5.0678252544751 \tabularnewline
0.69 & 2590.74881587051 & 4.94731197409154 \tabularnewline
0.7 & 2592.03675180375 & 4.79231420021349 \tabularnewline
0.71 & 2593.29308918166 & 4.61417891150676 \tabularnewline
0.72 & 2594.51718049104 & 4.43368469430295 \tabularnewline
0.73 & 2595.71768527370 & 4.28899461490726 \tabularnewline
0.74 & 2596.91702255051 & 4.24100654389986 \tabularnewline
0.75 & 2598.15472028118 & 4.34485695423305 \tabularnewline
0.76 & 2599.48771396046 & 4.68097600186504 \tabularnewline
0.77 & 2600.98534009575 & 5.27335039172932 \tabularnewline
0.78 & 2602.71736701456 & 6.09784579340341 \tabularnewline
0.79 & 2604.73558602735 & 7.04975763782447 \tabularnewline
0.8 & 2607.05320810604 & 7.96185462398576 \tabularnewline
0.81 & 2609.63011441530 & 8.62938352002791 \tabularnewline
0.82 & 2612.37324884650 & 8.88836673460216 \tabularnewline
0.83 & 2615.15781852592 & 8.66987773691912 \tabularnewline
0.84 & 2617.86652169608 & 8.06977906539387 \tabularnewline
0.85 & 2620.4339129959 & 7.29902428735196 \tabularnewline
0.86 & 2622.87623945950 & 6.6617982100802 \tabularnewline
0.87 & 2625.28820155027 & 6.42010565757015 \tabularnewline
0.88 & 2627.79971204956 & 6.60857909179767 \tabularnewline
0.89 & 2630.50710020709 & 7.01344710319607 \tabularnewline
0.9 & 2633.41701265223 & 7.26786750031467 \tabularnewline
0.91 & 2636.45113246485 & 7.1290912105778 \tabularnewline
0.92 & 2639.5368778632 & 6.68312205080524 \tabularnewline
0.93 & 2642.74743782296 & 6.40821541874604 \tabularnewline
0.94 & 2646.37308102661 & 6.8888467523266 \tabularnewline
0.95 & 2650.76751561072 & 8.03326956561368 \tabularnewline
0.96 & 2655.95552426026 & 8.68402715822326 \tabularnewline
0.97 & 2661.41618133683 & 7.62646422001588 \tabularnewline
0.98 & 2666.83550521116 & 5.55078287830195 \tabularnewline
0.99 & 2673.34978502420 & 6.4553643984079 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=853&T=1

[TABLE]
[ROW][C]Harrell-Davis Quantiles[/C][/ROW]
[ROW][C]quantiles[/C][C]value[/C][C]standard error[/C][/ROW]
[ROW][C]0.01[/C][C]2357.14436475545[/C][C]14.9481124596899[/C][/ROW]
[ROW][C]0.02[/C][C]2371.67163565805[/C][C]11.8828029753432[/C][/ROW]
[ROW][C]0.03[/C][C]2380.98860574432[/C][C]7.07621727420757[/C][/ROW]
[ROW][C]0.04[/C][C]2386.46357776820[/C][C]6.52695266800164[/C][/ROW]
[ROW][C]0.05[/C][C]2391.02310600681[/C][C]8.56199990880743[/C][/ROW]
[ROW][C]0.06[/C][C]2395.99000263479[/C][C]10.5007718309523[/C][/ROW]
[ROW][C]0.07[/C][C]2401.34172549942[/C][C]11.2414633810019[/C][/ROW]
[ROW][C]0.08[/C][C]2406.57790658373[/C][C]10.7287869730394[/C][/ROW]
[ROW][C]0.09[/C][C]2411.28315843673[/C][C]9.57133328064758[/C][/ROW]
[ROW][C]0.1[/C][C]2415.34176610053[/C][C]8.55152141110057[/C][/ROW]
[ROW][C]0.11[/C][C]2418.90979464024[/C][C]8.22279023178397[/C][/ROW]
[ROW][C]0.12[/C][C]2422.27234613250[/C][C]8.70272238463312[/C][/ROW]
[ROW][C]0.13[/C][C]2425.696773951[/C][C]9.72853715108955[/C][/ROW]
[ROW][C]0.14[/C][C]2429.34260124575[/C][C]10.8956786222397[/C][/ROW]
[ROW][C]0.15[/C][C]2433.24116020177[/C][C]11.8757301400128[/C][/ROW]
[ROW][C]0.16[/C][C]2437.32880655472[/C][C]12.5079184868743[/C][/ROW]
[ROW][C]0.17[/C][C]2441.50427853499[/C][C]12.8059344684236[/C][/ROW]
[ROW][C]0.18[/C][C]2445.68080382167[/C][C]12.9150905898019[/C][/ROW]
[ROW][C]0.19[/C][C]2449.81486004055[/C][C]12.9974854202305[/C][/ROW]
[ROW][C]0.2[/C][C]2453.90921756882[/C][C]13.1825094002567[/C][/ROW]
[ROW][C]0.21[/C][C]2457.99923453477[/C][C]13.5408115914328[/C][/ROW]
[ROW][C]0.22[/C][C]2462.13410741178[/C][C]14.0625030996232[/C][/ROW]
[ROW][C]0.23[/C][C]2466.36113507287[/C][C]14.7289244088425[/C][/ROW]
[ROW][C]0.24[/C][C]2470.7160133583[/C][C]15.4877227364136[/C][/ROW]
[ROW][C]0.25[/C][C]2475.21898291082[/C][C]16.2734441640649[/C][/ROW]
[ROW][C]0.26[/C][C]2479.87544814838[/C][C]17.0383376842074[/C][/ROW]
[ROW][C]0.27[/C][C]2484.67918306898[/C][C]17.7533118875051[/C][/ROW]
[ROW][C]0.28[/C][C]2489.6157934059[/C][C]18.4025591957402[/C][/ROW]
[ROW][C]0.29[/C][C]2494.66418506875[/C][C]18.9641765708527[/C][/ROW]
[ROW][C]0.3[/C][C]2499.79499925294[/C][C]19.4043020378825[/C][/ROW]
[ROW][C]0.31[/C][C]2504.96702737196[/C][C]19.6576850699188[/C][/ROW]
[ROW][C]0.32[/C][C]2510.12433507545[/C][C]19.6560203339739[/C][/ROW]
[ROW][C]0.33[/C][C]2515.19703729821[/C][C]19.3331406269033[/C][/ROW]
[ROW][C]0.34[/C][C]2520.10713287303[/C][C]18.6688357540104[/C][/ROW]
[ROW][C]0.35[/C][C]2524.77838390322[/C][C]17.6884985836029[/C][/ROW]
[ROW][C]0.36[/C][C]2529.14726251071[/C][C]16.4653093750509[/C][/ROW]
[ROW][C]0.37[/C][C]2533.17147807923[/C][C]15.1057376984550[/C][/ROW]
[ROW][C]0.38[/C][C]2536.83366453825[/C][C]13.7139672617629[/C][/ROW]
[ROW][C]0.39[/C][C]2540.13977322828[/C][C]12.3852661382176[/C][/ROW]
[ROW][C]0.4[/C][C]2543.11358992103[/C][C]11.1767522996650[/C][/ROW]
[ROW][C]0.41[/C][C]2545.78980255406[/C][C]10.110689192076[/C][/ROW]
[ROW][C]0.42[/C][C]2548.20794083227[/C][C]9.20322898830764[/C][/ROW]
[ROW][C]0.43[/C][C]2550.40855368449[/C][C]8.4407427096503[/C][/ROW]
[ROW][C]0.44[/C][C]2552.43173167355[/C][C]7.82740071530819[/C][/ROW]
[ROW][C]0.45[/C][C]2554.31706529451[/C][C]7.36696442302478[/C][/ROW]
[ROW][C]0.46[/C][C]2556.10369969974[/C][C]7.06131517974401[/C][/ROW]
[ROW][C]0.47[/C][C]2557.82936636550[/C][C]6.90350688821617[/C][/ROW]
[ROW][C]0.48[/C][C]2559.52796512123[/C][C]6.88590632436667[/C][/ROW]
[ROW][C]0.49[/C][C]2561.22611692218[/C][C]6.96007516749798[/C][/ROW]
[ROW][C]0.5[/C][C]2562.93976876874[/C][C]7.07765917366896[/C][/ROW]
[ROW][C]0.51[/C][C]2564.67215587619[/C][C]7.16570287585253[/C][/ROW]
[ROW][C]0.52[/C][C]2566.41412747805[/C][C]7.18939776832108[/C][/ROW]
[ROW][C]0.53[/C][C]2568.14712906675[/C][C]7.10879822990334[/C][/ROW]
[ROW][C]0.54[/C][C]2569.84826758030[/C][C]6.91283393362155[/C][/ROW]
[ROW][C]0.55[/C][C]2571.49618705652[/C][C]6.62647777161754[/C][/ROW]
[ROW][C]0.56[/C][C]2573.07620603689[/C][C]6.29624312131316[/C][/ROW]
[ROW][C]0.57[/C][C]2574.58340755837[/C][C]5.96226457481738[/C][/ROW]
[ROW][C]0.58[/C][C]2576.02302822196[/C][C]5.67480630702239[/C][/ROW]
[ROW][C]0.59[/C][C]2577.40832015625[/C][C]5.45798749224019[/C][/ROW]
[ROW][C]0.6[/C][C]2578.75676989059[/C][C]5.3261789905128[/C][/ROW]
[ROW][C]0.61[/C][C]2580.08592446134[/C][C]5.26421453532719[/C][/ROW]
[ROW][C]0.62[/C][C]2581.41000522914[/C][C]5.24720120606967[/C][/ROW]
[ROW][C]0.63[/C][C]2582.7380464642[/C][C]5.25715452635538[/C][/ROW]
[ROW][C]0.64[/C][C]2584.07366705046[/C][C]5.26233947543326[/C][/ROW]
[ROW][C]0.65[/C][C]2585.41601713779[/C][C]5.25238489023925[/C][/ROW]
[ROW][C]0.66[/C][C]2586.76115519574[/C][C]5.21983938910012[/C][/ROW]
[ROW][C]0.67[/C][C]2588.10320516642[/C][C]5.15986815831914[/C][/ROW]
[ROW][C]0.68[/C][C]2589.43504952998[/C][C]5.0678252544751[/C][/ROW]
[ROW][C]0.69[/C][C]2590.74881587051[/C][C]4.94731197409154[/C][/ROW]
[ROW][C]0.7[/C][C]2592.03675180375[/C][C]4.79231420021349[/C][/ROW]
[ROW][C]0.71[/C][C]2593.29308918166[/C][C]4.61417891150676[/C][/ROW]
[ROW][C]0.72[/C][C]2594.51718049104[/C][C]4.43368469430295[/C][/ROW]
[ROW][C]0.73[/C][C]2595.71768527370[/C][C]4.28899461490726[/C][/ROW]
[ROW][C]0.74[/C][C]2596.91702255051[/C][C]4.24100654389986[/C][/ROW]
[ROW][C]0.75[/C][C]2598.15472028118[/C][C]4.34485695423305[/C][/ROW]
[ROW][C]0.76[/C][C]2599.48771396046[/C][C]4.68097600186504[/C][/ROW]
[ROW][C]0.77[/C][C]2600.98534009575[/C][C]5.27335039172932[/C][/ROW]
[ROW][C]0.78[/C][C]2602.71736701456[/C][C]6.09784579340341[/C][/ROW]
[ROW][C]0.79[/C][C]2604.73558602735[/C][C]7.04975763782447[/C][/ROW]
[ROW][C]0.8[/C][C]2607.05320810604[/C][C]7.96185462398576[/C][/ROW]
[ROW][C]0.81[/C][C]2609.63011441530[/C][C]8.62938352002791[/C][/ROW]
[ROW][C]0.82[/C][C]2612.37324884650[/C][C]8.88836673460216[/C][/ROW]
[ROW][C]0.83[/C][C]2615.15781852592[/C][C]8.66987773691912[/C][/ROW]
[ROW][C]0.84[/C][C]2617.86652169608[/C][C]8.06977906539387[/C][/ROW]
[ROW][C]0.85[/C][C]2620.4339129959[/C][C]7.29902428735196[/C][/ROW]
[ROW][C]0.86[/C][C]2622.87623945950[/C][C]6.6617982100802[/C][/ROW]
[ROW][C]0.87[/C][C]2625.28820155027[/C][C]6.42010565757015[/C][/ROW]
[ROW][C]0.88[/C][C]2627.79971204956[/C][C]6.60857909179767[/C][/ROW]
[ROW][C]0.89[/C][C]2630.50710020709[/C][C]7.01344710319607[/C][/ROW]
[ROW][C]0.9[/C][C]2633.41701265223[/C][C]7.26786750031467[/C][/ROW]
[ROW][C]0.91[/C][C]2636.45113246485[/C][C]7.1290912105778[/C][/ROW]
[ROW][C]0.92[/C][C]2639.5368778632[/C][C]6.68312205080524[/C][/ROW]
[ROW][C]0.93[/C][C]2642.74743782296[/C][C]6.40821541874604[/C][/ROW]
[ROW][C]0.94[/C][C]2646.37308102661[/C][C]6.8888467523266[/C][/ROW]
[ROW][C]0.95[/C][C]2650.76751561072[/C][C]8.03326956561368[/C][/ROW]
[ROW][C]0.96[/C][C]2655.95552426026[/C][C]8.68402715822326[/C][/ROW]
[ROW][C]0.97[/C][C]2661.41618133683[/C][C]7.62646422001588[/C][/ROW]
[ROW][C]0.98[/C][C]2666.83550521116[/C][C]5.55078287830195[/C][/ROW]
[ROW][C]0.99[/C][C]2673.34978502420[/C][C]6.4553643984079[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=853&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=853&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Harrell-Davis Quantiles
quantilesvaluestandard error
0.012357.1443647554514.9481124596899
0.022371.6716356580511.8828029753432
0.032380.988605744327.07621727420757
0.042386.463577768206.52695266800164
0.052391.023106006818.56199990880743
0.062395.9900026347910.5007718309523
0.072401.3417254994211.2414633810019
0.082406.5779065837310.7287869730394
0.092411.283158436739.57133328064758
0.12415.341766100538.55152141110057
0.112418.909794640248.22279023178397
0.122422.272346132508.70272238463312
0.132425.6967739519.72853715108955
0.142429.3426012457510.8956786222397
0.152433.2411602017711.8757301400128
0.162437.3288065547212.5079184868743
0.172441.5042785349912.8059344684236
0.182445.6808038216712.9150905898019
0.192449.8148600405512.9974854202305
0.22453.9092175688213.1825094002567
0.212457.9992345347713.5408115914328
0.222462.1341074117814.0625030996232
0.232466.3611350728714.7289244088425
0.242470.716013358315.4877227364136
0.252475.2189829108216.2734441640649
0.262479.8754481483817.0383376842074
0.272484.6791830689817.7533118875051
0.282489.615793405918.4025591957402
0.292494.6641850687518.9641765708527
0.32499.7949992529419.4043020378825
0.312504.9670273719619.6576850699188
0.322510.1243350754519.6560203339739
0.332515.1970372982119.3331406269033
0.342520.1071328730318.6688357540104
0.352524.7783839032217.6884985836029
0.362529.1472625107116.4653093750509
0.372533.1714780792315.1057376984550
0.382536.8336645382513.7139672617629
0.392540.1397732282812.3852661382176
0.42543.1135899210311.1767522996650
0.412545.7898025540610.110689192076
0.422548.207940832279.20322898830764
0.432550.408553684498.4407427096503
0.442552.431731673557.82740071530819
0.452554.317065294517.36696442302478
0.462556.103699699747.06131517974401
0.472557.829366365506.90350688821617
0.482559.527965121236.88590632436667
0.492561.226116922186.96007516749798
0.52562.939768768747.07765917366896
0.512564.672155876197.16570287585253
0.522566.414127478057.18939776832108
0.532568.147129066757.10879822990334
0.542569.848267580306.91283393362155
0.552571.496187056526.62647777161754
0.562573.076206036896.29624312131316
0.572574.583407558375.96226457481738
0.582576.023028221965.67480630702239
0.592577.408320156255.45798749224019
0.62578.756769890595.3261789905128
0.612580.085924461345.26421453532719
0.622581.410005229145.24720120606967
0.632582.73804646425.25715452635538
0.642584.073667050465.26233947543326
0.652585.416017137795.25238489023925
0.662586.761155195745.21983938910012
0.672588.103205166425.15986815831914
0.682589.435049529985.0678252544751
0.692590.748815870514.94731197409154
0.72592.036751803754.79231420021349
0.712593.293089181664.61417891150676
0.722594.517180491044.43368469430295
0.732595.717685273704.28899461490726
0.742596.917022550514.24100654389986
0.752598.154720281184.34485695423305
0.762599.487713960464.68097600186504
0.772600.985340095755.27335039172932
0.782602.717367014566.09784579340341
0.792604.735586027357.04975763782447
0.82607.053208106047.96185462398576
0.812609.630114415308.62938352002791
0.822612.373248846508.88836673460216
0.832615.157818525928.66987773691912
0.842617.866521696088.06977906539387
0.852620.43391299597.29902428735196
0.862622.876239459506.6617982100802
0.872625.288201550276.42010565757015
0.882627.799712049566.60857909179767
0.892630.507100207097.01344710319607
0.92633.417012652237.26786750031467
0.912636.451132464857.1290912105778
0.922639.53687786326.68312205080524
0.932642.747437822966.40821541874604
0.942646.373081026616.8888467523266
0.952650.767515610728.03326956561368
0.962655.955524260268.68402715822326
0.972661.416181336837.62646422001588
0.982666.835505211165.55078287830195
0.992673.349785024206.4553643984079



Parameters (Session):
Parameters (R input):
par1 = 0.01 ; par2 = 0.99 ; par3 = 0.01 ;
R code (references can be found in the software module):
par1 <- as(par1,'numeric')
par2 <- as(par2,'numeric')
par3 <- as(par3,'numeric')
library(Hmisc)
myseq <- seq(par1, par2, par3)
hd <- hdquantile(x, probs = myseq, se = TRUE, na.rm = FALSE, names = TRUE, weights=FALSE)
bitmap(file='test1.png')
plot(myseq,hd,col=2,main=main,xlab=xlab,ylab=ylab)
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Harrell-Davis Quantiles',3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'quantiles',header=TRUE)
a<-table.element(a,'value',header=TRUE)
a<-table.element(a,'standard error',header=TRUE)
a<-table.row.end(a)
length(hd)
for (i in 1:length(hd))
{
a<-table.row.start(a)
a<-table.element(a,as(labels(hd)[i],'numeric'),header=TRUE)
a<-table.element(a,as.matrix(hd[i])[1,1])
a<-table.element(a,as.matrix(attr(hd,'se')[i])[1,1])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')