Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 30 Nov 2010 14:14:25 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Nov/30/t12911263790iwwqa5ss1qm5nj.htm/, Retrieved Fri, 01 Nov 2024 01:04:06 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=103503, Retrieved Fri, 01 Nov 2024 01:04:06 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact204
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [WS8: model 3] [2010-11-26 13:04:18] [1fd136673b2a4fecb5c545b9b4a05d64]
-    D    [Multiple Regression] [] [2010-11-30 14:14:25] [912a7c71b856221ca57f8714938acfc7] [Current]
Feedback Forum

Post a new message
Dataseries X:
2	12
2	11
2	14
1	12
2	21
2	12
2	22
2	11
2	10
2	13
1	10
2	8
1	15
2	14
2	10
1	14
1	14
2	11
1	10
2	13
1	7
2	14
2	12
2	14
1	11
2	9
1	11
2	15
2	14
1	13
2	9
1	15
2	10
2	11
1	13
1	8
1	20
1	12
2	10
1	10
1	9
2	14
1	8
1	14
2	11
2	13
2	9
2	11
2	15
1	11
2	10
1	14
1	18
2	14
1	11
2	12
2	13
2	9
1	10
2	15
1	20
1	12
2	12
2	14
2	13
1	11
2	17
1	12
2	13
1	14
1	13
2	15
2	13
1	10
1	11
2	19
2	13
2	17
1	13
1	9
1	11
1	10
2	9
1	12
2	12
2	13
1	13
2	12
2	15
2	22
2	13
2	15
2	13
2	15
2	10
2	11
2	16
2	11
1	11
1	10
2	10
1	16
2	12
1	11
2	16
1	19
2	11
1	16
1	15
2	24
2	14
2	15
2	11
1	15
2	12
1	10
2	14
2	13
2	9
2	15
2	15
2	14
2	11
2	8
2	11
2	11
1	8
2	10
2	11
2	13
1	11
1	20
2	10
1	15
1	12
2	14
1	23
1	14
2	16
2	11
1	12
2	10
1	14
2	12
1	12
2	11
2	12
1	13
1	11
1	19
2	12
2	17
1	9
2	12
2	19
2	18
2	15
2	14
2	11
2	9
2	18
2	16




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 7 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ 193.190.124.24 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=103503&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]7 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ 193.190.124.24[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=103503&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=103503&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24







Multiple Linear Regression - Estimated Regression Equation
y[t] = + 12.2907451492279 + 0.276580143314847x[t] + 0.970866601147538M1[t] -0.485826440139703M2[t] -1.85133518547589M3[t] -0.625659634861006M4[t] + 0.917647323851751M5[t] + 1.2147514458952M6[t] -0.859972086470695M7[t] -1.07783180979365M8[t] -1.89797925849695M9[t] -0.696851311560647M10[t] -1.87216024360439M11[t] + 0.00836588819332487t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
y[t] =  +  12.2907451492279 +  0.276580143314847x[t] +  0.970866601147538M1[t] -0.485826440139703M2[t] -1.85133518547589M3[t] -0.625659634861006M4[t] +  0.917647323851751M5[t] +  1.2147514458952M6[t] -0.859972086470695M7[t] -1.07783180979365M8[t] -1.89797925849695M9[t] -0.696851311560647M10[t] -1.87216024360439M11[t] +  0.00836588819332487t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=103503&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]y[t] =  +  12.2907451492279 +  0.276580143314847x[t] +  0.970866601147538M1[t] -0.485826440139703M2[t] -1.85133518547589M3[t] -0.625659634861006M4[t] +  0.917647323851751M5[t] +  1.2147514458952M6[t] -0.859972086470695M7[t] -1.07783180979365M8[t] -1.89797925849695M9[t] -0.696851311560647M10[t] -1.87216024360439M11[t] +  0.00836588819332487t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=103503&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=103503&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
y[t] = + 12.2907451492279 + 0.276580143314847x[t] + 0.970866601147538M1[t] -0.485826440139703M2[t] -1.85133518547589M3[t] -0.625659634861006M4[t] + 0.917647323851751M5[t] + 1.2147514458952M6[t] -0.859972086470695M7[t] -1.07783180979365M8[t] -1.89797925849695M9[t] -0.696851311560647M10[t] -1.87216024360439M11[t] + 0.00836588819332487t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)12.29074514922791.2657899.709900
x0.2765801433148470.5043040.54840.5842170.292108
M10.9708666011475381.1862960.81840.4144440.207222
M2-0.4858264401397031.184941-0.410.6823980.341199
M3-1.851335185475891.184868-1.56250.120310.060155
M4-0.6256596348610061.186105-0.52750.5986430.299321
M50.9176473238517511.184790.77450.4398570.219929
M61.21475144589521.186091.02420.3074290.153714
M7-0.8599720864706951.207112-0.71240.4773260.238663
M8-1.077831809793651.208852-0.89160.3740460.187023
M9-1.897979258496951.206359-1.57330.1177820.058891
M10-0.6968513115606471.206946-0.57740.5645690.282284
M11-1.872160243604391.208743-1.54880.1235540.061777
t0.008365888193324870.0051791.61540.108360.05418

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 12.2907451492279 & 1.265789 & 9.7099 & 0 & 0 \tabularnewline
x & 0.276580143314847 & 0.504304 & 0.5484 & 0.584217 & 0.292108 \tabularnewline
M1 & 0.970866601147538 & 1.186296 & 0.8184 & 0.414444 & 0.207222 \tabularnewline
M2 & -0.485826440139703 & 1.184941 & -0.41 & 0.682398 & 0.341199 \tabularnewline
M3 & -1.85133518547589 & 1.184868 & -1.5625 & 0.12031 & 0.060155 \tabularnewline
M4 & -0.625659634861006 & 1.186105 & -0.5275 & 0.598643 & 0.299321 \tabularnewline
M5 & 0.917647323851751 & 1.18479 & 0.7745 & 0.439857 & 0.219929 \tabularnewline
M6 & 1.2147514458952 & 1.18609 & 1.0242 & 0.307429 & 0.153714 \tabularnewline
M7 & -0.859972086470695 & 1.207112 & -0.7124 & 0.477326 & 0.238663 \tabularnewline
M8 & -1.07783180979365 & 1.208852 & -0.8916 & 0.374046 & 0.187023 \tabularnewline
M9 & -1.89797925849695 & 1.206359 & -1.5733 & 0.117782 & 0.058891 \tabularnewline
M10 & -0.696851311560647 & 1.206946 & -0.5774 & 0.564569 & 0.282284 \tabularnewline
M11 & -1.87216024360439 & 1.208743 & -1.5488 & 0.123554 & 0.061777 \tabularnewline
t & 0.00836588819332487 & 0.005179 & 1.6154 & 0.10836 & 0.05418 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=103503&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]12.2907451492279[/C][C]1.265789[/C][C]9.7099[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]x[/C][C]0.276580143314847[/C][C]0.504304[/C][C]0.5484[/C][C]0.584217[/C][C]0.292108[/C][/ROW]
[ROW][C]M1[/C][C]0.970866601147538[/C][C]1.186296[/C][C]0.8184[/C][C]0.414444[/C][C]0.207222[/C][/ROW]
[ROW][C]M2[/C][C]-0.485826440139703[/C][C]1.184941[/C][C]-0.41[/C][C]0.682398[/C][C]0.341199[/C][/ROW]
[ROW][C]M3[/C][C]-1.85133518547589[/C][C]1.184868[/C][C]-1.5625[/C][C]0.12031[/C][C]0.060155[/C][/ROW]
[ROW][C]M4[/C][C]-0.625659634861006[/C][C]1.186105[/C][C]-0.5275[/C][C]0.598643[/C][C]0.299321[/C][/ROW]
[ROW][C]M5[/C][C]0.917647323851751[/C][C]1.18479[/C][C]0.7745[/C][C]0.439857[/C][C]0.219929[/C][/ROW]
[ROW][C]M6[/C][C]1.2147514458952[/C][C]1.18609[/C][C]1.0242[/C][C]0.307429[/C][C]0.153714[/C][/ROW]
[ROW][C]M7[/C][C]-0.859972086470695[/C][C]1.207112[/C][C]-0.7124[/C][C]0.477326[/C][C]0.238663[/C][/ROW]
[ROW][C]M8[/C][C]-1.07783180979365[/C][C]1.208852[/C][C]-0.8916[/C][C]0.374046[/C][C]0.187023[/C][/ROW]
[ROW][C]M9[/C][C]-1.89797925849695[/C][C]1.206359[/C][C]-1.5733[/C][C]0.117782[/C][C]0.058891[/C][/ROW]
[ROW][C]M10[/C][C]-0.696851311560647[/C][C]1.206946[/C][C]-0.5774[/C][C]0.564569[/C][C]0.282284[/C][/ROW]
[ROW][C]M11[/C][C]-1.87216024360439[/C][C]1.208743[/C][C]-1.5488[/C][C]0.123554[/C][C]0.061777[/C][/ROW]
[ROW][C]t[/C][C]0.00836588819332487[/C][C]0.005179[/C][C]1.6154[/C][C]0.10836[/C][C]0.05418[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=103503&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=103503&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)12.29074514922791.2657899.709900
x0.2765801433148470.5043040.54840.5842170.292108
M10.9708666011475381.1862960.81840.4144440.207222
M2-0.4858264401397031.184941-0.410.6823980.341199
M3-1.851335185475891.184868-1.56250.120310.060155
M4-0.6256596348610061.186105-0.52750.5986430.299321
M50.9176473238517511.184790.77450.4398570.219929
M61.21475144589521.186091.02420.3074290.153714
M7-0.8599720864706951.207112-0.71240.4773260.238663
M8-1.077831809793651.208852-0.89160.3740460.187023
M9-1.897979258496951.206359-1.57330.1177820.058891
M10-0.6968513115606471.206946-0.57740.5645690.282284
M11-1.872160243604391.208743-1.54880.1235540.061777
t0.008365888193324870.0051791.61540.108360.05418







Multiple Linear Regression - Regression Statistics
Multiple R0.364293777347871
R-squared0.132709956214381
Adjusted R-squared0.0565290739899679
F-TEST (value)1.74203753408165
F-TEST (DF numerator)13
F-TEST (DF denominator)148
p-value0.0578919379739506
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation3.07536929794538
Sum Squared Residuals1399.76865517427

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.364293777347871 \tabularnewline
R-squared & 0.132709956214381 \tabularnewline
Adjusted R-squared & 0.0565290739899679 \tabularnewline
F-TEST (value) & 1.74203753408165 \tabularnewline
F-TEST (DF numerator) & 13 \tabularnewline
F-TEST (DF denominator) & 148 \tabularnewline
p-value & 0.0578919379739506 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 3.07536929794538 \tabularnewline
Sum Squared Residuals & 1399.76865517427 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=103503&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.364293777347871[/C][/ROW]
[ROW][C]R-squared[/C][C]0.132709956214381[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.0565290739899679[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]1.74203753408165[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]13[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]148[/C][/ROW]
[ROW][C]p-value[/C][C]0.0578919379739506[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]3.07536929794538[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]1399.76865517427[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=103503&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=103503&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.364293777347871
R-squared0.132709956214381
Adjusted R-squared0.0565290739899679
F-TEST (value)1.74203753408165
F-TEST (DF numerator)13
F-TEST (DF denominator)148
p-value0.0578919379739506
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation3.07536929794538
Sum Squared Residuals1399.76865517427







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
11213.8231379251985-1.82313792519848
21112.3748107721045-1.37481077210453
31411.01766791496172.98233208503832
41211.97512921045500.0248707895449669
52113.80338220067607.19661779932404
61214.1088522109127-2.10885221091274
72212.04249456674029.95750543325984
81111.8330007316105-0.83300073161054
91011.0212191711006-1.02121917110056
101312.23071300623020.769286993769811
111010.7871898190649-0.787189819064924
12812.9442960941775-4.94429609417748
131513.64694844020351.35305155979650
141412.47520143042441.52479856957557
151011.1180585732816-1.11805857328157
161412.07551986877491.92448013122507
171413.62719271568100.372807284318985
181114.2092428692326-3.20924286923264
191011.8663050817452-1.86630508174522
201311.93339138993041.06660861006956
21710.8450296861056-3.84502968610561
221412.33110366455011.66889633544991
231211.16416062069970.835839379300332
241413.04468675249740.955313247502616
251113.7473390985234-2.7473390985234
26912.5755920887443-3.57559208874433
271110.94186908828660.0581309117133738
281512.45249067040972.54750932959032
291414.0041635173158-0.00416351731575923
301314.0330533842377-1.03305338423769
31912.2432758833800-3.24327588337996
321511.75720190493553.24279809506451
331011.2220004877404-1.22200048774036
341112.4314943228700-1.43149432286999
351310.98797113570472.01202886429528
36812.8684972675024-4.86849726750243
372013.84772975684336.1522702431567
381212.3994026037494-0.399402603749383
391011.3188398899214-1.31883988992137
401012.2763011854147-2.27630118541473
41913.8279740323208-4.82797403232081
421414.4100241858724-0.410024185872432
43812.0670863983850-4.06708639838501
441411.85759256325542.14240743674461
451111.3223911460603-0.322391146060258
461312.53188498118990.468115018810115
47911.3649419373395-2.36494193733946
481113.2454680691372-2.24546806913718
491514.22470055847800.775299441521956
501112.4997932620693-1.49979326206928
511011.4192305482413-1.41923054824127
521412.37669184373461.62330815626537
531813.92836469064074.07163530935929
541414.5104148441923-0.510414844192331
551112.1674770567049-1.16747705670491
561212.2345633648901-0.234563364890132
571311.42278180438021.57721819561984
58912.6322756395098-3.63227563950978
591011.1887524523445-1.18875245234452
601513.34585872745711.65414127254292
612014.04851107348315.9514889265169
621212.6001839203892-0.600183920389179
631211.51962120656120.48037879343883
641412.75366264536941.24633735463063
651314.3053354922755-1.30533549227546
661114.3342253591974-3.33422535919738
671712.54444785833974.45555214166034
681212.0583738798952-0.0583738798951842
691311.52317246270011.47682753729995
701412.45608615451481.54391384548516
711311.28914311066441.71085688933558
721513.44624938577701.55375061422302
731314.4254818751178-1.42548187511784
741012.7005745787091-2.70057457870908
751111.3434317215662-0.343431721566221
761912.85405330368936.14594669631073
771314.4057261505954-1.40572615059535
781714.71119616083212.28880383916787
791312.36825837334470.63174162665529
80912.1587645382151-3.15876453821508
811111.3469829777051-0.346982977705106
821012.5564768128347-2.55647681283473
83911.6661139122992-2.66611391229916
841213.2700599007820-1.27005990078203
851214.5258725334377-2.52587253343774
861313.0775453803438-0.077545380343823
871311.44382237988611.55617762011388
881212.9544439620092-0.95444396200917
891514.50611680891530.493883191084749
902214.81158681915207.18841318084797
911312.74522917497950.254770825020545
921512.53573533984982.46426466015017
931311.72395377933991.27604622066015
941512.93344761446952.06655238553052
951011.7665045706191-1.76650457061906
961113.6470307024168-2.64703070241677
971614.62626319175761.37373680824236
981113.1779360386637-2.17793603866372
991111.5442130382060-0.544213038206017
1001012.7782544770142-2.77825447701422
1011014.6065074672351-4.60650746723515
1021614.63539733415711.36460266584292
1031212.8456198332994-0.845619833299353
1041112.3595458548549-1.35954585485488
1051611.82434443765974.17565556234025
1061912.75725812947456.24274187052547
1071111.8668952289390-0.866895228938958
1081613.47084121742182.52915878257817
1091514.45007370676270.549926293237312
1102413.278326696983610.7216733030164
1111411.92118383984082.07881616015924
1121513.15522527864901.84477472135103
1131114.7068981255550-3.70689812555505
1141514.73578799247700.264212007523024
1151212.9460104916193-0.946010491619252
1161012.4599365131748-2.45993651317478
1171411.92473509597962.07526490402035
1181313.1342289311093-0.134228931109275
119911.9672858872589-2.96728588725886
1201513.84781201905661.15218798094343
1211514.82704450839740.172955491602566
1221413.37871735530350.621282644696481
1231112.0215744981607-1.02157449816066
124813.2556159369689-5.25561593696886
1251114.8072887838749-3.80728878387495
1261115.1127587941117-4.11275879411172
127812.7698210066243-4.7698210066243
1281012.8369073148095-2.83690731480952
1291112.0251257542995-1.02512575429955
1301313.2346195894292-0.234619589429174
1311111.7910964022639-0.791096402263907
1322013.67162253406166.32837746593838
1331014.9274351667173-4.92743516671733
1341513.20252787030861.79747212969143
1351211.84538501316570.154614986834288
1361413.35600659528880.643993404711236
1372314.631099298888.36890070112
1381414.9365693091168-0.936569309116773
1391613.14679180825902.85320819174095
1401112.9372979731294-1.93729797312942
1411211.84893626930460.151063730695401
1421013.3350102477491-3.33501024774907
1431411.89148706058382.10851293941619
1441214.0485933356964-2.04859333569637
1451214.7512456817224-2.75124568172238
1461113.5794986719433-2.57949867194332
1471212.2223558148005-0.222355814800459
1481313.1798171102938-0.179817110293815
1491114.7314899571999-3.7314899571999
1501915.03695996743673.96304003256333
1511213.2471824665789-1.24718246657895
1521713.03768863144933.96231136855068
153911.9493269276245-2.9493269276245
1541213.4354009060690-1.43540090606897
1551912.26845786221856.73154213778145
1561814.14898399401633.85101600598373
1571515.1282164833571-0.128216483357129
1581413.67988933026320.320110669736786
1591112.3227464731204-1.32274647312036
160913.5567879119286-4.55678791192856
1611815.10846075883462.89153924116536
1621615.41393076907140.586069230928583

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 12 & 13.8231379251985 & -1.82313792519848 \tabularnewline
2 & 11 & 12.3748107721045 & -1.37481077210453 \tabularnewline
3 & 14 & 11.0176679149617 & 2.98233208503832 \tabularnewline
4 & 12 & 11.9751292104550 & 0.0248707895449669 \tabularnewline
5 & 21 & 13.8033822006760 & 7.19661779932404 \tabularnewline
6 & 12 & 14.1088522109127 & -2.10885221091274 \tabularnewline
7 & 22 & 12.0424945667402 & 9.95750543325984 \tabularnewline
8 & 11 & 11.8330007316105 & -0.83300073161054 \tabularnewline
9 & 10 & 11.0212191711006 & -1.02121917110056 \tabularnewline
10 & 13 & 12.2307130062302 & 0.769286993769811 \tabularnewline
11 & 10 & 10.7871898190649 & -0.787189819064924 \tabularnewline
12 & 8 & 12.9442960941775 & -4.94429609417748 \tabularnewline
13 & 15 & 13.6469484402035 & 1.35305155979650 \tabularnewline
14 & 14 & 12.4752014304244 & 1.52479856957557 \tabularnewline
15 & 10 & 11.1180585732816 & -1.11805857328157 \tabularnewline
16 & 14 & 12.0755198687749 & 1.92448013122507 \tabularnewline
17 & 14 & 13.6271927156810 & 0.372807284318985 \tabularnewline
18 & 11 & 14.2092428692326 & -3.20924286923264 \tabularnewline
19 & 10 & 11.8663050817452 & -1.86630508174522 \tabularnewline
20 & 13 & 11.9333913899304 & 1.06660861006956 \tabularnewline
21 & 7 & 10.8450296861056 & -3.84502968610561 \tabularnewline
22 & 14 & 12.3311036645501 & 1.66889633544991 \tabularnewline
23 & 12 & 11.1641606206997 & 0.835839379300332 \tabularnewline
24 & 14 & 13.0446867524974 & 0.955313247502616 \tabularnewline
25 & 11 & 13.7473390985234 & -2.7473390985234 \tabularnewline
26 & 9 & 12.5755920887443 & -3.57559208874433 \tabularnewline
27 & 11 & 10.9418690882866 & 0.0581309117133738 \tabularnewline
28 & 15 & 12.4524906704097 & 2.54750932959032 \tabularnewline
29 & 14 & 14.0041635173158 & -0.00416351731575923 \tabularnewline
30 & 13 & 14.0330533842377 & -1.03305338423769 \tabularnewline
31 & 9 & 12.2432758833800 & -3.24327588337996 \tabularnewline
32 & 15 & 11.7572019049355 & 3.24279809506451 \tabularnewline
33 & 10 & 11.2220004877404 & -1.22200048774036 \tabularnewline
34 & 11 & 12.4314943228700 & -1.43149432286999 \tabularnewline
35 & 13 & 10.9879711357047 & 2.01202886429528 \tabularnewline
36 & 8 & 12.8684972675024 & -4.86849726750243 \tabularnewline
37 & 20 & 13.8477297568433 & 6.1522702431567 \tabularnewline
38 & 12 & 12.3994026037494 & -0.399402603749383 \tabularnewline
39 & 10 & 11.3188398899214 & -1.31883988992137 \tabularnewline
40 & 10 & 12.2763011854147 & -2.27630118541473 \tabularnewline
41 & 9 & 13.8279740323208 & -4.82797403232081 \tabularnewline
42 & 14 & 14.4100241858724 & -0.410024185872432 \tabularnewline
43 & 8 & 12.0670863983850 & -4.06708639838501 \tabularnewline
44 & 14 & 11.8575925632554 & 2.14240743674461 \tabularnewline
45 & 11 & 11.3223911460603 & -0.322391146060258 \tabularnewline
46 & 13 & 12.5318849811899 & 0.468115018810115 \tabularnewline
47 & 9 & 11.3649419373395 & -2.36494193733946 \tabularnewline
48 & 11 & 13.2454680691372 & -2.24546806913718 \tabularnewline
49 & 15 & 14.2247005584780 & 0.775299441521956 \tabularnewline
50 & 11 & 12.4997932620693 & -1.49979326206928 \tabularnewline
51 & 10 & 11.4192305482413 & -1.41923054824127 \tabularnewline
52 & 14 & 12.3766918437346 & 1.62330815626537 \tabularnewline
53 & 18 & 13.9283646906407 & 4.07163530935929 \tabularnewline
54 & 14 & 14.5104148441923 & -0.510414844192331 \tabularnewline
55 & 11 & 12.1674770567049 & -1.16747705670491 \tabularnewline
56 & 12 & 12.2345633648901 & -0.234563364890132 \tabularnewline
57 & 13 & 11.4227818043802 & 1.57721819561984 \tabularnewline
58 & 9 & 12.6322756395098 & -3.63227563950978 \tabularnewline
59 & 10 & 11.1887524523445 & -1.18875245234452 \tabularnewline
60 & 15 & 13.3458587274571 & 1.65414127254292 \tabularnewline
61 & 20 & 14.0485110734831 & 5.9514889265169 \tabularnewline
62 & 12 & 12.6001839203892 & -0.600183920389179 \tabularnewline
63 & 12 & 11.5196212065612 & 0.48037879343883 \tabularnewline
64 & 14 & 12.7536626453694 & 1.24633735463063 \tabularnewline
65 & 13 & 14.3053354922755 & -1.30533549227546 \tabularnewline
66 & 11 & 14.3342253591974 & -3.33422535919738 \tabularnewline
67 & 17 & 12.5444478583397 & 4.45555214166034 \tabularnewline
68 & 12 & 12.0583738798952 & -0.0583738798951842 \tabularnewline
69 & 13 & 11.5231724627001 & 1.47682753729995 \tabularnewline
70 & 14 & 12.4560861545148 & 1.54391384548516 \tabularnewline
71 & 13 & 11.2891431106644 & 1.71085688933558 \tabularnewline
72 & 15 & 13.4462493857770 & 1.55375061422302 \tabularnewline
73 & 13 & 14.4254818751178 & -1.42548187511784 \tabularnewline
74 & 10 & 12.7005745787091 & -2.70057457870908 \tabularnewline
75 & 11 & 11.3434317215662 & -0.343431721566221 \tabularnewline
76 & 19 & 12.8540533036893 & 6.14594669631073 \tabularnewline
77 & 13 & 14.4057261505954 & -1.40572615059535 \tabularnewline
78 & 17 & 14.7111961608321 & 2.28880383916787 \tabularnewline
79 & 13 & 12.3682583733447 & 0.63174162665529 \tabularnewline
80 & 9 & 12.1587645382151 & -3.15876453821508 \tabularnewline
81 & 11 & 11.3469829777051 & -0.346982977705106 \tabularnewline
82 & 10 & 12.5564768128347 & -2.55647681283473 \tabularnewline
83 & 9 & 11.6661139122992 & -2.66611391229916 \tabularnewline
84 & 12 & 13.2700599007820 & -1.27005990078203 \tabularnewline
85 & 12 & 14.5258725334377 & -2.52587253343774 \tabularnewline
86 & 13 & 13.0775453803438 & -0.077545380343823 \tabularnewline
87 & 13 & 11.4438223798861 & 1.55617762011388 \tabularnewline
88 & 12 & 12.9544439620092 & -0.95444396200917 \tabularnewline
89 & 15 & 14.5061168089153 & 0.493883191084749 \tabularnewline
90 & 22 & 14.8115868191520 & 7.18841318084797 \tabularnewline
91 & 13 & 12.7452291749795 & 0.254770825020545 \tabularnewline
92 & 15 & 12.5357353398498 & 2.46426466015017 \tabularnewline
93 & 13 & 11.7239537793399 & 1.27604622066015 \tabularnewline
94 & 15 & 12.9334476144695 & 2.06655238553052 \tabularnewline
95 & 10 & 11.7665045706191 & -1.76650457061906 \tabularnewline
96 & 11 & 13.6470307024168 & -2.64703070241677 \tabularnewline
97 & 16 & 14.6262631917576 & 1.37373680824236 \tabularnewline
98 & 11 & 13.1779360386637 & -2.17793603866372 \tabularnewline
99 & 11 & 11.5442130382060 & -0.544213038206017 \tabularnewline
100 & 10 & 12.7782544770142 & -2.77825447701422 \tabularnewline
101 & 10 & 14.6065074672351 & -4.60650746723515 \tabularnewline
102 & 16 & 14.6353973341571 & 1.36460266584292 \tabularnewline
103 & 12 & 12.8456198332994 & -0.845619833299353 \tabularnewline
104 & 11 & 12.3595458548549 & -1.35954585485488 \tabularnewline
105 & 16 & 11.8243444376597 & 4.17565556234025 \tabularnewline
106 & 19 & 12.7572581294745 & 6.24274187052547 \tabularnewline
107 & 11 & 11.8668952289390 & -0.866895228938958 \tabularnewline
108 & 16 & 13.4708412174218 & 2.52915878257817 \tabularnewline
109 & 15 & 14.4500737067627 & 0.549926293237312 \tabularnewline
110 & 24 & 13.2783266969836 & 10.7216733030164 \tabularnewline
111 & 14 & 11.9211838398408 & 2.07881616015924 \tabularnewline
112 & 15 & 13.1552252786490 & 1.84477472135103 \tabularnewline
113 & 11 & 14.7068981255550 & -3.70689812555505 \tabularnewline
114 & 15 & 14.7357879924770 & 0.264212007523024 \tabularnewline
115 & 12 & 12.9460104916193 & -0.946010491619252 \tabularnewline
116 & 10 & 12.4599365131748 & -2.45993651317478 \tabularnewline
117 & 14 & 11.9247350959796 & 2.07526490402035 \tabularnewline
118 & 13 & 13.1342289311093 & -0.134228931109275 \tabularnewline
119 & 9 & 11.9672858872589 & -2.96728588725886 \tabularnewline
120 & 15 & 13.8478120190566 & 1.15218798094343 \tabularnewline
121 & 15 & 14.8270445083974 & 0.172955491602566 \tabularnewline
122 & 14 & 13.3787173553035 & 0.621282644696481 \tabularnewline
123 & 11 & 12.0215744981607 & -1.02157449816066 \tabularnewline
124 & 8 & 13.2556159369689 & -5.25561593696886 \tabularnewline
125 & 11 & 14.8072887838749 & -3.80728878387495 \tabularnewline
126 & 11 & 15.1127587941117 & -4.11275879411172 \tabularnewline
127 & 8 & 12.7698210066243 & -4.7698210066243 \tabularnewline
128 & 10 & 12.8369073148095 & -2.83690731480952 \tabularnewline
129 & 11 & 12.0251257542995 & -1.02512575429955 \tabularnewline
130 & 13 & 13.2346195894292 & -0.234619589429174 \tabularnewline
131 & 11 & 11.7910964022639 & -0.791096402263907 \tabularnewline
132 & 20 & 13.6716225340616 & 6.32837746593838 \tabularnewline
133 & 10 & 14.9274351667173 & -4.92743516671733 \tabularnewline
134 & 15 & 13.2025278703086 & 1.79747212969143 \tabularnewline
135 & 12 & 11.8453850131657 & 0.154614986834288 \tabularnewline
136 & 14 & 13.3560065952888 & 0.643993404711236 \tabularnewline
137 & 23 & 14.63109929888 & 8.36890070112 \tabularnewline
138 & 14 & 14.9365693091168 & -0.936569309116773 \tabularnewline
139 & 16 & 13.1467918082590 & 2.85320819174095 \tabularnewline
140 & 11 & 12.9372979731294 & -1.93729797312942 \tabularnewline
141 & 12 & 11.8489362693046 & 0.151063730695401 \tabularnewline
142 & 10 & 13.3350102477491 & -3.33501024774907 \tabularnewline
143 & 14 & 11.8914870605838 & 2.10851293941619 \tabularnewline
144 & 12 & 14.0485933356964 & -2.04859333569637 \tabularnewline
145 & 12 & 14.7512456817224 & -2.75124568172238 \tabularnewline
146 & 11 & 13.5794986719433 & -2.57949867194332 \tabularnewline
147 & 12 & 12.2223558148005 & -0.222355814800459 \tabularnewline
148 & 13 & 13.1798171102938 & -0.179817110293815 \tabularnewline
149 & 11 & 14.7314899571999 & -3.7314899571999 \tabularnewline
150 & 19 & 15.0369599674367 & 3.96304003256333 \tabularnewline
151 & 12 & 13.2471824665789 & -1.24718246657895 \tabularnewline
152 & 17 & 13.0376886314493 & 3.96231136855068 \tabularnewline
153 & 9 & 11.9493269276245 & -2.9493269276245 \tabularnewline
154 & 12 & 13.4354009060690 & -1.43540090606897 \tabularnewline
155 & 19 & 12.2684578622185 & 6.73154213778145 \tabularnewline
156 & 18 & 14.1489839940163 & 3.85101600598373 \tabularnewline
157 & 15 & 15.1282164833571 & -0.128216483357129 \tabularnewline
158 & 14 & 13.6798893302632 & 0.320110669736786 \tabularnewline
159 & 11 & 12.3227464731204 & -1.32274647312036 \tabularnewline
160 & 9 & 13.5567879119286 & -4.55678791192856 \tabularnewline
161 & 18 & 15.1084607588346 & 2.89153924116536 \tabularnewline
162 & 16 & 15.4139307690714 & 0.586069230928583 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=103503&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]12[/C][C]13.8231379251985[/C][C]-1.82313792519848[/C][/ROW]
[ROW][C]2[/C][C]11[/C][C]12.3748107721045[/C][C]-1.37481077210453[/C][/ROW]
[ROW][C]3[/C][C]14[/C][C]11.0176679149617[/C][C]2.98233208503832[/C][/ROW]
[ROW][C]4[/C][C]12[/C][C]11.9751292104550[/C][C]0.0248707895449669[/C][/ROW]
[ROW][C]5[/C][C]21[/C][C]13.8033822006760[/C][C]7.19661779932404[/C][/ROW]
[ROW][C]6[/C][C]12[/C][C]14.1088522109127[/C][C]-2.10885221091274[/C][/ROW]
[ROW][C]7[/C][C]22[/C][C]12.0424945667402[/C][C]9.95750543325984[/C][/ROW]
[ROW][C]8[/C][C]11[/C][C]11.8330007316105[/C][C]-0.83300073161054[/C][/ROW]
[ROW][C]9[/C][C]10[/C][C]11.0212191711006[/C][C]-1.02121917110056[/C][/ROW]
[ROW][C]10[/C][C]13[/C][C]12.2307130062302[/C][C]0.769286993769811[/C][/ROW]
[ROW][C]11[/C][C]10[/C][C]10.7871898190649[/C][C]-0.787189819064924[/C][/ROW]
[ROW][C]12[/C][C]8[/C][C]12.9442960941775[/C][C]-4.94429609417748[/C][/ROW]
[ROW][C]13[/C][C]15[/C][C]13.6469484402035[/C][C]1.35305155979650[/C][/ROW]
[ROW][C]14[/C][C]14[/C][C]12.4752014304244[/C][C]1.52479856957557[/C][/ROW]
[ROW][C]15[/C][C]10[/C][C]11.1180585732816[/C][C]-1.11805857328157[/C][/ROW]
[ROW][C]16[/C][C]14[/C][C]12.0755198687749[/C][C]1.92448013122507[/C][/ROW]
[ROW][C]17[/C][C]14[/C][C]13.6271927156810[/C][C]0.372807284318985[/C][/ROW]
[ROW][C]18[/C][C]11[/C][C]14.2092428692326[/C][C]-3.20924286923264[/C][/ROW]
[ROW][C]19[/C][C]10[/C][C]11.8663050817452[/C][C]-1.86630508174522[/C][/ROW]
[ROW][C]20[/C][C]13[/C][C]11.9333913899304[/C][C]1.06660861006956[/C][/ROW]
[ROW][C]21[/C][C]7[/C][C]10.8450296861056[/C][C]-3.84502968610561[/C][/ROW]
[ROW][C]22[/C][C]14[/C][C]12.3311036645501[/C][C]1.66889633544991[/C][/ROW]
[ROW][C]23[/C][C]12[/C][C]11.1641606206997[/C][C]0.835839379300332[/C][/ROW]
[ROW][C]24[/C][C]14[/C][C]13.0446867524974[/C][C]0.955313247502616[/C][/ROW]
[ROW][C]25[/C][C]11[/C][C]13.7473390985234[/C][C]-2.7473390985234[/C][/ROW]
[ROW][C]26[/C][C]9[/C][C]12.5755920887443[/C][C]-3.57559208874433[/C][/ROW]
[ROW][C]27[/C][C]11[/C][C]10.9418690882866[/C][C]0.0581309117133738[/C][/ROW]
[ROW][C]28[/C][C]15[/C][C]12.4524906704097[/C][C]2.54750932959032[/C][/ROW]
[ROW][C]29[/C][C]14[/C][C]14.0041635173158[/C][C]-0.00416351731575923[/C][/ROW]
[ROW][C]30[/C][C]13[/C][C]14.0330533842377[/C][C]-1.03305338423769[/C][/ROW]
[ROW][C]31[/C][C]9[/C][C]12.2432758833800[/C][C]-3.24327588337996[/C][/ROW]
[ROW][C]32[/C][C]15[/C][C]11.7572019049355[/C][C]3.24279809506451[/C][/ROW]
[ROW][C]33[/C][C]10[/C][C]11.2220004877404[/C][C]-1.22200048774036[/C][/ROW]
[ROW][C]34[/C][C]11[/C][C]12.4314943228700[/C][C]-1.43149432286999[/C][/ROW]
[ROW][C]35[/C][C]13[/C][C]10.9879711357047[/C][C]2.01202886429528[/C][/ROW]
[ROW][C]36[/C][C]8[/C][C]12.8684972675024[/C][C]-4.86849726750243[/C][/ROW]
[ROW][C]37[/C][C]20[/C][C]13.8477297568433[/C][C]6.1522702431567[/C][/ROW]
[ROW][C]38[/C][C]12[/C][C]12.3994026037494[/C][C]-0.399402603749383[/C][/ROW]
[ROW][C]39[/C][C]10[/C][C]11.3188398899214[/C][C]-1.31883988992137[/C][/ROW]
[ROW][C]40[/C][C]10[/C][C]12.2763011854147[/C][C]-2.27630118541473[/C][/ROW]
[ROW][C]41[/C][C]9[/C][C]13.8279740323208[/C][C]-4.82797403232081[/C][/ROW]
[ROW][C]42[/C][C]14[/C][C]14.4100241858724[/C][C]-0.410024185872432[/C][/ROW]
[ROW][C]43[/C][C]8[/C][C]12.0670863983850[/C][C]-4.06708639838501[/C][/ROW]
[ROW][C]44[/C][C]14[/C][C]11.8575925632554[/C][C]2.14240743674461[/C][/ROW]
[ROW][C]45[/C][C]11[/C][C]11.3223911460603[/C][C]-0.322391146060258[/C][/ROW]
[ROW][C]46[/C][C]13[/C][C]12.5318849811899[/C][C]0.468115018810115[/C][/ROW]
[ROW][C]47[/C][C]9[/C][C]11.3649419373395[/C][C]-2.36494193733946[/C][/ROW]
[ROW][C]48[/C][C]11[/C][C]13.2454680691372[/C][C]-2.24546806913718[/C][/ROW]
[ROW][C]49[/C][C]15[/C][C]14.2247005584780[/C][C]0.775299441521956[/C][/ROW]
[ROW][C]50[/C][C]11[/C][C]12.4997932620693[/C][C]-1.49979326206928[/C][/ROW]
[ROW][C]51[/C][C]10[/C][C]11.4192305482413[/C][C]-1.41923054824127[/C][/ROW]
[ROW][C]52[/C][C]14[/C][C]12.3766918437346[/C][C]1.62330815626537[/C][/ROW]
[ROW][C]53[/C][C]18[/C][C]13.9283646906407[/C][C]4.07163530935929[/C][/ROW]
[ROW][C]54[/C][C]14[/C][C]14.5104148441923[/C][C]-0.510414844192331[/C][/ROW]
[ROW][C]55[/C][C]11[/C][C]12.1674770567049[/C][C]-1.16747705670491[/C][/ROW]
[ROW][C]56[/C][C]12[/C][C]12.2345633648901[/C][C]-0.234563364890132[/C][/ROW]
[ROW][C]57[/C][C]13[/C][C]11.4227818043802[/C][C]1.57721819561984[/C][/ROW]
[ROW][C]58[/C][C]9[/C][C]12.6322756395098[/C][C]-3.63227563950978[/C][/ROW]
[ROW][C]59[/C][C]10[/C][C]11.1887524523445[/C][C]-1.18875245234452[/C][/ROW]
[ROW][C]60[/C][C]15[/C][C]13.3458587274571[/C][C]1.65414127254292[/C][/ROW]
[ROW][C]61[/C][C]20[/C][C]14.0485110734831[/C][C]5.9514889265169[/C][/ROW]
[ROW][C]62[/C][C]12[/C][C]12.6001839203892[/C][C]-0.600183920389179[/C][/ROW]
[ROW][C]63[/C][C]12[/C][C]11.5196212065612[/C][C]0.48037879343883[/C][/ROW]
[ROW][C]64[/C][C]14[/C][C]12.7536626453694[/C][C]1.24633735463063[/C][/ROW]
[ROW][C]65[/C][C]13[/C][C]14.3053354922755[/C][C]-1.30533549227546[/C][/ROW]
[ROW][C]66[/C][C]11[/C][C]14.3342253591974[/C][C]-3.33422535919738[/C][/ROW]
[ROW][C]67[/C][C]17[/C][C]12.5444478583397[/C][C]4.45555214166034[/C][/ROW]
[ROW][C]68[/C][C]12[/C][C]12.0583738798952[/C][C]-0.0583738798951842[/C][/ROW]
[ROW][C]69[/C][C]13[/C][C]11.5231724627001[/C][C]1.47682753729995[/C][/ROW]
[ROW][C]70[/C][C]14[/C][C]12.4560861545148[/C][C]1.54391384548516[/C][/ROW]
[ROW][C]71[/C][C]13[/C][C]11.2891431106644[/C][C]1.71085688933558[/C][/ROW]
[ROW][C]72[/C][C]15[/C][C]13.4462493857770[/C][C]1.55375061422302[/C][/ROW]
[ROW][C]73[/C][C]13[/C][C]14.4254818751178[/C][C]-1.42548187511784[/C][/ROW]
[ROW][C]74[/C][C]10[/C][C]12.7005745787091[/C][C]-2.70057457870908[/C][/ROW]
[ROW][C]75[/C][C]11[/C][C]11.3434317215662[/C][C]-0.343431721566221[/C][/ROW]
[ROW][C]76[/C][C]19[/C][C]12.8540533036893[/C][C]6.14594669631073[/C][/ROW]
[ROW][C]77[/C][C]13[/C][C]14.4057261505954[/C][C]-1.40572615059535[/C][/ROW]
[ROW][C]78[/C][C]17[/C][C]14.7111961608321[/C][C]2.28880383916787[/C][/ROW]
[ROW][C]79[/C][C]13[/C][C]12.3682583733447[/C][C]0.63174162665529[/C][/ROW]
[ROW][C]80[/C][C]9[/C][C]12.1587645382151[/C][C]-3.15876453821508[/C][/ROW]
[ROW][C]81[/C][C]11[/C][C]11.3469829777051[/C][C]-0.346982977705106[/C][/ROW]
[ROW][C]82[/C][C]10[/C][C]12.5564768128347[/C][C]-2.55647681283473[/C][/ROW]
[ROW][C]83[/C][C]9[/C][C]11.6661139122992[/C][C]-2.66611391229916[/C][/ROW]
[ROW][C]84[/C][C]12[/C][C]13.2700599007820[/C][C]-1.27005990078203[/C][/ROW]
[ROW][C]85[/C][C]12[/C][C]14.5258725334377[/C][C]-2.52587253343774[/C][/ROW]
[ROW][C]86[/C][C]13[/C][C]13.0775453803438[/C][C]-0.077545380343823[/C][/ROW]
[ROW][C]87[/C][C]13[/C][C]11.4438223798861[/C][C]1.55617762011388[/C][/ROW]
[ROW][C]88[/C][C]12[/C][C]12.9544439620092[/C][C]-0.95444396200917[/C][/ROW]
[ROW][C]89[/C][C]15[/C][C]14.5061168089153[/C][C]0.493883191084749[/C][/ROW]
[ROW][C]90[/C][C]22[/C][C]14.8115868191520[/C][C]7.18841318084797[/C][/ROW]
[ROW][C]91[/C][C]13[/C][C]12.7452291749795[/C][C]0.254770825020545[/C][/ROW]
[ROW][C]92[/C][C]15[/C][C]12.5357353398498[/C][C]2.46426466015017[/C][/ROW]
[ROW][C]93[/C][C]13[/C][C]11.7239537793399[/C][C]1.27604622066015[/C][/ROW]
[ROW][C]94[/C][C]15[/C][C]12.9334476144695[/C][C]2.06655238553052[/C][/ROW]
[ROW][C]95[/C][C]10[/C][C]11.7665045706191[/C][C]-1.76650457061906[/C][/ROW]
[ROW][C]96[/C][C]11[/C][C]13.6470307024168[/C][C]-2.64703070241677[/C][/ROW]
[ROW][C]97[/C][C]16[/C][C]14.6262631917576[/C][C]1.37373680824236[/C][/ROW]
[ROW][C]98[/C][C]11[/C][C]13.1779360386637[/C][C]-2.17793603866372[/C][/ROW]
[ROW][C]99[/C][C]11[/C][C]11.5442130382060[/C][C]-0.544213038206017[/C][/ROW]
[ROW][C]100[/C][C]10[/C][C]12.7782544770142[/C][C]-2.77825447701422[/C][/ROW]
[ROW][C]101[/C][C]10[/C][C]14.6065074672351[/C][C]-4.60650746723515[/C][/ROW]
[ROW][C]102[/C][C]16[/C][C]14.6353973341571[/C][C]1.36460266584292[/C][/ROW]
[ROW][C]103[/C][C]12[/C][C]12.8456198332994[/C][C]-0.845619833299353[/C][/ROW]
[ROW][C]104[/C][C]11[/C][C]12.3595458548549[/C][C]-1.35954585485488[/C][/ROW]
[ROW][C]105[/C][C]16[/C][C]11.8243444376597[/C][C]4.17565556234025[/C][/ROW]
[ROW][C]106[/C][C]19[/C][C]12.7572581294745[/C][C]6.24274187052547[/C][/ROW]
[ROW][C]107[/C][C]11[/C][C]11.8668952289390[/C][C]-0.866895228938958[/C][/ROW]
[ROW][C]108[/C][C]16[/C][C]13.4708412174218[/C][C]2.52915878257817[/C][/ROW]
[ROW][C]109[/C][C]15[/C][C]14.4500737067627[/C][C]0.549926293237312[/C][/ROW]
[ROW][C]110[/C][C]24[/C][C]13.2783266969836[/C][C]10.7216733030164[/C][/ROW]
[ROW][C]111[/C][C]14[/C][C]11.9211838398408[/C][C]2.07881616015924[/C][/ROW]
[ROW][C]112[/C][C]15[/C][C]13.1552252786490[/C][C]1.84477472135103[/C][/ROW]
[ROW][C]113[/C][C]11[/C][C]14.7068981255550[/C][C]-3.70689812555505[/C][/ROW]
[ROW][C]114[/C][C]15[/C][C]14.7357879924770[/C][C]0.264212007523024[/C][/ROW]
[ROW][C]115[/C][C]12[/C][C]12.9460104916193[/C][C]-0.946010491619252[/C][/ROW]
[ROW][C]116[/C][C]10[/C][C]12.4599365131748[/C][C]-2.45993651317478[/C][/ROW]
[ROW][C]117[/C][C]14[/C][C]11.9247350959796[/C][C]2.07526490402035[/C][/ROW]
[ROW][C]118[/C][C]13[/C][C]13.1342289311093[/C][C]-0.134228931109275[/C][/ROW]
[ROW][C]119[/C][C]9[/C][C]11.9672858872589[/C][C]-2.96728588725886[/C][/ROW]
[ROW][C]120[/C][C]15[/C][C]13.8478120190566[/C][C]1.15218798094343[/C][/ROW]
[ROW][C]121[/C][C]15[/C][C]14.8270445083974[/C][C]0.172955491602566[/C][/ROW]
[ROW][C]122[/C][C]14[/C][C]13.3787173553035[/C][C]0.621282644696481[/C][/ROW]
[ROW][C]123[/C][C]11[/C][C]12.0215744981607[/C][C]-1.02157449816066[/C][/ROW]
[ROW][C]124[/C][C]8[/C][C]13.2556159369689[/C][C]-5.25561593696886[/C][/ROW]
[ROW][C]125[/C][C]11[/C][C]14.8072887838749[/C][C]-3.80728878387495[/C][/ROW]
[ROW][C]126[/C][C]11[/C][C]15.1127587941117[/C][C]-4.11275879411172[/C][/ROW]
[ROW][C]127[/C][C]8[/C][C]12.7698210066243[/C][C]-4.7698210066243[/C][/ROW]
[ROW][C]128[/C][C]10[/C][C]12.8369073148095[/C][C]-2.83690731480952[/C][/ROW]
[ROW][C]129[/C][C]11[/C][C]12.0251257542995[/C][C]-1.02512575429955[/C][/ROW]
[ROW][C]130[/C][C]13[/C][C]13.2346195894292[/C][C]-0.234619589429174[/C][/ROW]
[ROW][C]131[/C][C]11[/C][C]11.7910964022639[/C][C]-0.791096402263907[/C][/ROW]
[ROW][C]132[/C][C]20[/C][C]13.6716225340616[/C][C]6.32837746593838[/C][/ROW]
[ROW][C]133[/C][C]10[/C][C]14.9274351667173[/C][C]-4.92743516671733[/C][/ROW]
[ROW][C]134[/C][C]15[/C][C]13.2025278703086[/C][C]1.79747212969143[/C][/ROW]
[ROW][C]135[/C][C]12[/C][C]11.8453850131657[/C][C]0.154614986834288[/C][/ROW]
[ROW][C]136[/C][C]14[/C][C]13.3560065952888[/C][C]0.643993404711236[/C][/ROW]
[ROW][C]137[/C][C]23[/C][C]14.63109929888[/C][C]8.36890070112[/C][/ROW]
[ROW][C]138[/C][C]14[/C][C]14.9365693091168[/C][C]-0.936569309116773[/C][/ROW]
[ROW][C]139[/C][C]16[/C][C]13.1467918082590[/C][C]2.85320819174095[/C][/ROW]
[ROW][C]140[/C][C]11[/C][C]12.9372979731294[/C][C]-1.93729797312942[/C][/ROW]
[ROW][C]141[/C][C]12[/C][C]11.8489362693046[/C][C]0.151063730695401[/C][/ROW]
[ROW][C]142[/C][C]10[/C][C]13.3350102477491[/C][C]-3.33501024774907[/C][/ROW]
[ROW][C]143[/C][C]14[/C][C]11.8914870605838[/C][C]2.10851293941619[/C][/ROW]
[ROW][C]144[/C][C]12[/C][C]14.0485933356964[/C][C]-2.04859333569637[/C][/ROW]
[ROW][C]145[/C][C]12[/C][C]14.7512456817224[/C][C]-2.75124568172238[/C][/ROW]
[ROW][C]146[/C][C]11[/C][C]13.5794986719433[/C][C]-2.57949867194332[/C][/ROW]
[ROW][C]147[/C][C]12[/C][C]12.2223558148005[/C][C]-0.222355814800459[/C][/ROW]
[ROW][C]148[/C][C]13[/C][C]13.1798171102938[/C][C]-0.179817110293815[/C][/ROW]
[ROW][C]149[/C][C]11[/C][C]14.7314899571999[/C][C]-3.7314899571999[/C][/ROW]
[ROW][C]150[/C][C]19[/C][C]15.0369599674367[/C][C]3.96304003256333[/C][/ROW]
[ROW][C]151[/C][C]12[/C][C]13.2471824665789[/C][C]-1.24718246657895[/C][/ROW]
[ROW][C]152[/C][C]17[/C][C]13.0376886314493[/C][C]3.96231136855068[/C][/ROW]
[ROW][C]153[/C][C]9[/C][C]11.9493269276245[/C][C]-2.9493269276245[/C][/ROW]
[ROW][C]154[/C][C]12[/C][C]13.4354009060690[/C][C]-1.43540090606897[/C][/ROW]
[ROW][C]155[/C][C]19[/C][C]12.2684578622185[/C][C]6.73154213778145[/C][/ROW]
[ROW][C]156[/C][C]18[/C][C]14.1489839940163[/C][C]3.85101600598373[/C][/ROW]
[ROW][C]157[/C][C]15[/C][C]15.1282164833571[/C][C]-0.128216483357129[/C][/ROW]
[ROW][C]158[/C][C]14[/C][C]13.6798893302632[/C][C]0.320110669736786[/C][/ROW]
[ROW][C]159[/C][C]11[/C][C]12.3227464731204[/C][C]-1.32274647312036[/C][/ROW]
[ROW][C]160[/C][C]9[/C][C]13.5567879119286[/C][C]-4.55678791192856[/C][/ROW]
[ROW][C]161[/C][C]18[/C][C]15.1084607588346[/C][C]2.89153924116536[/C][/ROW]
[ROW][C]162[/C][C]16[/C][C]15.4139307690714[/C][C]0.586069230928583[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=103503&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=103503&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
11213.8231379251985-1.82313792519848
21112.3748107721045-1.37481077210453
31411.01766791496172.98233208503832
41211.97512921045500.0248707895449669
52113.80338220067607.19661779932404
61214.1088522109127-2.10885221091274
72212.04249456674029.95750543325984
81111.8330007316105-0.83300073161054
91011.0212191711006-1.02121917110056
101312.23071300623020.769286993769811
111010.7871898190649-0.787189819064924
12812.9442960941775-4.94429609417748
131513.64694844020351.35305155979650
141412.47520143042441.52479856957557
151011.1180585732816-1.11805857328157
161412.07551986877491.92448013122507
171413.62719271568100.372807284318985
181114.2092428692326-3.20924286923264
191011.8663050817452-1.86630508174522
201311.93339138993041.06660861006956
21710.8450296861056-3.84502968610561
221412.33110366455011.66889633544991
231211.16416062069970.835839379300332
241413.04468675249740.955313247502616
251113.7473390985234-2.7473390985234
26912.5755920887443-3.57559208874433
271110.94186908828660.0581309117133738
281512.45249067040972.54750932959032
291414.0041635173158-0.00416351731575923
301314.0330533842377-1.03305338423769
31912.2432758833800-3.24327588337996
321511.75720190493553.24279809506451
331011.2220004877404-1.22200048774036
341112.4314943228700-1.43149432286999
351310.98797113570472.01202886429528
36812.8684972675024-4.86849726750243
372013.84772975684336.1522702431567
381212.3994026037494-0.399402603749383
391011.3188398899214-1.31883988992137
401012.2763011854147-2.27630118541473
41913.8279740323208-4.82797403232081
421414.4100241858724-0.410024185872432
43812.0670863983850-4.06708639838501
441411.85759256325542.14240743674461
451111.3223911460603-0.322391146060258
461312.53188498118990.468115018810115
47911.3649419373395-2.36494193733946
481113.2454680691372-2.24546806913718
491514.22470055847800.775299441521956
501112.4997932620693-1.49979326206928
511011.4192305482413-1.41923054824127
521412.37669184373461.62330815626537
531813.92836469064074.07163530935929
541414.5104148441923-0.510414844192331
551112.1674770567049-1.16747705670491
561212.2345633648901-0.234563364890132
571311.42278180438021.57721819561984
58912.6322756395098-3.63227563950978
591011.1887524523445-1.18875245234452
601513.34585872745711.65414127254292
612014.04851107348315.9514889265169
621212.6001839203892-0.600183920389179
631211.51962120656120.48037879343883
641412.75366264536941.24633735463063
651314.3053354922755-1.30533549227546
661114.3342253591974-3.33422535919738
671712.54444785833974.45555214166034
681212.0583738798952-0.0583738798951842
691311.52317246270011.47682753729995
701412.45608615451481.54391384548516
711311.28914311066441.71085688933558
721513.44624938577701.55375061422302
731314.4254818751178-1.42548187511784
741012.7005745787091-2.70057457870908
751111.3434317215662-0.343431721566221
761912.85405330368936.14594669631073
771314.4057261505954-1.40572615059535
781714.71119616083212.28880383916787
791312.36825837334470.63174162665529
80912.1587645382151-3.15876453821508
811111.3469829777051-0.346982977705106
821012.5564768128347-2.55647681283473
83911.6661139122992-2.66611391229916
841213.2700599007820-1.27005990078203
851214.5258725334377-2.52587253343774
861313.0775453803438-0.077545380343823
871311.44382237988611.55617762011388
881212.9544439620092-0.95444396200917
891514.50611680891530.493883191084749
902214.81158681915207.18841318084797
911312.74522917497950.254770825020545
921512.53573533984982.46426466015017
931311.72395377933991.27604622066015
941512.93344761446952.06655238553052
951011.7665045706191-1.76650457061906
961113.6470307024168-2.64703070241677
971614.62626319175761.37373680824236
981113.1779360386637-2.17793603866372
991111.5442130382060-0.544213038206017
1001012.7782544770142-2.77825447701422
1011014.6065074672351-4.60650746723515
1021614.63539733415711.36460266584292
1031212.8456198332994-0.845619833299353
1041112.3595458548549-1.35954585485488
1051611.82434443765974.17565556234025
1061912.75725812947456.24274187052547
1071111.8668952289390-0.866895228938958
1081613.47084121742182.52915878257817
1091514.45007370676270.549926293237312
1102413.278326696983610.7216733030164
1111411.92118383984082.07881616015924
1121513.15522527864901.84477472135103
1131114.7068981255550-3.70689812555505
1141514.73578799247700.264212007523024
1151212.9460104916193-0.946010491619252
1161012.4599365131748-2.45993651317478
1171411.92473509597962.07526490402035
1181313.1342289311093-0.134228931109275
119911.9672858872589-2.96728588725886
1201513.84781201905661.15218798094343
1211514.82704450839740.172955491602566
1221413.37871735530350.621282644696481
1231112.0215744981607-1.02157449816066
124813.2556159369689-5.25561593696886
1251114.8072887838749-3.80728878387495
1261115.1127587941117-4.11275879411172
127812.7698210066243-4.7698210066243
1281012.8369073148095-2.83690731480952
1291112.0251257542995-1.02512575429955
1301313.2346195894292-0.234619589429174
1311111.7910964022639-0.791096402263907
1322013.67162253406166.32837746593838
1331014.9274351667173-4.92743516671733
1341513.20252787030861.79747212969143
1351211.84538501316570.154614986834288
1361413.35600659528880.643993404711236
1372314.631099298888.36890070112
1381414.9365693091168-0.936569309116773
1391613.14679180825902.85320819174095
1401112.9372979731294-1.93729797312942
1411211.84893626930460.151063730695401
1421013.3350102477491-3.33501024774907
1431411.89148706058382.10851293941619
1441214.0485933356964-2.04859333569637
1451214.7512456817224-2.75124568172238
1461113.5794986719433-2.57949867194332
1471212.2223558148005-0.222355814800459
1481313.1798171102938-0.179817110293815
1491114.7314899571999-3.7314899571999
1501915.03695996743673.96304003256333
1511213.2471824665789-1.24718246657895
1521713.03768863144933.96231136855068
153911.9493269276245-2.9493269276245
1541213.4354009060690-1.43540090606897
1551912.26845786221856.73154213778145
1561814.14898399401633.85101600598373
1571515.1282164833571-0.128216483357129
1581413.67988933026320.320110669736786
1591112.3227464731204-1.32274647312036
160913.5567879119286-4.55678791192856
1611815.10846075883462.89153924116536
1621615.41393076907140.586069230928583







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.7727060737022150.4545878525955710.227293926297785
180.6491583974359390.7016832051281220.350841602564061
190.8430016690428470.3139966619143060.156998330957153
200.7715933914107030.4568132171785940.228406608589297
210.7036892967511790.5926214064976420.296310703248821
220.6083585738312270.7832828523375460.391641426168773
230.5443249585001970.9113500829996060.455675041499803
240.6065389555542210.7869220888915580.393461044445779
250.525269612846870.949460774306260.47473038715313
260.5204564065705250.959087186858950.479543593429475
270.4845281819235870.9690563638471740.515471818076413
280.41711098766930.83422197533860.5828890123307
290.4382149308519760.8764298617039530.561785069148024
300.4707967029737170.9415934059474350.529203297026283
310.6154103345898670.7691793308202660.384589665410133
320.6676636396375750.664672720724850.332336360362425
330.6182680359127470.7634639281745060.381731964087253
340.5615045389131590.8769909221736820.438495461086841
350.5417112982971060.9165774034057880.458288701702894
360.5148609846287640.9702780307424730.485139015371236
370.7523277095647410.4953445808705170.247672290435259
380.7083244191158860.5833511617682270.291675580884114
390.6645840641654320.6708318716691350.335415935834568
400.6440917449645740.7118165100708510.355908255035426
410.7300739111596920.5398521776806160.269926088840308
420.697348828873940.6053023422521210.302651171126060
430.714529044184320.570941911631360.28547095581568
440.6903620916593110.6192758166813770.309637908340689
450.654142456949130.691715086101740.34585754305087
460.6023941537949030.7952116924101940.397605846205097
470.5800394420673560.8399211158652880.419960557932644
480.5472434754729120.9055130490541760.452756524527088
490.493035554184540.986071108369080.50696444581546
500.4499548775939470.8999097551878940.550045122406053
510.4018319268794220.8036638537588450.598168073120578
520.3687852122742180.7375704245484360.631214787725782
530.4107336814963240.8214673629926490.589266318503676
540.3697524518490310.7395049036980620.630247548150969
550.3232828459984950.646565691996990.676717154001505
560.2823642690783990.5647285381567980.717635730921601
570.2726983756365230.5453967512730450.727301624363477
580.2827576178738790.5655152357477580.717242382126121
590.2433697833610290.4867395667220590.75663021663897
600.2575965367045830.5151930734091670.742403463295417
610.3733038875019090.7466077750038180.626696112498091
620.3315087265828450.6630174531656890.668491273417155
630.2869699599977190.5739399199954370.713030040002281
640.2483770893324140.4967541786648280.751622910667586
650.2304028968148930.4608057936297870.769597103185107
660.2247667213029930.4495334426059870.775233278697007
670.25629745197740.51259490395480.7437025480226
680.2182914177361060.4365828354722120.781708582263894
690.1941000424295070.3882000848590130.805899957570493
700.1775877020117990.3551754040235980.822412297988201
710.1577511120610170.3155022241220330.842248887938983
720.1439100763043540.2878201526087090.856089923695646
730.1393222438561580.2786444877123160.860677756143842
740.1315984621921430.2631969243842870.868401537807857
750.1073474947127630.2146949894255260.892652505287237
760.1731975558443390.3463951116886780.826802444155661
770.1583743295632430.3167486591264860.841625670436757
780.1508796998015390.3017593996030780.849120300198461
790.1255772760471440.2511545520942890.874422723952856
800.1287579640365920.2575159280731840.871242035963408
810.1065241984882040.2130483969764080.893475801511796
820.09910172437515910.1982034487503180.900898275624841
830.09905599197006480.1981119839401300.900944008029935
840.088784503879950.17756900775990.91121549612005
850.08908127476989550.1781625495397910.910918725230104
860.07406107829287780.1481221565857560.925938921707122
870.06238675542485790.1247735108497160.937613244575142
880.05407952384120110.1081590476824020.945920476158799
890.04231830814119220.08463661628238440.957681691858808
900.1198544437892680.2397088875785350.880145556210732
910.09956038882744960.1991207776548990.90043961117255
920.09418146155661460.1883629231132290.905818538443385
930.07798936729506440.1559787345901290.922010632704936
940.0680059789818240.1360119579636480.931994021018176
950.0582735745386880.1165471490773760.941726425461312
960.05922727502688740.1184545500537750.940772724973113
970.05173256250410540.1034651250082110.948267437495895
980.05047329703833550.1009465940766710.949526702961665
990.03951188903678960.07902377807357920.96048811096321
1000.03784631763047780.07569263526095560.962153682369522
1010.05242743238778370.1048548647755670.947572567612216
1020.04239670928438350.0847934185687670.957603290715616
1030.03311020140486120.06622040280972240.966889798595139
1040.02625143944435780.05250287888871560.973748560555642
1050.03323342187440250.0664668437488050.966766578125598
1060.07023856066198570.1404771213239710.929761439338014
1070.05694826365468980.1138965273093800.94305173634531
1080.05127379659894010.1025475931978800.94872620340106
1090.04141533598217550.08283067196435090.958584664017824
1100.3256450019709210.6512900039418420.674354998029079
1110.317512856594480.635025713188960.68248714340552
1120.358425812795160.716851625590320.64157418720484
1130.3611564984096350.722312996819270.638843501590365
1140.3152399123761690.6304798247523380.684760087623831
1150.2771006634033800.5542013268067590.72289933659662
1160.2501170580019760.5002341160039520.749882941998024
1170.2742980249615510.5485960499231020.725701975038449
1180.2515999991630360.5031999983260710.748400000836964
1190.2498462939062300.4996925878124610.75015370609377
1200.2080891538727560.4161783077455110.791910846127244
1210.2163333713332780.4326667426665560.783666628666722
1220.1936187468490530.3872374936981060.806381253150947
1230.1635170921166010.3270341842332020.836482907883399
1240.1648194526306270.3296389052612540.835180547369373
1250.1734958572711670.3469917145423330.826504142728833
1260.1869355344786650.373871068957330.813064465521335
1270.2381430438395170.4762860876790330.761856956160483
1280.2344630713913940.4689261427827890.765536928608606
1290.1879455350848980.3758910701697970.812054464915102
1300.1557207561346840.3114415122693680.844279243865316
1310.1859045484885730.3718090969771460.814095451511427
1320.2360886719182610.4721773438365210.76391132808174
1330.2499211667053610.4998423334107210.75007883329464
1340.2195824026940180.4391648053880360.780417597305982
1350.1696479808638420.3392959617276850.830352019136158
1360.1338258507469760.2676517014939530.866174149253024
1370.5177399679055790.9645200641888420.482260032094421
1380.434185340991440.868370681982880.56581465900856
1390.492788513927280.985577027854560.50721148607272
1400.4796802366643010.9593604733286030.520319763335699
1410.5016746680108020.9966506639783960.498325331989198
1420.3932521896703070.7865043793406140.606747810329693
1430.3555215222393290.7110430444786580.644478477760671
1440.3227155346599620.6454310693199240.677284465340038
1450.2300140101464780.4600280202929570.769985989853522

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
17 & 0.772706073702215 & 0.454587852595571 & 0.227293926297785 \tabularnewline
18 & 0.649158397435939 & 0.701683205128122 & 0.350841602564061 \tabularnewline
19 & 0.843001669042847 & 0.313996661914306 & 0.156998330957153 \tabularnewline
20 & 0.771593391410703 & 0.456813217178594 & 0.228406608589297 \tabularnewline
21 & 0.703689296751179 & 0.592621406497642 & 0.296310703248821 \tabularnewline
22 & 0.608358573831227 & 0.783282852337546 & 0.391641426168773 \tabularnewline
23 & 0.544324958500197 & 0.911350082999606 & 0.455675041499803 \tabularnewline
24 & 0.606538955554221 & 0.786922088891558 & 0.393461044445779 \tabularnewline
25 & 0.52526961284687 & 0.94946077430626 & 0.47473038715313 \tabularnewline
26 & 0.520456406570525 & 0.95908718685895 & 0.479543593429475 \tabularnewline
27 & 0.484528181923587 & 0.969056363847174 & 0.515471818076413 \tabularnewline
28 & 0.4171109876693 & 0.8342219753386 & 0.5828890123307 \tabularnewline
29 & 0.438214930851976 & 0.876429861703953 & 0.561785069148024 \tabularnewline
30 & 0.470796702973717 & 0.941593405947435 & 0.529203297026283 \tabularnewline
31 & 0.615410334589867 & 0.769179330820266 & 0.384589665410133 \tabularnewline
32 & 0.667663639637575 & 0.66467272072485 & 0.332336360362425 \tabularnewline
33 & 0.618268035912747 & 0.763463928174506 & 0.381731964087253 \tabularnewline
34 & 0.561504538913159 & 0.876990922173682 & 0.438495461086841 \tabularnewline
35 & 0.541711298297106 & 0.916577403405788 & 0.458288701702894 \tabularnewline
36 & 0.514860984628764 & 0.970278030742473 & 0.485139015371236 \tabularnewline
37 & 0.752327709564741 & 0.495344580870517 & 0.247672290435259 \tabularnewline
38 & 0.708324419115886 & 0.583351161768227 & 0.291675580884114 \tabularnewline
39 & 0.664584064165432 & 0.670831871669135 & 0.335415935834568 \tabularnewline
40 & 0.644091744964574 & 0.711816510070851 & 0.355908255035426 \tabularnewline
41 & 0.730073911159692 & 0.539852177680616 & 0.269926088840308 \tabularnewline
42 & 0.69734882887394 & 0.605302342252121 & 0.302651171126060 \tabularnewline
43 & 0.71452904418432 & 0.57094191163136 & 0.28547095581568 \tabularnewline
44 & 0.690362091659311 & 0.619275816681377 & 0.309637908340689 \tabularnewline
45 & 0.65414245694913 & 0.69171508610174 & 0.34585754305087 \tabularnewline
46 & 0.602394153794903 & 0.795211692410194 & 0.397605846205097 \tabularnewline
47 & 0.580039442067356 & 0.839921115865288 & 0.419960557932644 \tabularnewline
48 & 0.547243475472912 & 0.905513049054176 & 0.452756524527088 \tabularnewline
49 & 0.49303555418454 & 0.98607110836908 & 0.50696444581546 \tabularnewline
50 & 0.449954877593947 & 0.899909755187894 & 0.550045122406053 \tabularnewline
51 & 0.401831926879422 & 0.803663853758845 & 0.598168073120578 \tabularnewline
52 & 0.368785212274218 & 0.737570424548436 & 0.631214787725782 \tabularnewline
53 & 0.410733681496324 & 0.821467362992649 & 0.589266318503676 \tabularnewline
54 & 0.369752451849031 & 0.739504903698062 & 0.630247548150969 \tabularnewline
55 & 0.323282845998495 & 0.64656569199699 & 0.676717154001505 \tabularnewline
56 & 0.282364269078399 & 0.564728538156798 & 0.717635730921601 \tabularnewline
57 & 0.272698375636523 & 0.545396751273045 & 0.727301624363477 \tabularnewline
58 & 0.282757617873879 & 0.565515235747758 & 0.717242382126121 \tabularnewline
59 & 0.243369783361029 & 0.486739566722059 & 0.75663021663897 \tabularnewline
60 & 0.257596536704583 & 0.515193073409167 & 0.742403463295417 \tabularnewline
61 & 0.373303887501909 & 0.746607775003818 & 0.626696112498091 \tabularnewline
62 & 0.331508726582845 & 0.663017453165689 & 0.668491273417155 \tabularnewline
63 & 0.286969959997719 & 0.573939919995437 & 0.713030040002281 \tabularnewline
64 & 0.248377089332414 & 0.496754178664828 & 0.751622910667586 \tabularnewline
65 & 0.230402896814893 & 0.460805793629787 & 0.769597103185107 \tabularnewline
66 & 0.224766721302993 & 0.449533442605987 & 0.775233278697007 \tabularnewline
67 & 0.2562974519774 & 0.5125949039548 & 0.7437025480226 \tabularnewline
68 & 0.218291417736106 & 0.436582835472212 & 0.781708582263894 \tabularnewline
69 & 0.194100042429507 & 0.388200084859013 & 0.805899957570493 \tabularnewline
70 & 0.177587702011799 & 0.355175404023598 & 0.822412297988201 \tabularnewline
71 & 0.157751112061017 & 0.315502224122033 & 0.842248887938983 \tabularnewline
72 & 0.143910076304354 & 0.287820152608709 & 0.856089923695646 \tabularnewline
73 & 0.139322243856158 & 0.278644487712316 & 0.860677756143842 \tabularnewline
74 & 0.131598462192143 & 0.263196924384287 & 0.868401537807857 \tabularnewline
75 & 0.107347494712763 & 0.214694989425526 & 0.892652505287237 \tabularnewline
76 & 0.173197555844339 & 0.346395111688678 & 0.826802444155661 \tabularnewline
77 & 0.158374329563243 & 0.316748659126486 & 0.841625670436757 \tabularnewline
78 & 0.150879699801539 & 0.301759399603078 & 0.849120300198461 \tabularnewline
79 & 0.125577276047144 & 0.251154552094289 & 0.874422723952856 \tabularnewline
80 & 0.128757964036592 & 0.257515928073184 & 0.871242035963408 \tabularnewline
81 & 0.106524198488204 & 0.213048396976408 & 0.893475801511796 \tabularnewline
82 & 0.0991017243751591 & 0.198203448750318 & 0.900898275624841 \tabularnewline
83 & 0.0990559919700648 & 0.198111983940130 & 0.900944008029935 \tabularnewline
84 & 0.08878450387995 & 0.1775690077599 & 0.91121549612005 \tabularnewline
85 & 0.0890812747698955 & 0.178162549539791 & 0.910918725230104 \tabularnewline
86 & 0.0740610782928778 & 0.148122156585756 & 0.925938921707122 \tabularnewline
87 & 0.0623867554248579 & 0.124773510849716 & 0.937613244575142 \tabularnewline
88 & 0.0540795238412011 & 0.108159047682402 & 0.945920476158799 \tabularnewline
89 & 0.0423183081411922 & 0.0846366162823844 & 0.957681691858808 \tabularnewline
90 & 0.119854443789268 & 0.239708887578535 & 0.880145556210732 \tabularnewline
91 & 0.0995603888274496 & 0.199120777654899 & 0.90043961117255 \tabularnewline
92 & 0.0941814615566146 & 0.188362923113229 & 0.905818538443385 \tabularnewline
93 & 0.0779893672950644 & 0.155978734590129 & 0.922010632704936 \tabularnewline
94 & 0.068005978981824 & 0.136011957963648 & 0.931994021018176 \tabularnewline
95 & 0.058273574538688 & 0.116547149077376 & 0.941726425461312 \tabularnewline
96 & 0.0592272750268874 & 0.118454550053775 & 0.940772724973113 \tabularnewline
97 & 0.0517325625041054 & 0.103465125008211 & 0.948267437495895 \tabularnewline
98 & 0.0504732970383355 & 0.100946594076671 & 0.949526702961665 \tabularnewline
99 & 0.0395118890367896 & 0.0790237780735792 & 0.96048811096321 \tabularnewline
100 & 0.0378463176304778 & 0.0756926352609556 & 0.962153682369522 \tabularnewline
101 & 0.0524274323877837 & 0.104854864775567 & 0.947572567612216 \tabularnewline
102 & 0.0423967092843835 & 0.084793418568767 & 0.957603290715616 \tabularnewline
103 & 0.0331102014048612 & 0.0662204028097224 & 0.966889798595139 \tabularnewline
104 & 0.0262514394443578 & 0.0525028788887156 & 0.973748560555642 \tabularnewline
105 & 0.0332334218744025 & 0.066466843748805 & 0.966766578125598 \tabularnewline
106 & 0.0702385606619857 & 0.140477121323971 & 0.929761439338014 \tabularnewline
107 & 0.0569482636546898 & 0.113896527309380 & 0.94305173634531 \tabularnewline
108 & 0.0512737965989401 & 0.102547593197880 & 0.94872620340106 \tabularnewline
109 & 0.0414153359821755 & 0.0828306719643509 & 0.958584664017824 \tabularnewline
110 & 0.325645001970921 & 0.651290003941842 & 0.674354998029079 \tabularnewline
111 & 0.31751285659448 & 0.63502571318896 & 0.68248714340552 \tabularnewline
112 & 0.35842581279516 & 0.71685162559032 & 0.64157418720484 \tabularnewline
113 & 0.361156498409635 & 0.72231299681927 & 0.638843501590365 \tabularnewline
114 & 0.315239912376169 & 0.630479824752338 & 0.684760087623831 \tabularnewline
115 & 0.277100663403380 & 0.554201326806759 & 0.72289933659662 \tabularnewline
116 & 0.250117058001976 & 0.500234116003952 & 0.749882941998024 \tabularnewline
117 & 0.274298024961551 & 0.548596049923102 & 0.725701975038449 \tabularnewline
118 & 0.251599999163036 & 0.503199998326071 & 0.748400000836964 \tabularnewline
119 & 0.249846293906230 & 0.499692587812461 & 0.75015370609377 \tabularnewline
120 & 0.208089153872756 & 0.416178307745511 & 0.791910846127244 \tabularnewline
121 & 0.216333371333278 & 0.432666742666556 & 0.783666628666722 \tabularnewline
122 & 0.193618746849053 & 0.387237493698106 & 0.806381253150947 \tabularnewline
123 & 0.163517092116601 & 0.327034184233202 & 0.836482907883399 \tabularnewline
124 & 0.164819452630627 & 0.329638905261254 & 0.835180547369373 \tabularnewline
125 & 0.173495857271167 & 0.346991714542333 & 0.826504142728833 \tabularnewline
126 & 0.186935534478665 & 0.37387106895733 & 0.813064465521335 \tabularnewline
127 & 0.238143043839517 & 0.476286087679033 & 0.761856956160483 \tabularnewline
128 & 0.234463071391394 & 0.468926142782789 & 0.765536928608606 \tabularnewline
129 & 0.187945535084898 & 0.375891070169797 & 0.812054464915102 \tabularnewline
130 & 0.155720756134684 & 0.311441512269368 & 0.844279243865316 \tabularnewline
131 & 0.185904548488573 & 0.371809096977146 & 0.814095451511427 \tabularnewline
132 & 0.236088671918261 & 0.472177343836521 & 0.76391132808174 \tabularnewline
133 & 0.249921166705361 & 0.499842333410721 & 0.75007883329464 \tabularnewline
134 & 0.219582402694018 & 0.439164805388036 & 0.780417597305982 \tabularnewline
135 & 0.169647980863842 & 0.339295961727685 & 0.830352019136158 \tabularnewline
136 & 0.133825850746976 & 0.267651701493953 & 0.866174149253024 \tabularnewline
137 & 0.517739967905579 & 0.964520064188842 & 0.482260032094421 \tabularnewline
138 & 0.43418534099144 & 0.86837068198288 & 0.56581465900856 \tabularnewline
139 & 0.49278851392728 & 0.98557702785456 & 0.50721148607272 \tabularnewline
140 & 0.479680236664301 & 0.959360473328603 & 0.520319763335699 \tabularnewline
141 & 0.501674668010802 & 0.996650663978396 & 0.498325331989198 \tabularnewline
142 & 0.393252189670307 & 0.786504379340614 & 0.606747810329693 \tabularnewline
143 & 0.355521522239329 & 0.711043044478658 & 0.644478477760671 \tabularnewline
144 & 0.322715534659962 & 0.645431069319924 & 0.677284465340038 \tabularnewline
145 & 0.230014010146478 & 0.460028020292957 & 0.769985989853522 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=103503&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]17[/C][C]0.772706073702215[/C][C]0.454587852595571[/C][C]0.227293926297785[/C][/ROW]
[ROW][C]18[/C][C]0.649158397435939[/C][C]0.701683205128122[/C][C]0.350841602564061[/C][/ROW]
[ROW][C]19[/C][C]0.843001669042847[/C][C]0.313996661914306[/C][C]0.156998330957153[/C][/ROW]
[ROW][C]20[/C][C]0.771593391410703[/C][C]0.456813217178594[/C][C]0.228406608589297[/C][/ROW]
[ROW][C]21[/C][C]0.703689296751179[/C][C]0.592621406497642[/C][C]0.296310703248821[/C][/ROW]
[ROW][C]22[/C][C]0.608358573831227[/C][C]0.783282852337546[/C][C]0.391641426168773[/C][/ROW]
[ROW][C]23[/C][C]0.544324958500197[/C][C]0.911350082999606[/C][C]0.455675041499803[/C][/ROW]
[ROW][C]24[/C][C]0.606538955554221[/C][C]0.786922088891558[/C][C]0.393461044445779[/C][/ROW]
[ROW][C]25[/C][C]0.52526961284687[/C][C]0.94946077430626[/C][C]0.47473038715313[/C][/ROW]
[ROW][C]26[/C][C]0.520456406570525[/C][C]0.95908718685895[/C][C]0.479543593429475[/C][/ROW]
[ROW][C]27[/C][C]0.484528181923587[/C][C]0.969056363847174[/C][C]0.515471818076413[/C][/ROW]
[ROW][C]28[/C][C]0.4171109876693[/C][C]0.8342219753386[/C][C]0.5828890123307[/C][/ROW]
[ROW][C]29[/C][C]0.438214930851976[/C][C]0.876429861703953[/C][C]0.561785069148024[/C][/ROW]
[ROW][C]30[/C][C]0.470796702973717[/C][C]0.941593405947435[/C][C]0.529203297026283[/C][/ROW]
[ROW][C]31[/C][C]0.615410334589867[/C][C]0.769179330820266[/C][C]0.384589665410133[/C][/ROW]
[ROW][C]32[/C][C]0.667663639637575[/C][C]0.66467272072485[/C][C]0.332336360362425[/C][/ROW]
[ROW][C]33[/C][C]0.618268035912747[/C][C]0.763463928174506[/C][C]0.381731964087253[/C][/ROW]
[ROW][C]34[/C][C]0.561504538913159[/C][C]0.876990922173682[/C][C]0.438495461086841[/C][/ROW]
[ROW][C]35[/C][C]0.541711298297106[/C][C]0.916577403405788[/C][C]0.458288701702894[/C][/ROW]
[ROW][C]36[/C][C]0.514860984628764[/C][C]0.970278030742473[/C][C]0.485139015371236[/C][/ROW]
[ROW][C]37[/C][C]0.752327709564741[/C][C]0.495344580870517[/C][C]0.247672290435259[/C][/ROW]
[ROW][C]38[/C][C]0.708324419115886[/C][C]0.583351161768227[/C][C]0.291675580884114[/C][/ROW]
[ROW][C]39[/C][C]0.664584064165432[/C][C]0.670831871669135[/C][C]0.335415935834568[/C][/ROW]
[ROW][C]40[/C][C]0.644091744964574[/C][C]0.711816510070851[/C][C]0.355908255035426[/C][/ROW]
[ROW][C]41[/C][C]0.730073911159692[/C][C]0.539852177680616[/C][C]0.269926088840308[/C][/ROW]
[ROW][C]42[/C][C]0.69734882887394[/C][C]0.605302342252121[/C][C]0.302651171126060[/C][/ROW]
[ROW][C]43[/C][C]0.71452904418432[/C][C]0.57094191163136[/C][C]0.28547095581568[/C][/ROW]
[ROW][C]44[/C][C]0.690362091659311[/C][C]0.619275816681377[/C][C]0.309637908340689[/C][/ROW]
[ROW][C]45[/C][C]0.65414245694913[/C][C]0.69171508610174[/C][C]0.34585754305087[/C][/ROW]
[ROW][C]46[/C][C]0.602394153794903[/C][C]0.795211692410194[/C][C]0.397605846205097[/C][/ROW]
[ROW][C]47[/C][C]0.580039442067356[/C][C]0.839921115865288[/C][C]0.419960557932644[/C][/ROW]
[ROW][C]48[/C][C]0.547243475472912[/C][C]0.905513049054176[/C][C]0.452756524527088[/C][/ROW]
[ROW][C]49[/C][C]0.49303555418454[/C][C]0.98607110836908[/C][C]0.50696444581546[/C][/ROW]
[ROW][C]50[/C][C]0.449954877593947[/C][C]0.899909755187894[/C][C]0.550045122406053[/C][/ROW]
[ROW][C]51[/C][C]0.401831926879422[/C][C]0.803663853758845[/C][C]0.598168073120578[/C][/ROW]
[ROW][C]52[/C][C]0.368785212274218[/C][C]0.737570424548436[/C][C]0.631214787725782[/C][/ROW]
[ROW][C]53[/C][C]0.410733681496324[/C][C]0.821467362992649[/C][C]0.589266318503676[/C][/ROW]
[ROW][C]54[/C][C]0.369752451849031[/C][C]0.739504903698062[/C][C]0.630247548150969[/C][/ROW]
[ROW][C]55[/C][C]0.323282845998495[/C][C]0.64656569199699[/C][C]0.676717154001505[/C][/ROW]
[ROW][C]56[/C][C]0.282364269078399[/C][C]0.564728538156798[/C][C]0.717635730921601[/C][/ROW]
[ROW][C]57[/C][C]0.272698375636523[/C][C]0.545396751273045[/C][C]0.727301624363477[/C][/ROW]
[ROW][C]58[/C][C]0.282757617873879[/C][C]0.565515235747758[/C][C]0.717242382126121[/C][/ROW]
[ROW][C]59[/C][C]0.243369783361029[/C][C]0.486739566722059[/C][C]0.75663021663897[/C][/ROW]
[ROW][C]60[/C][C]0.257596536704583[/C][C]0.515193073409167[/C][C]0.742403463295417[/C][/ROW]
[ROW][C]61[/C][C]0.373303887501909[/C][C]0.746607775003818[/C][C]0.626696112498091[/C][/ROW]
[ROW][C]62[/C][C]0.331508726582845[/C][C]0.663017453165689[/C][C]0.668491273417155[/C][/ROW]
[ROW][C]63[/C][C]0.286969959997719[/C][C]0.573939919995437[/C][C]0.713030040002281[/C][/ROW]
[ROW][C]64[/C][C]0.248377089332414[/C][C]0.496754178664828[/C][C]0.751622910667586[/C][/ROW]
[ROW][C]65[/C][C]0.230402896814893[/C][C]0.460805793629787[/C][C]0.769597103185107[/C][/ROW]
[ROW][C]66[/C][C]0.224766721302993[/C][C]0.449533442605987[/C][C]0.775233278697007[/C][/ROW]
[ROW][C]67[/C][C]0.2562974519774[/C][C]0.5125949039548[/C][C]0.7437025480226[/C][/ROW]
[ROW][C]68[/C][C]0.218291417736106[/C][C]0.436582835472212[/C][C]0.781708582263894[/C][/ROW]
[ROW][C]69[/C][C]0.194100042429507[/C][C]0.388200084859013[/C][C]0.805899957570493[/C][/ROW]
[ROW][C]70[/C][C]0.177587702011799[/C][C]0.355175404023598[/C][C]0.822412297988201[/C][/ROW]
[ROW][C]71[/C][C]0.157751112061017[/C][C]0.315502224122033[/C][C]0.842248887938983[/C][/ROW]
[ROW][C]72[/C][C]0.143910076304354[/C][C]0.287820152608709[/C][C]0.856089923695646[/C][/ROW]
[ROW][C]73[/C][C]0.139322243856158[/C][C]0.278644487712316[/C][C]0.860677756143842[/C][/ROW]
[ROW][C]74[/C][C]0.131598462192143[/C][C]0.263196924384287[/C][C]0.868401537807857[/C][/ROW]
[ROW][C]75[/C][C]0.107347494712763[/C][C]0.214694989425526[/C][C]0.892652505287237[/C][/ROW]
[ROW][C]76[/C][C]0.173197555844339[/C][C]0.346395111688678[/C][C]0.826802444155661[/C][/ROW]
[ROW][C]77[/C][C]0.158374329563243[/C][C]0.316748659126486[/C][C]0.841625670436757[/C][/ROW]
[ROW][C]78[/C][C]0.150879699801539[/C][C]0.301759399603078[/C][C]0.849120300198461[/C][/ROW]
[ROW][C]79[/C][C]0.125577276047144[/C][C]0.251154552094289[/C][C]0.874422723952856[/C][/ROW]
[ROW][C]80[/C][C]0.128757964036592[/C][C]0.257515928073184[/C][C]0.871242035963408[/C][/ROW]
[ROW][C]81[/C][C]0.106524198488204[/C][C]0.213048396976408[/C][C]0.893475801511796[/C][/ROW]
[ROW][C]82[/C][C]0.0991017243751591[/C][C]0.198203448750318[/C][C]0.900898275624841[/C][/ROW]
[ROW][C]83[/C][C]0.0990559919700648[/C][C]0.198111983940130[/C][C]0.900944008029935[/C][/ROW]
[ROW][C]84[/C][C]0.08878450387995[/C][C]0.1775690077599[/C][C]0.91121549612005[/C][/ROW]
[ROW][C]85[/C][C]0.0890812747698955[/C][C]0.178162549539791[/C][C]0.910918725230104[/C][/ROW]
[ROW][C]86[/C][C]0.0740610782928778[/C][C]0.148122156585756[/C][C]0.925938921707122[/C][/ROW]
[ROW][C]87[/C][C]0.0623867554248579[/C][C]0.124773510849716[/C][C]0.937613244575142[/C][/ROW]
[ROW][C]88[/C][C]0.0540795238412011[/C][C]0.108159047682402[/C][C]0.945920476158799[/C][/ROW]
[ROW][C]89[/C][C]0.0423183081411922[/C][C]0.0846366162823844[/C][C]0.957681691858808[/C][/ROW]
[ROW][C]90[/C][C]0.119854443789268[/C][C]0.239708887578535[/C][C]0.880145556210732[/C][/ROW]
[ROW][C]91[/C][C]0.0995603888274496[/C][C]0.199120777654899[/C][C]0.90043961117255[/C][/ROW]
[ROW][C]92[/C][C]0.0941814615566146[/C][C]0.188362923113229[/C][C]0.905818538443385[/C][/ROW]
[ROW][C]93[/C][C]0.0779893672950644[/C][C]0.155978734590129[/C][C]0.922010632704936[/C][/ROW]
[ROW][C]94[/C][C]0.068005978981824[/C][C]0.136011957963648[/C][C]0.931994021018176[/C][/ROW]
[ROW][C]95[/C][C]0.058273574538688[/C][C]0.116547149077376[/C][C]0.941726425461312[/C][/ROW]
[ROW][C]96[/C][C]0.0592272750268874[/C][C]0.118454550053775[/C][C]0.940772724973113[/C][/ROW]
[ROW][C]97[/C][C]0.0517325625041054[/C][C]0.103465125008211[/C][C]0.948267437495895[/C][/ROW]
[ROW][C]98[/C][C]0.0504732970383355[/C][C]0.100946594076671[/C][C]0.949526702961665[/C][/ROW]
[ROW][C]99[/C][C]0.0395118890367896[/C][C]0.0790237780735792[/C][C]0.96048811096321[/C][/ROW]
[ROW][C]100[/C][C]0.0378463176304778[/C][C]0.0756926352609556[/C][C]0.962153682369522[/C][/ROW]
[ROW][C]101[/C][C]0.0524274323877837[/C][C]0.104854864775567[/C][C]0.947572567612216[/C][/ROW]
[ROW][C]102[/C][C]0.0423967092843835[/C][C]0.084793418568767[/C][C]0.957603290715616[/C][/ROW]
[ROW][C]103[/C][C]0.0331102014048612[/C][C]0.0662204028097224[/C][C]0.966889798595139[/C][/ROW]
[ROW][C]104[/C][C]0.0262514394443578[/C][C]0.0525028788887156[/C][C]0.973748560555642[/C][/ROW]
[ROW][C]105[/C][C]0.0332334218744025[/C][C]0.066466843748805[/C][C]0.966766578125598[/C][/ROW]
[ROW][C]106[/C][C]0.0702385606619857[/C][C]0.140477121323971[/C][C]0.929761439338014[/C][/ROW]
[ROW][C]107[/C][C]0.0569482636546898[/C][C]0.113896527309380[/C][C]0.94305173634531[/C][/ROW]
[ROW][C]108[/C][C]0.0512737965989401[/C][C]0.102547593197880[/C][C]0.94872620340106[/C][/ROW]
[ROW][C]109[/C][C]0.0414153359821755[/C][C]0.0828306719643509[/C][C]0.958584664017824[/C][/ROW]
[ROW][C]110[/C][C]0.325645001970921[/C][C]0.651290003941842[/C][C]0.674354998029079[/C][/ROW]
[ROW][C]111[/C][C]0.31751285659448[/C][C]0.63502571318896[/C][C]0.68248714340552[/C][/ROW]
[ROW][C]112[/C][C]0.35842581279516[/C][C]0.71685162559032[/C][C]0.64157418720484[/C][/ROW]
[ROW][C]113[/C][C]0.361156498409635[/C][C]0.72231299681927[/C][C]0.638843501590365[/C][/ROW]
[ROW][C]114[/C][C]0.315239912376169[/C][C]0.630479824752338[/C][C]0.684760087623831[/C][/ROW]
[ROW][C]115[/C][C]0.277100663403380[/C][C]0.554201326806759[/C][C]0.72289933659662[/C][/ROW]
[ROW][C]116[/C][C]0.250117058001976[/C][C]0.500234116003952[/C][C]0.749882941998024[/C][/ROW]
[ROW][C]117[/C][C]0.274298024961551[/C][C]0.548596049923102[/C][C]0.725701975038449[/C][/ROW]
[ROW][C]118[/C][C]0.251599999163036[/C][C]0.503199998326071[/C][C]0.748400000836964[/C][/ROW]
[ROW][C]119[/C][C]0.249846293906230[/C][C]0.499692587812461[/C][C]0.75015370609377[/C][/ROW]
[ROW][C]120[/C][C]0.208089153872756[/C][C]0.416178307745511[/C][C]0.791910846127244[/C][/ROW]
[ROW][C]121[/C][C]0.216333371333278[/C][C]0.432666742666556[/C][C]0.783666628666722[/C][/ROW]
[ROW][C]122[/C][C]0.193618746849053[/C][C]0.387237493698106[/C][C]0.806381253150947[/C][/ROW]
[ROW][C]123[/C][C]0.163517092116601[/C][C]0.327034184233202[/C][C]0.836482907883399[/C][/ROW]
[ROW][C]124[/C][C]0.164819452630627[/C][C]0.329638905261254[/C][C]0.835180547369373[/C][/ROW]
[ROW][C]125[/C][C]0.173495857271167[/C][C]0.346991714542333[/C][C]0.826504142728833[/C][/ROW]
[ROW][C]126[/C][C]0.186935534478665[/C][C]0.37387106895733[/C][C]0.813064465521335[/C][/ROW]
[ROW][C]127[/C][C]0.238143043839517[/C][C]0.476286087679033[/C][C]0.761856956160483[/C][/ROW]
[ROW][C]128[/C][C]0.234463071391394[/C][C]0.468926142782789[/C][C]0.765536928608606[/C][/ROW]
[ROW][C]129[/C][C]0.187945535084898[/C][C]0.375891070169797[/C][C]0.812054464915102[/C][/ROW]
[ROW][C]130[/C][C]0.155720756134684[/C][C]0.311441512269368[/C][C]0.844279243865316[/C][/ROW]
[ROW][C]131[/C][C]0.185904548488573[/C][C]0.371809096977146[/C][C]0.814095451511427[/C][/ROW]
[ROW][C]132[/C][C]0.236088671918261[/C][C]0.472177343836521[/C][C]0.76391132808174[/C][/ROW]
[ROW][C]133[/C][C]0.249921166705361[/C][C]0.499842333410721[/C][C]0.75007883329464[/C][/ROW]
[ROW][C]134[/C][C]0.219582402694018[/C][C]0.439164805388036[/C][C]0.780417597305982[/C][/ROW]
[ROW][C]135[/C][C]0.169647980863842[/C][C]0.339295961727685[/C][C]0.830352019136158[/C][/ROW]
[ROW][C]136[/C][C]0.133825850746976[/C][C]0.267651701493953[/C][C]0.866174149253024[/C][/ROW]
[ROW][C]137[/C][C]0.517739967905579[/C][C]0.964520064188842[/C][C]0.482260032094421[/C][/ROW]
[ROW][C]138[/C][C]0.43418534099144[/C][C]0.86837068198288[/C][C]0.56581465900856[/C][/ROW]
[ROW][C]139[/C][C]0.49278851392728[/C][C]0.98557702785456[/C][C]0.50721148607272[/C][/ROW]
[ROW][C]140[/C][C]0.479680236664301[/C][C]0.959360473328603[/C][C]0.520319763335699[/C][/ROW]
[ROW][C]141[/C][C]0.501674668010802[/C][C]0.996650663978396[/C][C]0.498325331989198[/C][/ROW]
[ROW][C]142[/C][C]0.393252189670307[/C][C]0.786504379340614[/C][C]0.606747810329693[/C][/ROW]
[ROW][C]143[/C][C]0.355521522239329[/C][C]0.711043044478658[/C][C]0.644478477760671[/C][/ROW]
[ROW][C]144[/C][C]0.322715534659962[/C][C]0.645431069319924[/C][C]0.677284465340038[/C][/ROW]
[ROW][C]145[/C][C]0.230014010146478[/C][C]0.460028020292957[/C][C]0.769985989853522[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=103503&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=103503&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.7727060737022150.4545878525955710.227293926297785
180.6491583974359390.7016832051281220.350841602564061
190.8430016690428470.3139966619143060.156998330957153
200.7715933914107030.4568132171785940.228406608589297
210.7036892967511790.5926214064976420.296310703248821
220.6083585738312270.7832828523375460.391641426168773
230.5443249585001970.9113500829996060.455675041499803
240.6065389555542210.7869220888915580.393461044445779
250.525269612846870.949460774306260.47473038715313
260.5204564065705250.959087186858950.479543593429475
270.4845281819235870.9690563638471740.515471818076413
280.41711098766930.83422197533860.5828890123307
290.4382149308519760.8764298617039530.561785069148024
300.4707967029737170.9415934059474350.529203297026283
310.6154103345898670.7691793308202660.384589665410133
320.6676636396375750.664672720724850.332336360362425
330.6182680359127470.7634639281745060.381731964087253
340.5615045389131590.8769909221736820.438495461086841
350.5417112982971060.9165774034057880.458288701702894
360.5148609846287640.9702780307424730.485139015371236
370.7523277095647410.4953445808705170.247672290435259
380.7083244191158860.5833511617682270.291675580884114
390.6645840641654320.6708318716691350.335415935834568
400.6440917449645740.7118165100708510.355908255035426
410.7300739111596920.5398521776806160.269926088840308
420.697348828873940.6053023422521210.302651171126060
430.714529044184320.570941911631360.28547095581568
440.6903620916593110.6192758166813770.309637908340689
450.654142456949130.691715086101740.34585754305087
460.6023941537949030.7952116924101940.397605846205097
470.5800394420673560.8399211158652880.419960557932644
480.5472434754729120.9055130490541760.452756524527088
490.493035554184540.986071108369080.50696444581546
500.4499548775939470.8999097551878940.550045122406053
510.4018319268794220.8036638537588450.598168073120578
520.3687852122742180.7375704245484360.631214787725782
530.4107336814963240.8214673629926490.589266318503676
540.3697524518490310.7395049036980620.630247548150969
550.3232828459984950.646565691996990.676717154001505
560.2823642690783990.5647285381567980.717635730921601
570.2726983756365230.5453967512730450.727301624363477
580.2827576178738790.5655152357477580.717242382126121
590.2433697833610290.4867395667220590.75663021663897
600.2575965367045830.5151930734091670.742403463295417
610.3733038875019090.7466077750038180.626696112498091
620.3315087265828450.6630174531656890.668491273417155
630.2869699599977190.5739399199954370.713030040002281
640.2483770893324140.4967541786648280.751622910667586
650.2304028968148930.4608057936297870.769597103185107
660.2247667213029930.4495334426059870.775233278697007
670.25629745197740.51259490395480.7437025480226
680.2182914177361060.4365828354722120.781708582263894
690.1941000424295070.3882000848590130.805899957570493
700.1775877020117990.3551754040235980.822412297988201
710.1577511120610170.3155022241220330.842248887938983
720.1439100763043540.2878201526087090.856089923695646
730.1393222438561580.2786444877123160.860677756143842
740.1315984621921430.2631969243842870.868401537807857
750.1073474947127630.2146949894255260.892652505287237
760.1731975558443390.3463951116886780.826802444155661
770.1583743295632430.3167486591264860.841625670436757
780.1508796998015390.3017593996030780.849120300198461
790.1255772760471440.2511545520942890.874422723952856
800.1287579640365920.2575159280731840.871242035963408
810.1065241984882040.2130483969764080.893475801511796
820.09910172437515910.1982034487503180.900898275624841
830.09905599197006480.1981119839401300.900944008029935
840.088784503879950.17756900775990.91121549612005
850.08908127476989550.1781625495397910.910918725230104
860.07406107829287780.1481221565857560.925938921707122
870.06238675542485790.1247735108497160.937613244575142
880.05407952384120110.1081590476824020.945920476158799
890.04231830814119220.08463661628238440.957681691858808
900.1198544437892680.2397088875785350.880145556210732
910.09956038882744960.1991207776548990.90043961117255
920.09418146155661460.1883629231132290.905818538443385
930.07798936729506440.1559787345901290.922010632704936
940.0680059789818240.1360119579636480.931994021018176
950.0582735745386880.1165471490773760.941726425461312
960.05922727502688740.1184545500537750.940772724973113
970.05173256250410540.1034651250082110.948267437495895
980.05047329703833550.1009465940766710.949526702961665
990.03951188903678960.07902377807357920.96048811096321
1000.03784631763047780.07569263526095560.962153682369522
1010.05242743238778370.1048548647755670.947572567612216
1020.04239670928438350.0847934185687670.957603290715616
1030.03311020140486120.06622040280972240.966889798595139
1040.02625143944435780.05250287888871560.973748560555642
1050.03323342187440250.0664668437488050.966766578125598
1060.07023856066198570.1404771213239710.929761439338014
1070.05694826365468980.1138965273093800.94305173634531
1080.05127379659894010.1025475931978800.94872620340106
1090.04141533598217550.08283067196435090.958584664017824
1100.3256450019709210.6512900039418420.674354998029079
1110.317512856594480.635025713188960.68248714340552
1120.358425812795160.716851625590320.64157418720484
1130.3611564984096350.722312996819270.638843501590365
1140.3152399123761690.6304798247523380.684760087623831
1150.2771006634033800.5542013268067590.72289933659662
1160.2501170580019760.5002341160039520.749882941998024
1170.2742980249615510.5485960499231020.725701975038449
1180.2515999991630360.5031999983260710.748400000836964
1190.2498462939062300.4996925878124610.75015370609377
1200.2080891538727560.4161783077455110.791910846127244
1210.2163333713332780.4326667426665560.783666628666722
1220.1936187468490530.3872374936981060.806381253150947
1230.1635170921166010.3270341842332020.836482907883399
1240.1648194526306270.3296389052612540.835180547369373
1250.1734958572711670.3469917145423330.826504142728833
1260.1869355344786650.373871068957330.813064465521335
1270.2381430438395170.4762860876790330.761856956160483
1280.2344630713913940.4689261427827890.765536928608606
1290.1879455350848980.3758910701697970.812054464915102
1300.1557207561346840.3114415122693680.844279243865316
1310.1859045484885730.3718090969771460.814095451511427
1320.2360886719182610.4721773438365210.76391132808174
1330.2499211667053610.4998423334107210.75007883329464
1340.2195824026940180.4391648053880360.780417597305982
1350.1696479808638420.3392959617276850.830352019136158
1360.1338258507469760.2676517014939530.866174149253024
1370.5177399679055790.9645200641888420.482260032094421
1380.434185340991440.868370681982880.56581465900856
1390.492788513927280.985577027854560.50721148607272
1400.4796802366643010.9593604733286030.520319763335699
1410.5016746680108020.9966506639783960.498325331989198
1420.3932521896703070.7865043793406140.606747810329693
1430.3555215222393290.7110430444786580.644478477760671
1440.3227155346599620.6454310693199240.677284465340038
1450.2300140101464780.4600280202929570.769985989853522







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level80.062015503875969OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 & 0 & OK \tabularnewline
5% type I error level & 0 & 0 & OK \tabularnewline
10% type I error level & 8 & 0.062015503875969 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=103503&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]8[/C][C]0.062015503875969[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=103503&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=103503&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level80.062015503875969OK



Parameters (Session):
par1 = 2 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 2 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}