Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 30 Nov 2010 17:20:51 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Nov/30/t129113758270nitkjmzsezybc.htm/, Retrieved Fri, 01 Nov 2024 00:08:10 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=103697, Retrieved Fri, 01 Nov 2024 00:08:10 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact186
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2010-11-30 17:20:51] [020d6ac062bd52f65e15713212085515] [Current]
Feedback Forum

Post a new message
Dataseries X:
12008
9169
8788
8417
8247
8197
8236
8253
7733
8366
8626
8863
10102
8463
9114
8563
8872
8301
8301
8278
7736
7973
8268
9476
11100
8962
9173
8738
8459
8078
8411
8291
7810
8616
8312
9692
9911
8915
9452
9112
8472
8230
8384
8625
8221
8649
8625
10443
10357
8586
8892
8329
8101
7922
8120
7838
7735
8406
8209
9451
10041
9411
10405
8467
8464
8102
7627
7513
7510
8291
8064
9383
9706
8579
9474
8318
8213
8059
9111
7708
7680
8014
8007
8718
9486
9113
9025
8476
7952
7759
7835
7600
7651
8319
8812
8630




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time10 seconds
R Server'George Udny Yule' @ 72.249.76.132

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 10 seconds \tabularnewline
R Server & 'George Udny Yule' @ 72.249.76.132 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=103697&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]10 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ 72.249.76.132[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=103697&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=103697&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time10 seconds
R Server'George Udny Yule' @ 72.249.76.132







Multiple Linear Regression - Estimated Regression Equation
sterftes[t] = + 9560.57142857143 + 960.314153439157M1[t] -474.578042328042M2[t] -79.7202380952388M3[t] -813.362433862435M4[t] -1014.12962962963M5[t] -1276.39682539683M6[t] -1100.03902116402M7[t] -1335.68121693122M8[t] -1585.19841269841M9[t] -1011.21560846561M10[t] -970.857804232804M11[t] -4.23280423280425t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
sterftes[t] =  +  9560.57142857143 +  960.314153439157M1[t] -474.578042328042M2[t] -79.7202380952388M3[t] -813.362433862435M4[t] -1014.12962962963M5[t] -1276.39682539683M6[t] -1100.03902116402M7[t] -1335.68121693122M8[t] -1585.19841269841M9[t] -1011.21560846561M10[t] -970.857804232804M11[t] -4.23280423280425t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=103697&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]sterftes[t] =  +  9560.57142857143 +  960.314153439157M1[t] -474.578042328042M2[t] -79.7202380952388M3[t] -813.362433862435M4[t] -1014.12962962963M5[t] -1276.39682539683M6[t] -1100.03902116402M7[t] -1335.68121693122M8[t] -1585.19841269841M9[t] -1011.21560846561M10[t] -970.857804232804M11[t] -4.23280423280425t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=103697&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=103697&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
sterftes[t] = + 9560.57142857143 + 960.314153439157M1[t] -474.578042328042M2[t] -79.7202380952388M3[t] -813.362433862435M4[t] -1014.12962962963M5[t] -1276.39682539683M6[t] -1100.03902116402M7[t] -1335.68121693122M8[t] -1585.19841269841M9[t] -1011.21560846561M10[t] -970.857804232804M11[t] -4.23280423280425t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)9560.57142857143164.96036257.956800
M1960.314153439157203.6179554.71631e-055e-06
M2-474.578042328042203.500867-2.33210.022120.01106
M3-79.7202380952388203.394873-0.39190.6961010.348051
M4-813.362433862435203.299989-4.00080.0001366.8e-05
M5-1014.12962962963203.216231-4.99043e-062e-06
M6-1276.39682539683203.143613-6.283200
M7-1100.03902116402203.082147-5.41671e-060
M8-1335.68121693122203.031842-6.578700
M9-1585.19841269841202.992708-7.809100
M10-1011.21560846561202.96475-4.98223e-062e-06
M11-970.857804232804202.947974-4.78387e-064e-06
t-4.232804232804251.506629-2.80950.0061870.003094

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 9560.57142857143 & 164.960362 & 57.9568 & 0 & 0 \tabularnewline
M1 & 960.314153439157 & 203.617955 & 4.7163 & 1e-05 & 5e-06 \tabularnewline
M2 & -474.578042328042 & 203.500867 & -2.3321 & 0.02212 & 0.01106 \tabularnewline
M3 & -79.7202380952388 & 203.394873 & -0.3919 & 0.696101 & 0.348051 \tabularnewline
M4 & -813.362433862435 & 203.299989 & -4.0008 & 0.000136 & 6.8e-05 \tabularnewline
M5 & -1014.12962962963 & 203.216231 & -4.9904 & 3e-06 & 2e-06 \tabularnewline
M6 & -1276.39682539683 & 203.143613 & -6.2832 & 0 & 0 \tabularnewline
M7 & -1100.03902116402 & 203.082147 & -5.4167 & 1e-06 & 0 \tabularnewline
M8 & -1335.68121693122 & 203.031842 & -6.5787 & 0 & 0 \tabularnewline
M9 & -1585.19841269841 & 202.992708 & -7.8091 & 0 & 0 \tabularnewline
M10 & -1011.21560846561 & 202.96475 & -4.9822 & 3e-06 & 2e-06 \tabularnewline
M11 & -970.857804232804 & 202.947974 & -4.7838 & 7e-06 & 4e-06 \tabularnewline
t & -4.23280423280425 & 1.506629 & -2.8095 & 0.006187 & 0.003094 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=103697&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]9560.57142857143[/C][C]164.960362[/C][C]57.9568[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M1[/C][C]960.314153439157[/C][C]203.617955[/C][C]4.7163[/C][C]1e-05[/C][C]5e-06[/C][/ROW]
[ROW][C]M2[/C][C]-474.578042328042[/C][C]203.500867[/C][C]-2.3321[/C][C]0.02212[/C][C]0.01106[/C][/ROW]
[ROW][C]M3[/C][C]-79.7202380952388[/C][C]203.394873[/C][C]-0.3919[/C][C]0.696101[/C][C]0.348051[/C][/ROW]
[ROW][C]M4[/C][C]-813.362433862435[/C][C]203.299989[/C][C]-4.0008[/C][C]0.000136[/C][C]6.8e-05[/C][/ROW]
[ROW][C]M5[/C][C]-1014.12962962963[/C][C]203.216231[/C][C]-4.9904[/C][C]3e-06[/C][C]2e-06[/C][/ROW]
[ROW][C]M6[/C][C]-1276.39682539683[/C][C]203.143613[/C][C]-6.2832[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M7[/C][C]-1100.03902116402[/C][C]203.082147[/C][C]-5.4167[/C][C]1e-06[/C][C]0[/C][/ROW]
[ROW][C]M8[/C][C]-1335.68121693122[/C][C]203.031842[/C][C]-6.5787[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M9[/C][C]-1585.19841269841[/C][C]202.992708[/C][C]-7.8091[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M10[/C][C]-1011.21560846561[/C][C]202.96475[/C][C]-4.9822[/C][C]3e-06[/C][C]2e-06[/C][/ROW]
[ROW][C]M11[/C][C]-970.857804232804[/C][C]202.947974[/C][C]-4.7838[/C][C]7e-06[/C][C]4e-06[/C][/ROW]
[ROW][C]t[/C][C]-4.23280423280425[/C][C]1.506629[/C][C]-2.8095[/C][C]0.006187[/C][C]0.003094[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=103697&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=103697&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)9560.57142857143164.96036257.956800
M1960.314153439157203.6179554.71631e-055e-06
M2-474.578042328042203.500867-2.33210.022120.01106
M3-79.7202380952388203.394873-0.39190.6961010.348051
M4-813.362433862435203.299989-4.00080.0001366.8e-05
M5-1014.12962962963203.216231-4.99043e-062e-06
M6-1276.39682539683203.143613-6.283200
M7-1100.03902116402203.082147-5.41671e-060
M8-1335.68121693122203.031842-6.578700
M9-1585.19841269841202.992708-7.809100
M10-1011.21560846561202.96475-4.98223e-062e-06
M11-970.857804232804202.947974-4.78387e-064e-06
t-4.232804232804251.506629-2.80950.0061870.003094







Multiple Linear Regression - Regression Statistics
Multiple R0.88076124618955
R-squared0.775740372789369
Adjusted R-squared0.743317294156507
F-TEST (value)23.9255618373981
F-TEST (DF numerator)12
F-TEST (DF denominator)83
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation405.884762262813
Sum Squared Residuals13673622.5396826

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.88076124618955 \tabularnewline
R-squared & 0.775740372789369 \tabularnewline
Adjusted R-squared & 0.743317294156507 \tabularnewline
F-TEST (value) & 23.9255618373981 \tabularnewline
F-TEST (DF numerator) & 12 \tabularnewline
F-TEST (DF denominator) & 83 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 405.884762262813 \tabularnewline
Sum Squared Residuals & 13673622.5396826 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=103697&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.88076124618955[/C][/ROW]
[ROW][C]R-squared[/C][C]0.775740372789369[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.743317294156507[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]23.9255618373981[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]12[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]83[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]405.884762262813[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]13673622.5396826[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=103697&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=103697&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.88076124618955
R-squared0.775740372789369
Adjusted R-squared0.743317294156507
F-TEST (value)23.9255618373981
F-TEST (DF numerator)12
F-TEST (DF denominator)83
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation405.884762262813
Sum Squared Residuals13673622.5396826







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
11200810516.65277777771491.34722222225
291699077.5277777777891.4722222222215
387889468.15277777778-680.152777777779
484178730.27777777778-313.277777777776
582478525.27777777778-278.277777777776
681978258.77777777778-61.7777777777776
782368430.90277777778-194.902777777778
882538191.0277777777861.9722222222178
977337937.27777777778-204.277777777777
1083668507.02777777778-141.027777777779
1186268543.1527777777882.8472222222203
1288639509.77777777778-646.777777777778
131010210465.8591269841-363.859126984132
1484639026.73412698413-563.734126984127
1591149417.35912698413-303.359126984128
1685638679.48412698413-116.484126984127
1788728474.48412698413397.515873015872
1883018207.9841269841393.0158730158723
1983018380.10912698413-79.1091269841275
2082788140.23412698413137.765873015873
2177367886.48412698413-150.484126984128
2279738456.23412698413-483.234126984128
2382688492.35912698413-224.359126984127
2494769458.9841269841317.0158730158728
251110010415.0654761905684.93452380952
2689628975.94047619048-13.9404761904765
2791739366.56547619048-193.565476190477
2887388628.69047619048109.309523809524
2984598423.6904761904835.3095238095232
3080788157.19047619048-79.1904761904767
3184118329.3154761904881.6845238095236
3282918089.44047619048201.559523809524
3378107835.69047619048-25.6904761904767
3486168405.44047619048210.559523809524
3583128441.56547619048-129.565476190476
3696929408.19047619048283.809523809523
37991110364.2718253968-453.271825396830
3889158925.14682539683-10.1468253968256
3994529315.77182539683136.228174603174
4091128577.89682539683534.103174603175
4184728372.8968253968399.1031746031742
4282308106.39682539683123.603174603174
4383848278.52182539683105.478174603175
4486258038.64682539683586.353174603175
4582217784.89682539683436.103174603174
4686498354.64682539683294.353174603175
4786258390.77182539683234.228174603175
48104439357.396825396831085.60317460317
491035710313.478174603243.5218253968213
5085868874.35317460317-288.353174603174
5188929264.97817460317-372.978174603175
5283298527.10317460317-198.103174603174
5381018322.10317460317-221.103174603175
5479228055.60317460317-133.603174603175
5581208227.72817460317-107.728174603174
5678387987.85317460317-149.853174603174
5777357734.103174603170.896825396825363
5884068303.85317460317102.146825396826
5982098339.97817460317-130.978174603174
6094519306.60317460317144.396825396826
611004110262.6845238095-221.684523809528
6294118823.55952380952587.440476190477
63104059214.184523809521190.81547619048
6484678476.30952380952-9.30952380952334
6584648271.30952380952192.690476190476
6681028004.8095238095297.1904761904763
6776278176.93452380952-549.934523809524
6875137937.05952380952-424.059523809523
6975107683.30952380952-173.309523809524
7082918253.0595238095237.9404761904766
7180648289.18452380952-225.184523809523
7293839255.80952380952127.190476190477
73970610211.8908730159-505.890873015876
7485798772.76587301587-193.765873015872
7594749163.39087301587310.609126984127
7683188425.51587301587-107.515873015872
7782138220.51587301587-7.51587301587273
7880597954.01587301587104.984126984127
7991118126.14087301587984.859126984127
8077087886.26587301587-178.265873015872
8176807632.5158730158747.4841269841275
8280148202.26587301587-188.265873015872
8380078238.39087301587-231.390873015872
8487189205.01587301587-487.015873015872
85948610161.0972222222-675.097222222226
8691138721.97222222222391.027777777779
8790259112.59722222222-87.5972222222217
8884768374.72222222222101.277777777779
8979528169.72222222222-217.722222222222
9077597903.22222222222-144.222222222222
9178358075.34722222222-240.347222222221
9276007835.47222222222-235.472222222221
9376517581.7222222222269.2777777777785
9483198151.47222222222167.527777777779
9588128187.59722222222624.402777777779
9686309154.22222222222-524.222222222221

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 12008 & 10516.6527777777 & 1491.34722222225 \tabularnewline
2 & 9169 & 9077.52777777778 & 91.4722222222215 \tabularnewline
3 & 8788 & 9468.15277777778 & -680.152777777779 \tabularnewline
4 & 8417 & 8730.27777777778 & -313.277777777776 \tabularnewline
5 & 8247 & 8525.27777777778 & -278.277777777776 \tabularnewline
6 & 8197 & 8258.77777777778 & -61.7777777777776 \tabularnewline
7 & 8236 & 8430.90277777778 & -194.902777777778 \tabularnewline
8 & 8253 & 8191.02777777778 & 61.9722222222178 \tabularnewline
9 & 7733 & 7937.27777777778 & -204.277777777777 \tabularnewline
10 & 8366 & 8507.02777777778 & -141.027777777779 \tabularnewline
11 & 8626 & 8543.15277777778 & 82.8472222222203 \tabularnewline
12 & 8863 & 9509.77777777778 & -646.777777777778 \tabularnewline
13 & 10102 & 10465.8591269841 & -363.859126984132 \tabularnewline
14 & 8463 & 9026.73412698413 & -563.734126984127 \tabularnewline
15 & 9114 & 9417.35912698413 & -303.359126984128 \tabularnewline
16 & 8563 & 8679.48412698413 & -116.484126984127 \tabularnewline
17 & 8872 & 8474.48412698413 & 397.515873015872 \tabularnewline
18 & 8301 & 8207.98412698413 & 93.0158730158723 \tabularnewline
19 & 8301 & 8380.10912698413 & -79.1091269841275 \tabularnewline
20 & 8278 & 8140.23412698413 & 137.765873015873 \tabularnewline
21 & 7736 & 7886.48412698413 & -150.484126984128 \tabularnewline
22 & 7973 & 8456.23412698413 & -483.234126984128 \tabularnewline
23 & 8268 & 8492.35912698413 & -224.359126984127 \tabularnewline
24 & 9476 & 9458.98412698413 & 17.0158730158728 \tabularnewline
25 & 11100 & 10415.0654761905 & 684.93452380952 \tabularnewline
26 & 8962 & 8975.94047619048 & -13.9404761904765 \tabularnewline
27 & 9173 & 9366.56547619048 & -193.565476190477 \tabularnewline
28 & 8738 & 8628.69047619048 & 109.309523809524 \tabularnewline
29 & 8459 & 8423.69047619048 & 35.3095238095232 \tabularnewline
30 & 8078 & 8157.19047619048 & -79.1904761904767 \tabularnewline
31 & 8411 & 8329.31547619048 & 81.6845238095236 \tabularnewline
32 & 8291 & 8089.44047619048 & 201.559523809524 \tabularnewline
33 & 7810 & 7835.69047619048 & -25.6904761904767 \tabularnewline
34 & 8616 & 8405.44047619048 & 210.559523809524 \tabularnewline
35 & 8312 & 8441.56547619048 & -129.565476190476 \tabularnewline
36 & 9692 & 9408.19047619048 & 283.809523809523 \tabularnewline
37 & 9911 & 10364.2718253968 & -453.271825396830 \tabularnewline
38 & 8915 & 8925.14682539683 & -10.1468253968256 \tabularnewline
39 & 9452 & 9315.77182539683 & 136.228174603174 \tabularnewline
40 & 9112 & 8577.89682539683 & 534.103174603175 \tabularnewline
41 & 8472 & 8372.89682539683 & 99.1031746031742 \tabularnewline
42 & 8230 & 8106.39682539683 & 123.603174603174 \tabularnewline
43 & 8384 & 8278.52182539683 & 105.478174603175 \tabularnewline
44 & 8625 & 8038.64682539683 & 586.353174603175 \tabularnewline
45 & 8221 & 7784.89682539683 & 436.103174603174 \tabularnewline
46 & 8649 & 8354.64682539683 & 294.353174603175 \tabularnewline
47 & 8625 & 8390.77182539683 & 234.228174603175 \tabularnewline
48 & 10443 & 9357.39682539683 & 1085.60317460317 \tabularnewline
49 & 10357 & 10313.4781746032 & 43.5218253968213 \tabularnewline
50 & 8586 & 8874.35317460317 & -288.353174603174 \tabularnewline
51 & 8892 & 9264.97817460317 & -372.978174603175 \tabularnewline
52 & 8329 & 8527.10317460317 & -198.103174603174 \tabularnewline
53 & 8101 & 8322.10317460317 & -221.103174603175 \tabularnewline
54 & 7922 & 8055.60317460317 & -133.603174603175 \tabularnewline
55 & 8120 & 8227.72817460317 & -107.728174603174 \tabularnewline
56 & 7838 & 7987.85317460317 & -149.853174603174 \tabularnewline
57 & 7735 & 7734.10317460317 & 0.896825396825363 \tabularnewline
58 & 8406 & 8303.85317460317 & 102.146825396826 \tabularnewline
59 & 8209 & 8339.97817460317 & -130.978174603174 \tabularnewline
60 & 9451 & 9306.60317460317 & 144.396825396826 \tabularnewline
61 & 10041 & 10262.6845238095 & -221.684523809528 \tabularnewline
62 & 9411 & 8823.55952380952 & 587.440476190477 \tabularnewline
63 & 10405 & 9214.18452380952 & 1190.81547619048 \tabularnewline
64 & 8467 & 8476.30952380952 & -9.30952380952334 \tabularnewline
65 & 8464 & 8271.30952380952 & 192.690476190476 \tabularnewline
66 & 8102 & 8004.80952380952 & 97.1904761904763 \tabularnewline
67 & 7627 & 8176.93452380952 & -549.934523809524 \tabularnewline
68 & 7513 & 7937.05952380952 & -424.059523809523 \tabularnewline
69 & 7510 & 7683.30952380952 & -173.309523809524 \tabularnewline
70 & 8291 & 8253.05952380952 & 37.9404761904766 \tabularnewline
71 & 8064 & 8289.18452380952 & -225.184523809523 \tabularnewline
72 & 9383 & 9255.80952380952 & 127.190476190477 \tabularnewline
73 & 9706 & 10211.8908730159 & -505.890873015876 \tabularnewline
74 & 8579 & 8772.76587301587 & -193.765873015872 \tabularnewline
75 & 9474 & 9163.39087301587 & 310.609126984127 \tabularnewline
76 & 8318 & 8425.51587301587 & -107.515873015872 \tabularnewline
77 & 8213 & 8220.51587301587 & -7.51587301587273 \tabularnewline
78 & 8059 & 7954.01587301587 & 104.984126984127 \tabularnewline
79 & 9111 & 8126.14087301587 & 984.859126984127 \tabularnewline
80 & 7708 & 7886.26587301587 & -178.265873015872 \tabularnewline
81 & 7680 & 7632.51587301587 & 47.4841269841275 \tabularnewline
82 & 8014 & 8202.26587301587 & -188.265873015872 \tabularnewline
83 & 8007 & 8238.39087301587 & -231.390873015872 \tabularnewline
84 & 8718 & 9205.01587301587 & -487.015873015872 \tabularnewline
85 & 9486 & 10161.0972222222 & -675.097222222226 \tabularnewline
86 & 9113 & 8721.97222222222 & 391.027777777779 \tabularnewline
87 & 9025 & 9112.59722222222 & -87.5972222222217 \tabularnewline
88 & 8476 & 8374.72222222222 & 101.277777777779 \tabularnewline
89 & 7952 & 8169.72222222222 & -217.722222222222 \tabularnewline
90 & 7759 & 7903.22222222222 & -144.222222222222 \tabularnewline
91 & 7835 & 8075.34722222222 & -240.347222222221 \tabularnewline
92 & 7600 & 7835.47222222222 & -235.472222222221 \tabularnewline
93 & 7651 & 7581.72222222222 & 69.2777777777785 \tabularnewline
94 & 8319 & 8151.47222222222 & 167.527777777779 \tabularnewline
95 & 8812 & 8187.59722222222 & 624.402777777779 \tabularnewline
96 & 8630 & 9154.22222222222 & -524.222222222221 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=103697&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]12008[/C][C]10516.6527777777[/C][C]1491.34722222225[/C][/ROW]
[ROW][C]2[/C][C]9169[/C][C]9077.52777777778[/C][C]91.4722222222215[/C][/ROW]
[ROW][C]3[/C][C]8788[/C][C]9468.15277777778[/C][C]-680.152777777779[/C][/ROW]
[ROW][C]4[/C][C]8417[/C][C]8730.27777777778[/C][C]-313.277777777776[/C][/ROW]
[ROW][C]5[/C][C]8247[/C][C]8525.27777777778[/C][C]-278.277777777776[/C][/ROW]
[ROW][C]6[/C][C]8197[/C][C]8258.77777777778[/C][C]-61.7777777777776[/C][/ROW]
[ROW][C]7[/C][C]8236[/C][C]8430.90277777778[/C][C]-194.902777777778[/C][/ROW]
[ROW][C]8[/C][C]8253[/C][C]8191.02777777778[/C][C]61.9722222222178[/C][/ROW]
[ROW][C]9[/C][C]7733[/C][C]7937.27777777778[/C][C]-204.277777777777[/C][/ROW]
[ROW][C]10[/C][C]8366[/C][C]8507.02777777778[/C][C]-141.027777777779[/C][/ROW]
[ROW][C]11[/C][C]8626[/C][C]8543.15277777778[/C][C]82.8472222222203[/C][/ROW]
[ROW][C]12[/C][C]8863[/C][C]9509.77777777778[/C][C]-646.777777777778[/C][/ROW]
[ROW][C]13[/C][C]10102[/C][C]10465.8591269841[/C][C]-363.859126984132[/C][/ROW]
[ROW][C]14[/C][C]8463[/C][C]9026.73412698413[/C][C]-563.734126984127[/C][/ROW]
[ROW][C]15[/C][C]9114[/C][C]9417.35912698413[/C][C]-303.359126984128[/C][/ROW]
[ROW][C]16[/C][C]8563[/C][C]8679.48412698413[/C][C]-116.484126984127[/C][/ROW]
[ROW][C]17[/C][C]8872[/C][C]8474.48412698413[/C][C]397.515873015872[/C][/ROW]
[ROW][C]18[/C][C]8301[/C][C]8207.98412698413[/C][C]93.0158730158723[/C][/ROW]
[ROW][C]19[/C][C]8301[/C][C]8380.10912698413[/C][C]-79.1091269841275[/C][/ROW]
[ROW][C]20[/C][C]8278[/C][C]8140.23412698413[/C][C]137.765873015873[/C][/ROW]
[ROW][C]21[/C][C]7736[/C][C]7886.48412698413[/C][C]-150.484126984128[/C][/ROW]
[ROW][C]22[/C][C]7973[/C][C]8456.23412698413[/C][C]-483.234126984128[/C][/ROW]
[ROW][C]23[/C][C]8268[/C][C]8492.35912698413[/C][C]-224.359126984127[/C][/ROW]
[ROW][C]24[/C][C]9476[/C][C]9458.98412698413[/C][C]17.0158730158728[/C][/ROW]
[ROW][C]25[/C][C]11100[/C][C]10415.0654761905[/C][C]684.93452380952[/C][/ROW]
[ROW][C]26[/C][C]8962[/C][C]8975.94047619048[/C][C]-13.9404761904765[/C][/ROW]
[ROW][C]27[/C][C]9173[/C][C]9366.56547619048[/C][C]-193.565476190477[/C][/ROW]
[ROW][C]28[/C][C]8738[/C][C]8628.69047619048[/C][C]109.309523809524[/C][/ROW]
[ROW][C]29[/C][C]8459[/C][C]8423.69047619048[/C][C]35.3095238095232[/C][/ROW]
[ROW][C]30[/C][C]8078[/C][C]8157.19047619048[/C][C]-79.1904761904767[/C][/ROW]
[ROW][C]31[/C][C]8411[/C][C]8329.31547619048[/C][C]81.6845238095236[/C][/ROW]
[ROW][C]32[/C][C]8291[/C][C]8089.44047619048[/C][C]201.559523809524[/C][/ROW]
[ROW][C]33[/C][C]7810[/C][C]7835.69047619048[/C][C]-25.6904761904767[/C][/ROW]
[ROW][C]34[/C][C]8616[/C][C]8405.44047619048[/C][C]210.559523809524[/C][/ROW]
[ROW][C]35[/C][C]8312[/C][C]8441.56547619048[/C][C]-129.565476190476[/C][/ROW]
[ROW][C]36[/C][C]9692[/C][C]9408.19047619048[/C][C]283.809523809523[/C][/ROW]
[ROW][C]37[/C][C]9911[/C][C]10364.2718253968[/C][C]-453.271825396830[/C][/ROW]
[ROW][C]38[/C][C]8915[/C][C]8925.14682539683[/C][C]-10.1468253968256[/C][/ROW]
[ROW][C]39[/C][C]9452[/C][C]9315.77182539683[/C][C]136.228174603174[/C][/ROW]
[ROW][C]40[/C][C]9112[/C][C]8577.89682539683[/C][C]534.103174603175[/C][/ROW]
[ROW][C]41[/C][C]8472[/C][C]8372.89682539683[/C][C]99.1031746031742[/C][/ROW]
[ROW][C]42[/C][C]8230[/C][C]8106.39682539683[/C][C]123.603174603174[/C][/ROW]
[ROW][C]43[/C][C]8384[/C][C]8278.52182539683[/C][C]105.478174603175[/C][/ROW]
[ROW][C]44[/C][C]8625[/C][C]8038.64682539683[/C][C]586.353174603175[/C][/ROW]
[ROW][C]45[/C][C]8221[/C][C]7784.89682539683[/C][C]436.103174603174[/C][/ROW]
[ROW][C]46[/C][C]8649[/C][C]8354.64682539683[/C][C]294.353174603175[/C][/ROW]
[ROW][C]47[/C][C]8625[/C][C]8390.77182539683[/C][C]234.228174603175[/C][/ROW]
[ROW][C]48[/C][C]10443[/C][C]9357.39682539683[/C][C]1085.60317460317[/C][/ROW]
[ROW][C]49[/C][C]10357[/C][C]10313.4781746032[/C][C]43.5218253968213[/C][/ROW]
[ROW][C]50[/C][C]8586[/C][C]8874.35317460317[/C][C]-288.353174603174[/C][/ROW]
[ROW][C]51[/C][C]8892[/C][C]9264.97817460317[/C][C]-372.978174603175[/C][/ROW]
[ROW][C]52[/C][C]8329[/C][C]8527.10317460317[/C][C]-198.103174603174[/C][/ROW]
[ROW][C]53[/C][C]8101[/C][C]8322.10317460317[/C][C]-221.103174603175[/C][/ROW]
[ROW][C]54[/C][C]7922[/C][C]8055.60317460317[/C][C]-133.603174603175[/C][/ROW]
[ROW][C]55[/C][C]8120[/C][C]8227.72817460317[/C][C]-107.728174603174[/C][/ROW]
[ROW][C]56[/C][C]7838[/C][C]7987.85317460317[/C][C]-149.853174603174[/C][/ROW]
[ROW][C]57[/C][C]7735[/C][C]7734.10317460317[/C][C]0.896825396825363[/C][/ROW]
[ROW][C]58[/C][C]8406[/C][C]8303.85317460317[/C][C]102.146825396826[/C][/ROW]
[ROW][C]59[/C][C]8209[/C][C]8339.97817460317[/C][C]-130.978174603174[/C][/ROW]
[ROW][C]60[/C][C]9451[/C][C]9306.60317460317[/C][C]144.396825396826[/C][/ROW]
[ROW][C]61[/C][C]10041[/C][C]10262.6845238095[/C][C]-221.684523809528[/C][/ROW]
[ROW][C]62[/C][C]9411[/C][C]8823.55952380952[/C][C]587.440476190477[/C][/ROW]
[ROW][C]63[/C][C]10405[/C][C]9214.18452380952[/C][C]1190.81547619048[/C][/ROW]
[ROW][C]64[/C][C]8467[/C][C]8476.30952380952[/C][C]-9.30952380952334[/C][/ROW]
[ROW][C]65[/C][C]8464[/C][C]8271.30952380952[/C][C]192.690476190476[/C][/ROW]
[ROW][C]66[/C][C]8102[/C][C]8004.80952380952[/C][C]97.1904761904763[/C][/ROW]
[ROW][C]67[/C][C]7627[/C][C]8176.93452380952[/C][C]-549.934523809524[/C][/ROW]
[ROW][C]68[/C][C]7513[/C][C]7937.05952380952[/C][C]-424.059523809523[/C][/ROW]
[ROW][C]69[/C][C]7510[/C][C]7683.30952380952[/C][C]-173.309523809524[/C][/ROW]
[ROW][C]70[/C][C]8291[/C][C]8253.05952380952[/C][C]37.9404761904766[/C][/ROW]
[ROW][C]71[/C][C]8064[/C][C]8289.18452380952[/C][C]-225.184523809523[/C][/ROW]
[ROW][C]72[/C][C]9383[/C][C]9255.80952380952[/C][C]127.190476190477[/C][/ROW]
[ROW][C]73[/C][C]9706[/C][C]10211.8908730159[/C][C]-505.890873015876[/C][/ROW]
[ROW][C]74[/C][C]8579[/C][C]8772.76587301587[/C][C]-193.765873015872[/C][/ROW]
[ROW][C]75[/C][C]9474[/C][C]9163.39087301587[/C][C]310.609126984127[/C][/ROW]
[ROW][C]76[/C][C]8318[/C][C]8425.51587301587[/C][C]-107.515873015872[/C][/ROW]
[ROW][C]77[/C][C]8213[/C][C]8220.51587301587[/C][C]-7.51587301587273[/C][/ROW]
[ROW][C]78[/C][C]8059[/C][C]7954.01587301587[/C][C]104.984126984127[/C][/ROW]
[ROW][C]79[/C][C]9111[/C][C]8126.14087301587[/C][C]984.859126984127[/C][/ROW]
[ROW][C]80[/C][C]7708[/C][C]7886.26587301587[/C][C]-178.265873015872[/C][/ROW]
[ROW][C]81[/C][C]7680[/C][C]7632.51587301587[/C][C]47.4841269841275[/C][/ROW]
[ROW][C]82[/C][C]8014[/C][C]8202.26587301587[/C][C]-188.265873015872[/C][/ROW]
[ROW][C]83[/C][C]8007[/C][C]8238.39087301587[/C][C]-231.390873015872[/C][/ROW]
[ROW][C]84[/C][C]8718[/C][C]9205.01587301587[/C][C]-487.015873015872[/C][/ROW]
[ROW][C]85[/C][C]9486[/C][C]10161.0972222222[/C][C]-675.097222222226[/C][/ROW]
[ROW][C]86[/C][C]9113[/C][C]8721.97222222222[/C][C]391.027777777779[/C][/ROW]
[ROW][C]87[/C][C]9025[/C][C]9112.59722222222[/C][C]-87.5972222222217[/C][/ROW]
[ROW][C]88[/C][C]8476[/C][C]8374.72222222222[/C][C]101.277777777779[/C][/ROW]
[ROW][C]89[/C][C]7952[/C][C]8169.72222222222[/C][C]-217.722222222222[/C][/ROW]
[ROW][C]90[/C][C]7759[/C][C]7903.22222222222[/C][C]-144.222222222222[/C][/ROW]
[ROW][C]91[/C][C]7835[/C][C]8075.34722222222[/C][C]-240.347222222221[/C][/ROW]
[ROW][C]92[/C][C]7600[/C][C]7835.47222222222[/C][C]-235.472222222221[/C][/ROW]
[ROW][C]93[/C][C]7651[/C][C]7581.72222222222[/C][C]69.2777777777785[/C][/ROW]
[ROW][C]94[/C][C]8319[/C][C]8151.47222222222[/C][C]167.527777777779[/C][/ROW]
[ROW][C]95[/C][C]8812[/C][C]8187.59722222222[/C][C]624.402777777779[/C][/ROW]
[ROW][C]96[/C][C]8630[/C][C]9154.22222222222[/C][C]-524.222222222221[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=103697&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=103697&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
11200810516.65277777771491.34722222225
291699077.5277777777891.4722222222215
387889468.15277777778-680.152777777779
484178730.27777777778-313.277777777776
582478525.27777777778-278.277777777776
681978258.77777777778-61.7777777777776
782368430.90277777778-194.902777777778
882538191.0277777777861.9722222222178
977337937.27777777778-204.277777777777
1083668507.02777777778-141.027777777779
1186268543.1527777777882.8472222222203
1288639509.77777777778-646.777777777778
131010210465.8591269841-363.859126984132
1484639026.73412698413-563.734126984127
1591149417.35912698413-303.359126984128
1685638679.48412698413-116.484126984127
1788728474.48412698413397.515873015872
1883018207.9841269841393.0158730158723
1983018380.10912698413-79.1091269841275
2082788140.23412698413137.765873015873
2177367886.48412698413-150.484126984128
2279738456.23412698413-483.234126984128
2382688492.35912698413-224.359126984127
2494769458.9841269841317.0158730158728
251110010415.0654761905684.93452380952
2689628975.94047619048-13.9404761904765
2791739366.56547619048-193.565476190477
2887388628.69047619048109.309523809524
2984598423.6904761904835.3095238095232
3080788157.19047619048-79.1904761904767
3184118329.3154761904881.6845238095236
3282918089.44047619048201.559523809524
3378107835.69047619048-25.6904761904767
3486168405.44047619048210.559523809524
3583128441.56547619048-129.565476190476
3696929408.19047619048283.809523809523
37991110364.2718253968-453.271825396830
3889158925.14682539683-10.1468253968256
3994529315.77182539683136.228174603174
4091128577.89682539683534.103174603175
4184728372.8968253968399.1031746031742
4282308106.39682539683123.603174603174
4383848278.52182539683105.478174603175
4486258038.64682539683586.353174603175
4582217784.89682539683436.103174603174
4686498354.64682539683294.353174603175
4786258390.77182539683234.228174603175
48104439357.396825396831085.60317460317
491035710313.478174603243.5218253968213
5085868874.35317460317-288.353174603174
5188929264.97817460317-372.978174603175
5283298527.10317460317-198.103174603174
5381018322.10317460317-221.103174603175
5479228055.60317460317-133.603174603175
5581208227.72817460317-107.728174603174
5678387987.85317460317-149.853174603174
5777357734.103174603170.896825396825363
5884068303.85317460317102.146825396826
5982098339.97817460317-130.978174603174
6094519306.60317460317144.396825396826
611004110262.6845238095-221.684523809528
6294118823.55952380952587.440476190477
63104059214.184523809521190.81547619048
6484678476.30952380952-9.30952380952334
6584648271.30952380952192.690476190476
6681028004.8095238095297.1904761904763
6776278176.93452380952-549.934523809524
6875137937.05952380952-424.059523809523
6975107683.30952380952-173.309523809524
7082918253.0595238095237.9404761904766
7180648289.18452380952-225.184523809523
7293839255.80952380952127.190476190477
73970610211.8908730159-505.890873015876
7485798772.76587301587-193.765873015872
7594749163.39087301587310.609126984127
7683188425.51587301587-107.515873015872
7782138220.51587301587-7.51587301587273
7880597954.01587301587104.984126984127
7991118126.14087301587984.859126984127
8077087886.26587301587-178.265873015872
8176807632.5158730158747.4841269841275
8280148202.26587301587-188.265873015872
8380078238.39087301587-231.390873015872
8487189205.01587301587-487.015873015872
85948610161.0972222222-675.097222222226
8691138721.97222222222391.027777777779
8790259112.59722222222-87.5972222222217
8884768374.72222222222101.277777777779
8979528169.72222222222-217.722222222222
9077597903.22222222222-144.222222222222
9178358075.34722222222-240.347222222221
9276007835.47222222222-235.472222222221
9376517581.7222222222269.2777777777785
9483198151.47222222222167.527777777779
9588128187.59722222222624.402777777779
9686309154.22222222222-524.222222222221







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
160.9870200141847270.02595997163054660.0129799858152733
170.993215475638390.01356904872322130.00678452436161064
180.9871333518408690.02573329631826230.0128666481591311
190.9767902721992460.04641945560150790.0232097278007540
200.9594030096638490.08119398067230240.0405969903361512
210.9354202044054380.1291595911891240.0645797955945622
220.920147365396060.1597052692078810.0798526346039403
230.8884825892708350.2230348214583310.111517410729165
240.9009655652563970.1980688694872060.0990344347436028
250.9058265065764990.1883469868470020.0941734934235012
260.8759877516938590.2480244966122830.124012248306141
270.8605860320196960.2788279359606070.139413967980304
280.8228777827474520.3542444345050960.177122217252548
290.767449765979030.4651004680419390.232550234020969
300.7124055184530480.5751889630939040.287594481546952
310.6500217084276160.6999565831447680.349978291572384
320.5786926518213520.8426146963572950.421307348178648
330.5126373851158930.9747252297682140.487362614884107
340.4848099847516590.9696199695033170.515190015248341
350.4323147136910710.8646294273821420.567685286308929
360.4170191033671060.8340382067342110.582980896632894
370.656858733725770.686282532548460.34314126627423
380.603283016180020.7934339676399590.396716983819979
390.5892885097674190.8214229804651620.410711490232581
400.5977951473916310.8044097052167380.402204852608369
410.5301899595042770.9396200809914460.469810040495723
420.4608798269553290.9217596539106580.539120173044671
430.394180475756210.788360951512420.60581952424379
440.4108588572669780.8217177145339560.589141142733022
450.3897490729268060.7794981458536120.610250927073194
460.3400589923204750.680117984640950.659941007679525
470.2847275397655280.5694550795310560.715272460234472
480.6277138923070930.7445722153858130.372286107692907
490.6649382710412870.6701234579174270.335061728958713
500.675602422558380.6487951548832410.324397577441620
510.7619573373239290.4760853253521410.238042662676070
520.7414211116603350.5171577766793290.258578888339665
530.7229456284072110.5541087431855780.277054371592789
540.6844361158012430.6311277683975140.315563884198757
550.6420586901257020.7158826197485960.357941309874298
560.6094835762807380.7810328474385230.390516423719262
570.5436813553372590.9126372893254820.456318644662741
580.4730491065436270.9460982130872540.526950893456373
590.4315820804518530.8631641609037070.568417919548146
600.3842567633777380.7685135267554760.615743236622262
610.3750225192685560.7500450385371130.624977480731444
620.3971446601651670.7942893203303340.602855339834833
630.7663055738847820.4673888522304360.233694426115218
640.7052513275415820.5894973449168360.294748672458418
650.665768192845120.668463614309760.33423180715488
660.6004336950298150.7991326099403690.399566304970185
670.7542783813596040.4914432372807910.245721618640396
680.7311383347314140.5377233305371720.268861665268586
690.6811621081073210.6376757837853570.318837891892679
700.5979369681615640.8041260636768730.402063031838436
710.6017243044882210.7965513910235580.398275695511779
720.6045650795246410.7908698409507170.395434920475359
730.5534950762812190.8930098474375630.446504923718781
740.5612801550858940.8774396898282130.438719844914106
750.4929241626094860.9858483252189710.507075837390514
760.401914899464650.80382979892930.59808510053535
770.2982534340515790.5965068681031590.70174656594842
780.2083212614708970.4166425229417940.791678738529103
790.7786635679125140.4426728641749710.221336432087486
800.6886517893577950.6226964212844090.311348210642205

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
16 & 0.987020014184727 & 0.0259599716305466 & 0.0129799858152733 \tabularnewline
17 & 0.99321547563839 & 0.0135690487232213 & 0.00678452436161064 \tabularnewline
18 & 0.987133351840869 & 0.0257332963182623 & 0.0128666481591311 \tabularnewline
19 & 0.976790272199246 & 0.0464194556015079 & 0.0232097278007540 \tabularnewline
20 & 0.959403009663849 & 0.0811939806723024 & 0.0405969903361512 \tabularnewline
21 & 0.935420204405438 & 0.129159591189124 & 0.0645797955945622 \tabularnewline
22 & 0.92014736539606 & 0.159705269207881 & 0.0798526346039403 \tabularnewline
23 & 0.888482589270835 & 0.223034821458331 & 0.111517410729165 \tabularnewline
24 & 0.900965565256397 & 0.198068869487206 & 0.0990344347436028 \tabularnewline
25 & 0.905826506576499 & 0.188346986847002 & 0.0941734934235012 \tabularnewline
26 & 0.875987751693859 & 0.248024496612283 & 0.124012248306141 \tabularnewline
27 & 0.860586032019696 & 0.278827935960607 & 0.139413967980304 \tabularnewline
28 & 0.822877782747452 & 0.354244434505096 & 0.177122217252548 \tabularnewline
29 & 0.76744976597903 & 0.465100468041939 & 0.232550234020969 \tabularnewline
30 & 0.712405518453048 & 0.575188963093904 & 0.287594481546952 \tabularnewline
31 & 0.650021708427616 & 0.699956583144768 & 0.349978291572384 \tabularnewline
32 & 0.578692651821352 & 0.842614696357295 & 0.421307348178648 \tabularnewline
33 & 0.512637385115893 & 0.974725229768214 & 0.487362614884107 \tabularnewline
34 & 0.484809984751659 & 0.969619969503317 & 0.515190015248341 \tabularnewline
35 & 0.432314713691071 & 0.864629427382142 & 0.567685286308929 \tabularnewline
36 & 0.417019103367106 & 0.834038206734211 & 0.582980896632894 \tabularnewline
37 & 0.65685873372577 & 0.68628253254846 & 0.34314126627423 \tabularnewline
38 & 0.60328301618002 & 0.793433967639959 & 0.396716983819979 \tabularnewline
39 & 0.589288509767419 & 0.821422980465162 & 0.410711490232581 \tabularnewline
40 & 0.597795147391631 & 0.804409705216738 & 0.402204852608369 \tabularnewline
41 & 0.530189959504277 & 0.939620080991446 & 0.469810040495723 \tabularnewline
42 & 0.460879826955329 & 0.921759653910658 & 0.539120173044671 \tabularnewline
43 & 0.39418047575621 & 0.78836095151242 & 0.60581952424379 \tabularnewline
44 & 0.410858857266978 & 0.821717714533956 & 0.589141142733022 \tabularnewline
45 & 0.389749072926806 & 0.779498145853612 & 0.610250927073194 \tabularnewline
46 & 0.340058992320475 & 0.68011798464095 & 0.659941007679525 \tabularnewline
47 & 0.284727539765528 & 0.569455079531056 & 0.715272460234472 \tabularnewline
48 & 0.627713892307093 & 0.744572215385813 & 0.372286107692907 \tabularnewline
49 & 0.664938271041287 & 0.670123457917427 & 0.335061728958713 \tabularnewline
50 & 0.67560242255838 & 0.648795154883241 & 0.324397577441620 \tabularnewline
51 & 0.761957337323929 & 0.476085325352141 & 0.238042662676070 \tabularnewline
52 & 0.741421111660335 & 0.517157776679329 & 0.258578888339665 \tabularnewline
53 & 0.722945628407211 & 0.554108743185578 & 0.277054371592789 \tabularnewline
54 & 0.684436115801243 & 0.631127768397514 & 0.315563884198757 \tabularnewline
55 & 0.642058690125702 & 0.715882619748596 & 0.357941309874298 \tabularnewline
56 & 0.609483576280738 & 0.781032847438523 & 0.390516423719262 \tabularnewline
57 & 0.543681355337259 & 0.912637289325482 & 0.456318644662741 \tabularnewline
58 & 0.473049106543627 & 0.946098213087254 & 0.526950893456373 \tabularnewline
59 & 0.431582080451853 & 0.863164160903707 & 0.568417919548146 \tabularnewline
60 & 0.384256763377738 & 0.768513526755476 & 0.615743236622262 \tabularnewline
61 & 0.375022519268556 & 0.750045038537113 & 0.624977480731444 \tabularnewline
62 & 0.397144660165167 & 0.794289320330334 & 0.602855339834833 \tabularnewline
63 & 0.766305573884782 & 0.467388852230436 & 0.233694426115218 \tabularnewline
64 & 0.705251327541582 & 0.589497344916836 & 0.294748672458418 \tabularnewline
65 & 0.66576819284512 & 0.66846361430976 & 0.33423180715488 \tabularnewline
66 & 0.600433695029815 & 0.799132609940369 & 0.399566304970185 \tabularnewline
67 & 0.754278381359604 & 0.491443237280791 & 0.245721618640396 \tabularnewline
68 & 0.731138334731414 & 0.537723330537172 & 0.268861665268586 \tabularnewline
69 & 0.681162108107321 & 0.637675783785357 & 0.318837891892679 \tabularnewline
70 & 0.597936968161564 & 0.804126063676873 & 0.402063031838436 \tabularnewline
71 & 0.601724304488221 & 0.796551391023558 & 0.398275695511779 \tabularnewline
72 & 0.604565079524641 & 0.790869840950717 & 0.395434920475359 \tabularnewline
73 & 0.553495076281219 & 0.893009847437563 & 0.446504923718781 \tabularnewline
74 & 0.561280155085894 & 0.877439689828213 & 0.438719844914106 \tabularnewline
75 & 0.492924162609486 & 0.985848325218971 & 0.507075837390514 \tabularnewline
76 & 0.40191489946465 & 0.8038297989293 & 0.59808510053535 \tabularnewline
77 & 0.298253434051579 & 0.596506868103159 & 0.70174656594842 \tabularnewline
78 & 0.208321261470897 & 0.416642522941794 & 0.791678738529103 \tabularnewline
79 & 0.778663567912514 & 0.442672864174971 & 0.221336432087486 \tabularnewline
80 & 0.688651789357795 & 0.622696421284409 & 0.311348210642205 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=103697&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]16[/C][C]0.987020014184727[/C][C]0.0259599716305466[/C][C]0.0129799858152733[/C][/ROW]
[ROW][C]17[/C][C]0.99321547563839[/C][C]0.0135690487232213[/C][C]0.00678452436161064[/C][/ROW]
[ROW][C]18[/C][C]0.987133351840869[/C][C]0.0257332963182623[/C][C]0.0128666481591311[/C][/ROW]
[ROW][C]19[/C][C]0.976790272199246[/C][C]0.0464194556015079[/C][C]0.0232097278007540[/C][/ROW]
[ROW][C]20[/C][C]0.959403009663849[/C][C]0.0811939806723024[/C][C]0.0405969903361512[/C][/ROW]
[ROW][C]21[/C][C]0.935420204405438[/C][C]0.129159591189124[/C][C]0.0645797955945622[/C][/ROW]
[ROW][C]22[/C][C]0.92014736539606[/C][C]0.159705269207881[/C][C]0.0798526346039403[/C][/ROW]
[ROW][C]23[/C][C]0.888482589270835[/C][C]0.223034821458331[/C][C]0.111517410729165[/C][/ROW]
[ROW][C]24[/C][C]0.900965565256397[/C][C]0.198068869487206[/C][C]0.0990344347436028[/C][/ROW]
[ROW][C]25[/C][C]0.905826506576499[/C][C]0.188346986847002[/C][C]0.0941734934235012[/C][/ROW]
[ROW][C]26[/C][C]0.875987751693859[/C][C]0.248024496612283[/C][C]0.124012248306141[/C][/ROW]
[ROW][C]27[/C][C]0.860586032019696[/C][C]0.278827935960607[/C][C]0.139413967980304[/C][/ROW]
[ROW][C]28[/C][C]0.822877782747452[/C][C]0.354244434505096[/C][C]0.177122217252548[/C][/ROW]
[ROW][C]29[/C][C]0.76744976597903[/C][C]0.465100468041939[/C][C]0.232550234020969[/C][/ROW]
[ROW][C]30[/C][C]0.712405518453048[/C][C]0.575188963093904[/C][C]0.287594481546952[/C][/ROW]
[ROW][C]31[/C][C]0.650021708427616[/C][C]0.699956583144768[/C][C]0.349978291572384[/C][/ROW]
[ROW][C]32[/C][C]0.578692651821352[/C][C]0.842614696357295[/C][C]0.421307348178648[/C][/ROW]
[ROW][C]33[/C][C]0.512637385115893[/C][C]0.974725229768214[/C][C]0.487362614884107[/C][/ROW]
[ROW][C]34[/C][C]0.484809984751659[/C][C]0.969619969503317[/C][C]0.515190015248341[/C][/ROW]
[ROW][C]35[/C][C]0.432314713691071[/C][C]0.864629427382142[/C][C]0.567685286308929[/C][/ROW]
[ROW][C]36[/C][C]0.417019103367106[/C][C]0.834038206734211[/C][C]0.582980896632894[/C][/ROW]
[ROW][C]37[/C][C]0.65685873372577[/C][C]0.68628253254846[/C][C]0.34314126627423[/C][/ROW]
[ROW][C]38[/C][C]0.60328301618002[/C][C]0.793433967639959[/C][C]0.396716983819979[/C][/ROW]
[ROW][C]39[/C][C]0.589288509767419[/C][C]0.821422980465162[/C][C]0.410711490232581[/C][/ROW]
[ROW][C]40[/C][C]0.597795147391631[/C][C]0.804409705216738[/C][C]0.402204852608369[/C][/ROW]
[ROW][C]41[/C][C]0.530189959504277[/C][C]0.939620080991446[/C][C]0.469810040495723[/C][/ROW]
[ROW][C]42[/C][C]0.460879826955329[/C][C]0.921759653910658[/C][C]0.539120173044671[/C][/ROW]
[ROW][C]43[/C][C]0.39418047575621[/C][C]0.78836095151242[/C][C]0.60581952424379[/C][/ROW]
[ROW][C]44[/C][C]0.410858857266978[/C][C]0.821717714533956[/C][C]0.589141142733022[/C][/ROW]
[ROW][C]45[/C][C]0.389749072926806[/C][C]0.779498145853612[/C][C]0.610250927073194[/C][/ROW]
[ROW][C]46[/C][C]0.340058992320475[/C][C]0.68011798464095[/C][C]0.659941007679525[/C][/ROW]
[ROW][C]47[/C][C]0.284727539765528[/C][C]0.569455079531056[/C][C]0.715272460234472[/C][/ROW]
[ROW][C]48[/C][C]0.627713892307093[/C][C]0.744572215385813[/C][C]0.372286107692907[/C][/ROW]
[ROW][C]49[/C][C]0.664938271041287[/C][C]0.670123457917427[/C][C]0.335061728958713[/C][/ROW]
[ROW][C]50[/C][C]0.67560242255838[/C][C]0.648795154883241[/C][C]0.324397577441620[/C][/ROW]
[ROW][C]51[/C][C]0.761957337323929[/C][C]0.476085325352141[/C][C]0.238042662676070[/C][/ROW]
[ROW][C]52[/C][C]0.741421111660335[/C][C]0.517157776679329[/C][C]0.258578888339665[/C][/ROW]
[ROW][C]53[/C][C]0.722945628407211[/C][C]0.554108743185578[/C][C]0.277054371592789[/C][/ROW]
[ROW][C]54[/C][C]0.684436115801243[/C][C]0.631127768397514[/C][C]0.315563884198757[/C][/ROW]
[ROW][C]55[/C][C]0.642058690125702[/C][C]0.715882619748596[/C][C]0.357941309874298[/C][/ROW]
[ROW][C]56[/C][C]0.609483576280738[/C][C]0.781032847438523[/C][C]0.390516423719262[/C][/ROW]
[ROW][C]57[/C][C]0.543681355337259[/C][C]0.912637289325482[/C][C]0.456318644662741[/C][/ROW]
[ROW][C]58[/C][C]0.473049106543627[/C][C]0.946098213087254[/C][C]0.526950893456373[/C][/ROW]
[ROW][C]59[/C][C]0.431582080451853[/C][C]0.863164160903707[/C][C]0.568417919548146[/C][/ROW]
[ROW][C]60[/C][C]0.384256763377738[/C][C]0.768513526755476[/C][C]0.615743236622262[/C][/ROW]
[ROW][C]61[/C][C]0.375022519268556[/C][C]0.750045038537113[/C][C]0.624977480731444[/C][/ROW]
[ROW][C]62[/C][C]0.397144660165167[/C][C]0.794289320330334[/C][C]0.602855339834833[/C][/ROW]
[ROW][C]63[/C][C]0.766305573884782[/C][C]0.467388852230436[/C][C]0.233694426115218[/C][/ROW]
[ROW][C]64[/C][C]0.705251327541582[/C][C]0.589497344916836[/C][C]0.294748672458418[/C][/ROW]
[ROW][C]65[/C][C]0.66576819284512[/C][C]0.66846361430976[/C][C]0.33423180715488[/C][/ROW]
[ROW][C]66[/C][C]0.600433695029815[/C][C]0.799132609940369[/C][C]0.399566304970185[/C][/ROW]
[ROW][C]67[/C][C]0.754278381359604[/C][C]0.491443237280791[/C][C]0.245721618640396[/C][/ROW]
[ROW][C]68[/C][C]0.731138334731414[/C][C]0.537723330537172[/C][C]0.268861665268586[/C][/ROW]
[ROW][C]69[/C][C]0.681162108107321[/C][C]0.637675783785357[/C][C]0.318837891892679[/C][/ROW]
[ROW][C]70[/C][C]0.597936968161564[/C][C]0.804126063676873[/C][C]0.402063031838436[/C][/ROW]
[ROW][C]71[/C][C]0.601724304488221[/C][C]0.796551391023558[/C][C]0.398275695511779[/C][/ROW]
[ROW][C]72[/C][C]0.604565079524641[/C][C]0.790869840950717[/C][C]0.395434920475359[/C][/ROW]
[ROW][C]73[/C][C]0.553495076281219[/C][C]0.893009847437563[/C][C]0.446504923718781[/C][/ROW]
[ROW][C]74[/C][C]0.561280155085894[/C][C]0.877439689828213[/C][C]0.438719844914106[/C][/ROW]
[ROW][C]75[/C][C]0.492924162609486[/C][C]0.985848325218971[/C][C]0.507075837390514[/C][/ROW]
[ROW][C]76[/C][C]0.40191489946465[/C][C]0.8038297989293[/C][C]0.59808510053535[/C][/ROW]
[ROW][C]77[/C][C]0.298253434051579[/C][C]0.596506868103159[/C][C]0.70174656594842[/C][/ROW]
[ROW][C]78[/C][C]0.208321261470897[/C][C]0.416642522941794[/C][C]0.791678738529103[/C][/ROW]
[ROW][C]79[/C][C]0.778663567912514[/C][C]0.442672864174971[/C][C]0.221336432087486[/C][/ROW]
[ROW][C]80[/C][C]0.688651789357795[/C][C]0.622696421284409[/C][C]0.311348210642205[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=103697&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=103697&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
160.9870200141847270.02595997163054660.0129799858152733
170.993215475638390.01356904872322130.00678452436161064
180.9871333518408690.02573329631826230.0128666481591311
190.9767902721992460.04641945560150790.0232097278007540
200.9594030096638490.08119398067230240.0405969903361512
210.9354202044054380.1291595911891240.0645797955945622
220.920147365396060.1597052692078810.0798526346039403
230.8884825892708350.2230348214583310.111517410729165
240.9009655652563970.1980688694872060.0990344347436028
250.9058265065764990.1883469868470020.0941734934235012
260.8759877516938590.2480244966122830.124012248306141
270.8605860320196960.2788279359606070.139413967980304
280.8228777827474520.3542444345050960.177122217252548
290.767449765979030.4651004680419390.232550234020969
300.7124055184530480.5751889630939040.287594481546952
310.6500217084276160.6999565831447680.349978291572384
320.5786926518213520.8426146963572950.421307348178648
330.5126373851158930.9747252297682140.487362614884107
340.4848099847516590.9696199695033170.515190015248341
350.4323147136910710.8646294273821420.567685286308929
360.4170191033671060.8340382067342110.582980896632894
370.656858733725770.686282532548460.34314126627423
380.603283016180020.7934339676399590.396716983819979
390.5892885097674190.8214229804651620.410711490232581
400.5977951473916310.8044097052167380.402204852608369
410.5301899595042770.9396200809914460.469810040495723
420.4608798269553290.9217596539106580.539120173044671
430.394180475756210.788360951512420.60581952424379
440.4108588572669780.8217177145339560.589141142733022
450.3897490729268060.7794981458536120.610250927073194
460.3400589923204750.680117984640950.659941007679525
470.2847275397655280.5694550795310560.715272460234472
480.6277138923070930.7445722153858130.372286107692907
490.6649382710412870.6701234579174270.335061728958713
500.675602422558380.6487951548832410.324397577441620
510.7619573373239290.4760853253521410.238042662676070
520.7414211116603350.5171577766793290.258578888339665
530.7229456284072110.5541087431855780.277054371592789
540.6844361158012430.6311277683975140.315563884198757
550.6420586901257020.7158826197485960.357941309874298
560.6094835762807380.7810328474385230.390516423719262
570.5436813553372590.9126372893254820.456318644662741
580.4730491065436270.9460982130872540.526950893456373
590.4315820804518530.8631641609037070.568417919548146
600.3842567633777380.7685135267554760.615743236622262
610.3750225192685560.7500450385371130.624977480731444
620.3971446601651670.7942893203303340.602855339834833
630.7663055738847820.4673888522304360.233694426115218
640.7052513275415820.5894973449168360.294748672458418
650.665768192845120.668463614309760.33423180715488
660.6004336950298150.7991326099403690.399566304970185
670.7542783813596040.4914432372807910.245721618640396
680.7311383347314140.5377233305371720.268861665268586
690.6811621081073210.6376757837853570.318837891892679
700.5979369681615640.8041260636768730.402063031838436
710.6017243044882210.7965513910235580.398275695511779
720.6045650795246410.7908698409507170.395434920475359
730.5534950762812190.8930098474375630.446504923718781
740.5612801550858940.8774396898282130.438719844914106
750.4929241626094860.9858483252189710.507075837390514
760.401914899464650.80382979892930.59808510053535
770.2982534340515790.5965068681031590.70174656594842
780.2083212614708970.4166425229417940.791678738529103
790.7786635679125140.4426728641749710.221336432087486
800.6886517893577950.6226964212844090.311348210642205







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level40.0615384615384615NOK
10% type I error level50.0769230769230769OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 & 0 & OK \tabularnewline
5% type I error level & 4 & 0.0615384615384615 & NOK \tabularnewline
10% type I error level & 5 & 0.0769230769230769 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=103697&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]4[/C][C]0.0615384615384615[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]5[/C][C]0.0769230769230769[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=103697&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=103697&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level40.0615384615384615NOK
10% type I error level50.0769230769230769OK



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}