Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationThu, 16 Dec 2010 09:34:51 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Dec/16/t1292491994ko7pk5gfkoau1st.htm/, Retrieved Sun, 10 Nov 2024 19:48:19 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=110776, Retrieved Sun, 10 Nov 2024 19:48:19 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact192
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Data Series] [data set] [2008-12-01 19:54:57] [b98453cac15ba1066b407e146608df68]
- RMP   [Standard Deviation-Mean Plot] [Unemployment] [2010-11-29 10:34:47] [b98453cac15ba1066b407e146608df68]
- RMP     [ARIMA Forecasting] [Unemployment] [2010-11-29 20:46:45] [b98453cac15ba1066b407e146608df68]
-             [ARIMA Forecasting] [ARIMA forecast] [2010-12-16 09:34:51] [fd751bc40fbbb4c72222c10190589d42] [Current]
Feedback Forum

Post a new message
Dataseries X:
235.1
280.7
264.6
240.7
201.4
240.8
241.1
223.8
206.1
174.7
203.3
220.5
299.5
347.4
338.3
327.7
351.6
396.6
438.8
395.6
363.5
378.8
357
369
464.8
479.1
431.3
366.5
326.3
355.1
331.6
261.3
249
205.5
235.6
240.9
264.9
253.8
232.3
193.8
177
213.2
207.2
180.6
188.6
175.4
199
179.6
225.8
234
200.2
183.6
178.2
203.2
208.5
191.8
172.8
148
159.4
154.5
213.2
196.4
182.8
176.4
153.6
173.2
171
151.2
161.9
157.2
201.7
236.4
356.1
398.3
403.7
384.6
365.8
368.1
367.9
347
343.3
292.9
311.5
300.9
366.9
356.9
329.7
316.2
269
289.3
266.2
253.6
233.8
228.4
253.6
260.1
306.6
309.2
309.5
271
279.9
317.9
298.4
246.7
227.3
209.1
259.9
266
320.6
308.5
282.2
262.7
263.5
313.1
284.3
252.6
250.3
246.5
312.7
333.2
446.4
511.6
515.5
506.4
483.2
522.3
509.8
460.7
405.8
375
378.5
406.8
467.8
469.8
429.8
355.8
332.7
378
360.5
334.7
319.5
323.1
363.6
352.1
411.9
388.6
416.4
360.7
338
417.2
388.4
371.1
331.5
353.7
396.7
447
533.5
565.4
542.3
488.7
467.1
531.3
496.1
444
403.4
386.3
394.1
404.1
462.1
448.1
432.3
386.3
395.2
421.9
382.9
384.2
345.5
323.4
372.6
376
462.7
487
444.2
399.3
394.9
455.4
414
375.5
347
339.4
385.8
378.8
451.8
446.1
422.5
383.1
352.8
445.3
367.5
355.1
326.2
319.8
331.8
340.9
394.1
417.2
369.9
349.2
321.4
405.7
342.9
316.5
284.2
270.9
288.8
278.8
324.4
310.9
299
273
279.3
359.2
305
282.1
250.3
246.5
257.9
266.5
315.9
318.4
295.4
266.4
245.8
362.8
324.9
294.2
289.5
295.2
290.3
272
307.4
328.7
292.9
249.1
230.4
361.5
321.7
277.2
260.7
251
257.6
241.8
287.5
292.3
274.7
254.2
230
339
318.2
287
295.8
284
271
262.7
340.6
379.4
373.3
355.2
338.4
466.9
451
422
429.2
425.9
460.7
463.6
541.4
544.2
517.5
469.4
439.4
549
533
506.1
484
457
481.5
469.5
544.7
541.2
521.5
469.7
434.4
542.6
517.3
485.7
465.8
447
426.6
411.6
467.5
484.5
451.2
417.4
379.9
484.7
455
420.8
416.5
376.3
405.6
405.8
500.8
514
475.5
430.1
414.4
538
526
488.5
520.2
504.4
568.5
610.6
818
830.9
835.9
782
762.3
856.9
820.9
769.6
752.2
724.4
723.1
719.5
817.4
803.3
752.5
689
630.4
765.5
757.7
732.2
702.6
683.3
709.5
702.2
784.8
810.9
755.6
656.8
615.1
745.3
694.1
675.7
643.7
622.1
634.6
588
689.7
673.9
647.9
568.8
545.7
632.6
643.8
593.1
579.7
546
562.9
572.5




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'RServer@AstonUniversity' @ vre.aston.ac.uk

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'RServer@AstonUniversity' @ vre.aston.ac.uk \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=110776&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'RServer@AstonUniversity' @ vre.aston.ac.uk[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=110776&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=110776&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'RServer@AstonUniversity' @ vre.aston.ac.uk







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[360])
348702.2-------
349784.8-------
350810.9-------
351755.6-------
352656.8-------
353615.1-------
354745.3-------
355694.1-------
356675.7-------
357643.7-------
358622.1-------
359634.6-------
360588-------
361689.7681.369627.6602737.28240.38510.99951e-040.9995
362673.9680.176601.1864764.03970.44170.41190.00110.9844
363647.9637.1723536.1433746.91660.4240.25590.01720.8101
364568.8570.0924453.4934700.01670.49220.12020.09540.3935
365545.7531.2293399.9718681.08090.42490.31160.13630.2289
366632.6648.2231482.6982838.10590.43590.8550.15820.7329
367643.8616.3528437.7032825.50180.39850.43950.23310.6048
368593.1584.6282395.3084810.87180.47070.30410.21510.4883
369579.7567.5684366.9868811.7080.46120.41880.27050.4349
370546545.6735336.4403805.25440.4990.39860.28190.3746
371562.9563.7748338.3258846.47540.49760.5490.31170.4333
372572.5551.295317.2757849.55390.44460.46960.40470.4047

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[360]) \tabularnewline
348 & 702.2 & - & - & - & - & - & - & - \tabularnewline
349 & 784.8 & - & - & - & - & - & - & - \tabularnewline
350 & 810.9 & - & - & - & - & - & - & - \tabularnewline
351 & 755.6 & - & - & - & - & - & - & - \tabularnewline
352 & 656.8 & - & - & - & - & - & - & - \tabularnewline
353 & 615.1 & - & - & - & - & - & - & - \tabularnewline
354 & 745.3 & - & - & - & - & - & - & - \tabularnewline
355 & 694.1 & - & - & - & - & - & - & - \tabularnewline
356 & 675.7 & - & - & - & - & - & - & - \tabularnewline
357 & 643.7 & - & - & - & - & - & - & - \tabularnewline
358 & 622.1 & - & - & - & - & - & - & - \tabularnewline
359 & 634.6 & - & - & - & - & - & - & - \tabularnewline
360 & 588 & - & - & - & - & - & - & - \tabularnewline
361 & 689.7 & 681.369 & 627.6602 & 737.2824 & 0.3851 & 0.9995 & 1e-04 & 0.9995 \tabularnewline
362 & 673.9 & 680.176 & 601.1864 & 764.0397 & 0.4417 & 0.4119 & 0.0011 & 0.9844 \tabularnewline
363 & 647.9 & 637.1723 & 536.1433 & 746.9166 & 0.424 & 0.2559 & 0.0172 & 0.8101 \tabularnewline
364 & 568.8 & 570.0924 & 453.4934 & 700.0167 & 0.4922 & 0.1202 & 0.0954 & 0.3935 \tabularnewline
365 & 545.7 & 531.2293 & 399.9718 & 681.0809 & 0.4249 & 0.3116 & 0.1363 & 0.2289 \tabularnewline
366 & 632.6 & 648.2231 & 482.6982 & 838.1059 & 0.4359 & 0.855 & 0.1582 & 0.7329 \tabularnewline
367 & 643.8 & 616.3528 & 437.7032 & 825.5018 & 0.3985 & 0.4395 & 0.2331 & 0.6048 \tabularnewline
368 & 593.1 & 584.6282 & 395.3084 & 810.8718 & 0.4707 & 0.3041 & 0.2151 & 0.4883 \tabularnewline
369 & 579.7 & 567.5684 & 366.9868 & 811.708 & 0.4612 & 0.4188 & 0.2705 & 0.4349 \tabularnewline
370 & 546 & 545.6735 & 336.4403 & 805.2544 & 0.499 & 0.3986 & 0.2819 & 0.3746 \tabularnewline
371 & 562.9 & 563.7748 & 338.3258 & 846.4754 & 0.4976 & 0.549 & 0.3117 & 0.4333 \tabularnewline
372 & 572.5 & 551.295 & 317.2757 & 849.5539 & 0.4446 & 0.4696 & 0.4047 & 0.4047 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=110776&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[360])[/C][/ROW]
[ROW][C]348[/C][C]702.2[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]349[/C][C]784.8[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]350[/C][C]810.9[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]351[/C][C]755.6[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]352[/C][C]656.8[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]353[/C][C]615.1[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]354[/C][C]745.3[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]355[/C][C]694.1[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]356[/C][C]675.7[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]357[/C][C]643.7[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]358[/C][C]622.1[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]359[/C][C]634.6[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]360[/C][C]588[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]361[/C][C]689.7[/C][C]681.369[/C][C]627.6602[/C][C]737.2824[/C][C]0.3851[/C][C]0.9995[/C][C]1e-04[/C][C]0.9995[/C][/ROW]
[ROW][C]362[/C][C]673.9[/C][C]680.176[/C][C]601.1864[/C][C]764.0397[/C][C]0.4417[/C][C]0.4119[/C][C]0.0011[/C][C]0.9844[/C][/ROW]
[ROW][C]363[/C][C]647.9[/C][C]637.1723[/C][C]536.1433[/C][C]746.9166[/C][C]0.424[/C][C]0.2559[/C][C]0.0172[/C][C]0.8101[/C][/ROW]
[ROW][C]364[/C][C]568.8[/C][C]570.0924[/C][C]453.4934[/C][C]700.0167[/C][C]0.4922[/C][C]0.1202[/C][C]0.0954[/C][C]0.3935[/C][/ROW]
[ROW][C]365[/C][C]545.7[/C][C]531.2293[/C][C]399.9718[/C][C]681.0809[/C][C]0.4249[/C][C]0.3116[/C][C]0.1363[/C][C]0.2289[/C][/ROW]
[ROW][C]366[/C][C]632.6[/C][C]648.2231[/C][C]482.6982[/C][C]838.1059[/C][C]0.4359[/C][C]0.855[/C][C]0.1582[/C][C]0.7329[/C][/ROW]
[ROW][C]367[/C][C]643.8[/C][C]616.3528[/C][C]437.7032[/C][C]825.5018[/C][C]0.3985[/C][C]0.4395[/C][C]0.2331[/C][C]0.6048[/C][/ROW]
[ROW][C]368[/C][C]593.1[/C][C]584.6282[/C][C]395.3084[/C][C]810.8718[/C][C]0.4707[/C][C]0.3041[/C][C]0.2151[/C][C]0.4883[/C][/ROW]
[ROW][C]369[/C][C]579.7[/C][C]567.5684[/C][C]366.9868[/C][C]811.708[/C][C]0.4612[/C][C]0.4188[/C][C]0.2705[/C][C]0.4349[/C][/ROW]
[ROW][C]370[/C][C]546[/C][C]545.6735[/C][C]336.4403[/C][C]805.2544[/C][C]0.499[/C][C]0.3986[/C][C]0.2819[/C][C]0.3746[/C][/ROW]
[ROW][C]371[/C][C]562.9[/C][C]563.7748[/C][C]338.3258[/C][C]846.4754[/C][C]0.4976[/C][C]0.549[/C][C]0.3117[/C][C]0.4333[/C][/ROW]
[ROW][C]372[/C][C]572.5[/C][C]551.295[/C][C]317.2757[/C][C]849.5539[/C][C]0.4446[/C][C]0.4696[/C][C]0.4047[/C][C]0.4047[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=110776&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=110776&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[360])
348702.2-------
349784.8-------
350810.9-------
351755.6-------
352656.8-------
353615.1-------
354745.3-------
355694.1-------
356675.7-------
357643.7-------
358622.1-------
359634.6-------
360588-------
361689.7681.369627.6602737.28240.38510.99951e-040.9995
362673.9680.176601.1864764.03970.44170.41190.00110.9844
363647.9637.1723536.1433746.91660.4240.25590.01720.8101
364568.8570.0924453.4934700.01670.49220.12020.09540.3935
365545.7531.2293399.9718681.08090.42490.31160.13630.2289
366632.6648.2231482.6982838.10590.43590.8550.15820.7329
367643.8616.3528437.7032825.50180.39850.43950.23310.6048
368593.1584.6282395.3084810.87180.47070.30410.21510.4883
369579.7567.5684366.9868811.7080.46120.41880.27050.4349
370546545.6735336.4403805.25440.4990.39860.28190.3746
371562.9563.7748338.3258846.47540.49760.5490.31170.4333
372572.5551.295317.2757849.55390.44460.46960.40470.4047







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPESq.EMSERMSE
3610.04190.0122069.405400
3620.0629-0.00920.010739.388854.39717.3754
3630.08790.01680.0128115.084574.62628.6386
3640.1163-0.00230.01011.670256.38727.5091
3650.14390.02720.0136209.402286.99029.3269
3660.1495-0.02410.0153244.0823113.172210.6382
3670.17310.04450.0195753.3512204.626414.3048
3680.19740.01450.018971.7706188.019413.712
3690.21950.02140.0191147.1754183.481213.5455
3700.24276e-040.01730.1066165.143712.8508
3710.2558-0.00160.01590.7653150.200212.2556
3720.2760.03850.0177449.6531175.154613.2346

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & Sq.E & MSE & RMSE \tabularnewline
361 & 0.0419 & 0.0122 & 0 & 69.4054 & 0 & 0 \tabularnewline
362 & 0.0629 & -0.0092 & 0.0107 & 39.3888 & 54.3971 & 7.3754 \tabularnewline
363 & 0.0879 & 0.0168 & 0.0128 & 115.0845 & 74.6262 & 8.6386 \tabularnewline
364 & 0.1163 & -0.0023 & 0.0101 & 1.6702 & 56.3872 & 7.5091 \tabularnewline
365 & 0.1439 & 0.0272 & 0.0136 & 209.4022 & 86.9902 & 9.3269 \tabularnewline
366 & 0.1495 & -0.0241 & 0.0153 & 244.0823 & 113.1722 & 10.6382 \tabularnewline
367 & 0.1731 & 0.0445 & 0.0195 & 753.3512 & 204.6264 & 14.3048 \tabularnewline
368 & 0.1974 & 0.0145 & 0.0189 & 71.7706 & 188.0194 & 13.712 \tabularnewline
369 & 0.2195 & 0.0214 & 0.0191 & 147.1754 & 183.4812 & 13.5455 \tabularnewline
370 & 0.2427 & 6e-04 & 0.0173 & 0.1066 & 165.1437 & 12.8508 \tabularnewline
371 & 0.2558 & -0.0016 & 0.0159 & 0.7653 & 150.2002 & 12.2556 \tabularnewline
372 & 0.276 & 0.0385 & 0.0177 & 449.6531 & 175.1546 & 13.2346 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=110776&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][/ROW]
[ROW][C]361[/C][C]0.0419[/C][C]0.0122[/C][C]0[/C][C]69.4054[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]362[/C][C]0.0629[/C][C]-0.0092[/C][C]0.0107[/C][C]39.3888[/C][C]54.3971[/C][C]7.3754[/C][/ROW]
[ROW][C]363[/C][C]0.0879[/C][C]0.0168[/C][C]0.0128[/C][C]115.0845[/C][C]74.6262[/C][C]8.6386[/C][/ROW]
[ROW][C]364[/C][C]0.1163[/C][C]-0.0023[/C][C]0.0101[/C][C]1.6702[/C][C]56.3872[/C][C]7.5091[/C][/ROW]
[ROW][C]365[/C][C]0.1439[/C][C]0.0272[/C][C]0.0136[/C][C]209.4022[/C][C]86.9902[/C][C]9.3269[/C][/ROW]
[ROW][C]366[/C][C]0.1495[/C][C]-0.0241[/C][C]0.0153[/C][C]244.0823[/C][C]113.1722[/C][C]10.6382[/C][/ROW]
[ROW][C]367[/C][C]0.1731[/C][C]0.0445[/C][C]0.0195[/C][C]753.3512[/C][C]204.6264[/C][C]14.3048[/C][/ROW]
[ROW][C]368[/C][C]0.1974[/C][C]0.0145[/C][C]0.0189[/C][C]71.7706[/C][C]188.0194[/C][C]13.712[/C][/ROW]
[ROW][C]369[/C][C]0.2195[/C][C]0.0214[/C][C]0.0191[/C][C]147.1754[/C][C]183.4812[/C][C]13.5455[/C][/ROW]
[ROW][C]370[/C][C]0.2427[/C][C]6e-04[/C][C]0.0173[/C][C]0.1066[/C][C]165.1437[/C][C]12.8508[/C][/ROW]
[ROW][C]371[/C][C]0.2558[/C][C]-0.0016[/C][C]0.0159[/C][C]0.7653[/C][C]150.2002[/C][C]12.2556[/C][/ROW]
[ROW][C]372[/C][C]0.276[/C][C]0.0385[/C][C]0.0177[/C][C]449.6531[/C][C]175.1546[/C][C]13.2346[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=110776&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=110776&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPESq.EMSERMSE
3610.04190.0122069.405400
3620.0629-0.00920.010739.388854.39717.3754
3630.08790.01680.0128115.084574.62628.6386
3640.1163-0.00230.01011.670256.38727.5091
3650.14390.02720.0136209.402286.99029.3269
3660.1495-0.02410.0153244.0823113.172210.6382
3670.17310.04450.0195753.3512204.626414.3048
3680.19740.01450.018971.7706188.019413.712
3690.21950.02140.0191147.1754183.481213.5455
3700.24276e-040.01730.1066165.143712.8508
3710.2558-0.00160.01590.7653150.200212.2556
3720.2760.03850.0177449.6531175.154613.2346



Parameters (Session):
par1 = 12 ; par2 = 0.5 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 2 ; par7 = 1 ; par8 = 0 ; par9 = 1 ; par10 = FALSE ;
Parameters (R input):
par1 = 12 ; par2 = 0.5 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 2 ; par7 = 1 ; par8 = 0 ; par9 = 1 ; par10 = FALSE ; par11 = ; par12 = ; par13 = ; par14 = ; par15 = ; par16 = ; par17 = ; par18 = ; par19 = ; par20 = ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,par1))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i]
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.mse[1] = abs(perf.se[1])
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')