Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Module--
Title produced by softwareSurvey Scores
Date of computationSun, 16 Oct 2011 05:48:57 -0400
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Oct/16/t1318758577uk5j6qout6rs8bn.htm/, Retrieved Thu, 31 Oct 2024 23:37:11 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=129959, Retrieved Thu, 31 Oct 2024 23:37:11 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact150
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Survey Scores] [Intrinsic Motivat...] [2010-10-12 11:28:29] [b98453cac15ba1066b407e146608df68]
- RMP     [Survey Scores] [Workshop 3: Taak 1] [2011-10-16 09:48:57] [e048104803f11a6160595af3ccdecef4] [Current]
Feedback Forum

Post a new message
Dataseries X:
6	6	4	5
4	4	3	4
6	2	5	5
4	2	2	3
2	2	2	2
5	5	5	4
1	1	1	1
6	4	5	5
3	5	4	4
4	4	3	3
3	1	1	5
2	2	5	4
4	4	3	3
3	2	2	1
5	6	6	6
3	3	3	2
3	2	2	2
6	6	6	6
1	2	1	1
1	6	4	4
1	1	1	2
5	4	5	5
2	1	1	2
3	4	3	3
3	2	2	4
5	5	6	1
5	5	6	1
1	1	1	2
2	1	2	4
3	4	4	4
5	4	4	4
3	5	4	5
5	5	4	6
3	3	3	3
2	1	1	3
4	5	3	4
3	2	1	1
3	3	3	5
6	6	6	6
6	4	3	2
3	4	4	4
3	2	2	3
4	3	3	4
4	5	4	5
2	5	3	2
2	2	2	3
3	2	2	2
2	1	1	4
5	4	4	5
5	1	2	2
6	4	3	4
3	4	4	3
3	5	4	4
2	4	2	2
5	5	4	5
2	2	2	4
4	3	3	4
4	2	2	2
1	1	1	1
6	5	4	4
2	2	1	4
3	3	3	3
4	4	4	4
3	2	1	5
4	5	4	5
3	2	1	5
6	6	6	6
4	5	4	4
5	4	4	5
3	2	2	2
4	4	5	6
3	5	5	5
3	4	3	2
6	6	5	6
6	6	5	5
2	4	4	4
2	4	4	4
6	3	3	4
5	6	5	7
1	2	3	1
2	2	4	2
5	2	2	3
3	3	3	3
3	2	3	4
4	4	5	4
6	5	5	5
4	4	4	4
2	3	3	3
4	4	4	2
4	3	3	3
2	2	2	3
4	5	5	5
3	3	3	4
6	5	4	4
4	3	3	3
4	3	3	3
3	4	2	4
3	3	4	4
3	3	3	3
4	6	6	6
2	3	3	3
2	1	1	1
3	5	5	5
3	6	5	5
4	4	3	3
4	4	3	4
2	5	3	2
5	4	4	6
5	4	1	5
4	3	5	5
4	1	2	1
3	2	3	2
4	3	2	3
4	2	3	3
5	5	5	5
4	2	3	3
5	2	2	3
3	4	3	4
2	2	1	1
1	3	3	3
5	4	5	4
5	3	4	6
3	1	1	2
4	5	4	5
4	1	1	3
5	4	4	4
5	5	6	6
3	3	3	2
4	4	3	4
6	3	3	5
4	3	4	4
5	6	6	5
4	2	1	2
4	4	2	3
5	5	4	6
4	4	3	3
3	4	2	5
3	3	2	4
6	4	5	5
5	5	5	5
2	3	2	1
4	5	4	4
3	2	2	2
3	6	4	5
5	6	4	7
3	2	2	3
3	3	3	4
4	4	3	4
5	4	4	5
5	4	5	4
5	4	2	1
5	3	2	2
3	7	5	5
4	4	2	2
4	4	4	4
3	4	4	5
4	4	4	6
4	4	4	4
3	3	3	4
2	5	4	6
4	3	2	4
4	5	4	4




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time0 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 0 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=129959&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]0 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=129959&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=129959&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time0 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Summary of survey scores (median of Likert score was subtracted)
QuestionmeanSum ofpositives (Ps)Sum ofnegatives (Ns)(Ps-Ns)/(Ps+Ns)Count ofpositives (Pc)Count ofnegatives (Nc)(Pc-Nc)/(Pc+Nc)
1-0.3161112-0.294574-0.24
2-0.4659133-0.394374-0.26
3-0.7340158-0.63190-0.49
4-0.367116-0.274966-0.15

\begin{tabular}{lllllllll}
\hline
Summary of survey scores (median of Likert score was subtracted) \tabularnewline
Question & mean & Sum ofpositives (Ps) & Sum ofnegatives (Ns) & (Ps-Ns)/(Ps+Ns) & Count ofpositives (Pc) & Count ofnegatives (Nc) & (Pc-Nc)/(Pc+Nc) \tabularnewline
1 & -0.31 & 61 & 112 & -0.29 & 45 & 74 & -0.24 \tabularnewline
2 & -0.46 & 59 & 133 & -0.39 & 43 & 74 & -0.26 \tabularnewline
3 & -0.73 & 40 & 158 & -0.6 & 31 & 90 & -0.49 \tabularnewline
4 & -0.3 & 67 & 116 & -0.27 & 49 & 66 & -0.15 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=129959&T=1

[TABLE]
[ROW][C]Summary of survey scores (median of Likert score was subtracted)[/C][/ROW]
[ROW][C]Question[/C][C]mean[/C][C]Sum ofpositives (Ps)[/C][C]Sum ofnegatives (Ns)[/C][C](Ps-Ns)/(Ps+Ns)[/C][C]Count ofpositives (Pc)[/C][C]Count ofnegatives (Nc)[/C][C](Pc-Nc)/(Pc+Nc)[/C][/ROW]
[ROW][C]1[/C][C]-0.31[/C][C]61[/C][C]112[/C][C]-0.29[/C][C]45[/C][C]74[/C][C]-0.24[/C][/ROW]
[ROW][C]2[/C][C]-0.46[/C][C]59[/C][C]133[/C][C]-0.39[/C][C]43[/C][C]74[/C][C]-0.26[/C][/ROW]
[ROW][C]3[/C][C]-0.73[/C][C]40[/C][C]158[/C][C]-0.6[/C][C]31[/C][C]90[/C][C]-0.49[/C][/ROW]
[ROW][C]4[/C][C]-0.3[/C][C]67[/C][C]116[/C][C]-0.27[/C][C]49[/C][C]66[/C][C]-0.15[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=129959&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=129959&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of survey scores (median of Likert score was subtracted)
QuestionmeanSum ofpositives (Ps)Sum ofnegatives (Ns)(Ps-Ns)/(Ps+Ns)Count ofpositives (Pc)Count ofnegatives (Nc)(Pc-Nc)/(Pc+Nc)
1-0.3161112-0.294574-0.24
2-0.4659133-0.394374-0.26
3-0.7340158-0.63190-0.49
4-0.367116-0.274966-0.15







Pearson correlations of survey scores (and p-values)
mean(Ps-Ns)/(Ps+Ns)(Pc-Nc)/(Pc+Nc)
mean1 (0)0.999 (0.001)0.961 (0.039)
(Ps-Ns)/(Ps+Ns)0.999 (0.001)1 (0)0.971 (0.029)
(Pc-Nc)/(Pc+Nc)0.961 (0.039)0.971 (0.029)1 (0)

\begin{tabular}{lllllllll}
\hline
Pearson correlations of survey scores (and p-values) \tabularnewline
 & mean & (Ps-Ns)/(Ps+Ns) & (Pc-Nc)/(Pc+Nc) \tabularnewline
mean & 1 (0) & 0.999 (0.001) & 0.961 (0.039) \tabularnewline
(Ps-Ns)/(Ps+Ns) & 0.999 (0.001) & 1 (0) & 0.971 (0.029) \tabularnewline
(Pc-Nc)/(Pc+Nc) & 0.961 (0.039) & 0.971 (0.029) & 1 (0) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=129959&T=2

[TABLE]
[ROW][C]Pearson correlations of survey scores (and p-values)[/C][/ROW]
[ROW][C][/C][C]mean[/C][C](Ps-Ns)/(Ps+Ns)[/C][C](Pc-Nc)/(Pc+Nc)[/C][/ROW]
[ROW][C]mean[/C][C]1 (0)[/C][C]0.999 (0.001)[/C][C]0.961 (0.039)[/C][/ROW]
[ROW][C](Ps-Ns)/(Ps+Ns)[/C][C]0.999 (0.001)[/C][C]1 (0)[/C][C]0.971 (0.029)[/C][/ROW]
[ROW][C](Pc-Nc)/(Pc+Nc)[/C][C]0.961 (0.039)[/C][C]0.971 (0.029)[/C][C]1 (0)[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=129959&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=129959&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Pearson correlations of survey scores (and p-values)
mean(Ps-Ns)/(Ps+Ns)(Pc-Nc)/(Pc+Nc)
mean1 (0)0.999 (0.001)0.961 (0.039)
(Ps-Ns)/(Ps+Ns)0.999 (0.001)1 (0)0.971 (0.029)
(Pc-Nc)/(Pc+Nc)0.961 (0.039)0.971 (0.029)1 (0)







Kendall tau rank correlations of survey scores (and p-values)
mean(Ps-Ns)/(Ps+Ns)(Pc-Nc)/(Pc+Nc)
mean1 (0.083)1 (0.083)1 (0.083)
(Ps-Ns)/(Ps+Ns)1 (0.083)1 (0.083)1 (0.083)
(Pc-Nc)/(Pc+Nc)1 (0.083)1 (0.083)1 (0.083)

\begin{tabular}{lllllllll}
\hline
Kendall tau rank correlations of survey scores (and p-values) \tabularnewline
 & mean & (Ps-Ns)/(Ps+Ns) & (Pc-Nc)/(Pc+Nc) \tabularnewline
mean & 1 (0.083) & 1 (0.083) & 1 (0.083) \tabularnewline
(Ps-Ns)/(Ps+Ns) & 1 (0.083) & 1 (0.083) & 1 (0.083) \tabularnewline
(Pc-Nc)/(Pc+Nc) & 1 (0.083) & 1 (0.083) & 1 (0.083) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=129959&T=3

[TABLE]
[ROW][C]Kendall tau rank correlations of survey scores (and p-values)[/C][/ROW]
[ROW][C][/C][C]mean[/C][C](Ps-Ns)/(Ps+Ns)[/C][C](Pc-Nc)/(Pc+Nc)[/C][/ROW]
[ROW][C]mean[/C][C]1 (0.083)[/C][C]1 (0.083)[/C][C]1 (0.083)[/C][/ROW]
[ROW][C](Ps-Ns)/(Ps+Ns)[/C][C]1 (0.083)[/C][C]1 (0.083)[/C][C]1 (0.083)[/C][/ROW]
[ROW][C](Pc-Nc)/(Pc+Nc)[/C][C]1 (0.083)[/C][C]1 (0.083)[/C][C]1 (0.083)[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=129959&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=129959&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Kendall tau rank correlations of survey scores (and p-values)
mean(Ps-Ns)/(Ps+Ns)(Pc-Nc)/(Pc+Nc)
mean1 (0.083)1 (0.083)1 (0.083)
(Ps-Ns)/(Ps+Ns)1 (0.083)1 (0.083)1 (0.083)
(Pc-Nc)/(Pc+Nc)1 (0.083)1 (0.083)1 (0.083)



Parameters (Session):
par1 = 1 2 3 4 5 6 7 ;
Parameters (R input):
par1 = 1 2 3 4 5 6 7 ; par2 = ; par3 = ; par4 = ; par5 = ; par6 = ; par7 = ; par8 = ; par9 = ; par10 = ; par11 = ; par12 = ; par13 = ; par14 = ; par15 = ; par16 = ; par17 = ; par18 = ; par19 = ; par20 = ;
R code (references can be found in the software module):
docor <- function(x,y,method) {
r <- cor.test(x,y,method=method)
paste(round(r$estimate,3),' (',round(r$p.value,3),')',sep='')
}
x <- t(x)
nx <- length(x[,1])
cx <- length(x[1,])
mymedian <- median(as.numeric(strsplit(par1,' ')[[1]]))
myresult <- array(NA, dim = c(cx,7))
rownames(myresult) <- paste('Q',1:cx,sep='')
colnames(myresult) <- c('mean','Sum of
positives (Ps)','Sum of
negatives (Ns)', '(Ps-Ns)/(Ps+Ns)', 'Count of
positives (Pc)', 'Count of
negatives (Nc)', '(Pc-Nc)/(Pc+Nc)')
for (i in 1:cx) {
spos <- 0
sneg <- 0
cpos <- 0
cneg <- 0
for (j in 1:nx) {
if (!is.na(x[j,i])) {
myx <- as.numeric(x[j,i]) - mymedian
if (myx > 0) {
spos = spos + myx
cpos = cpos + 1
}
if (myx < 0) {
sneg = sneg + abs(myx)
cneg = cneg + 1
}
}
}
myresult[i,1] <- round(mean(as.numeric(x[,i]),na.rm=T)-mymedian,2)
myresult[i,2] <- spos
myresult[i,3] <- sneg
myresult[i,4] <- round((spos - sneg) / (spos + sneg),2)
myresult[i,5] <- cpos
myresult[i,6] <- cneg
myresult[i,7] <- round((cpos - cneg) / (cpos + cneg),2)
}
myresult
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Summary of survey scores (median of Likert score was subtracted)',8,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Question',header=TRUE)
for (i in 1:7) {
a<-table.element(a,colnames(myresult)[i],header=TRUE)
}
a<-table.row.end(a)
for (i in 1:cx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
for (j in 1:7) {
a<-table.element(a,myresult[i,j],align='right')
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Pearson correlations of survey scores (and p-values)',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'',header=TRUE)
a<-table.element(a,'mean',header=TRUE)
a<-table.element(a,'(Ps-Ns)/(Ps+Ns)',header=TRUE)
a<-table.element(a,'(Pc-Nc)/(Pc+Nc)',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mean',header=TRUE)
a<-table.element(a,docor(myresult[,1],myresult[,1],method='pearson'),align='right')
a<-table.element(a,docor(myresult[,1],myresult[,4],method='pearson'),align='right')
a<-table.element(a,docor(myresult[,1],myresult[,7],method='pearson'),align='right')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(Ps-Ns)/(Ps+Ns)',header=TRUE)
a<-table.element(a,docor(myresult[,4],myresult[,1],method='pearson'),align='right')
a<-table.element(a,docor(myresult[,4],myresult[,4],method='pearson'),align='right')
a<-table.element(a,docor(myresult[,4],myresult[,7],method='pearson'),align='right')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(Pc-Nc)/(Pc+Nc)',header=TRUE)
a<-table.element(a,docor(myresult[,7],myresult[,1],method='pearson'),align='right')
a<-table.element(a,docor(myresult[,7],myresult[,4],method='pearson'),align='right')
a<-table.element(a,docor(myresult[,7],myresult[,7],method='pearson'),align='right')
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Kendall tau rank correlations of survey scores (and p-values)',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'',header=TRUE)
a<-table.element(a,'mean',header=TRUE)
a<-table.element(a,'(Ps-Ns)/(Ps+Ns)',header=TRUE)
a<-table.element(a,'(Pc-Nc)/(Pc+Nc)',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mean',header=TRUE)
a<-table.element(a,docor(myresult[,1],myresult[,1],method='kendall'),align='right')
a<-table.element(a,docor(myresult[,1],myresult[,4],method='kendall'),align='right')
a<-table.element(a,docor(myresult[,1],myresult[,7],method='kendall'),align='right')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(Ps-Ns)/(Ps+Ns)',header=TRUE)
a<-table.element(a,docor(myresult[,4],myresult[,1],method='kendall'),align='right')
a<-table.element(a,docor(myresult[,4],myresult[,4],method='kendall'),align='right')
a<-table.element(a,docor(myresult[,4],myresult[,7],method='kendall'),align='right')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(Pc-Nc)/(Pc+Nc)',header=TRUE)
a<-table.element(a,docor(myresult[,7],myresult[,1],method='kendall'),align='right')
a<-table.element(a,docor(myresult[,7],myresult[,4],method='kendall'),align='right')
a<-table.element(a,docor(myresult[,7],myresult[,7],method='kendall'),align='right')
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')