Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 22 Nov 2011 12:17:14 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Nov/22/t1321982288p1qkhzu292j3kjp.htm/, Retrieved Fri, 01 Nov 2024 00:37:51 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=146327, Retrieved Fri, 01 Nov 2024 00:37:51 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact141
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Explorative Data Analysis] [time effect in su...] [2010-11-17 08:55:33] [b98453cac15ba1066b407e146608df68]
- RMPD    [Multiple Regression] [] [2011-11-22 17:17:14] [dfe1aa60d86cf4207f33712af6589424] [Current]
Feedback Forum

Post a new message
Dataseries X:
26	21	21	23	17	23	4
20	16	15	24	17	20	4
19	19	18	22	18	20	6
19	18	11	20	21	21	8
20	16	8	24	20	24	8
25	23	19	27	28	22	4
25	17	4	28	19	23	4
22	12	20	27	22	20	8
26	19	16	24	16	25	5
22	16	14	23	18	23	4
17	19	10	24	25	27	4
22	20	13	27	17	27	4
19	13	14	27	14	22	4
24	20	8	28	11	24	4
26	27	23	27	27	25	4
21	17	11	23	20	22	8
13	8	9	24	22	28	4
26	25	24	28	22	28	4
20	26	5	27	21	27	4
22	13	15	25	23	25	8
14	19	5	19	17	16	4
21	15	19	24	24	28	7
7	5	6	20	14	21	4
23	16	13	28	17	24	4
17	14	11	26	23	27	5
25	24	17	23	24	14	4
25	24	17	23	24	14	4
19	9	5	20	8	27	4
20	19	9	11	22	20	4
23	19	15	24	23	21	4
22	25	17	25	25	22	4
22	19	17	23	21	21	4
21	18	20	18	24	12	15
15	15	12	20	15	20	10
20	12	7	20	22	24	4
22	21	16	24	21	19	8
18	12	7	23	25	28	4
20	15	14	25	16	23	4
28	28	24	28	28	27	4
22	25	15	26	23	22	4
18	19	15	26	21	27	7
23	20	10	23	21	26	4
20	24	14	22	26	22	6
25	26	18	24	22	21	5
26	25	12	21	21	19	4
15	12	9	20	18	24	16
17	12	9	22	12	19	5
23	15	8	20	25	26	12
21	17	18	25	17	22	6
13	14	10	20	24	28	9
18	16	17	22	15	21	9
19	11	14	23	13	23	4
22	20	16	25	26	28	5
16	11	10	23	16	10	4
24	22	19	23	24	24	4
18	20	10	22	21	21	5
20	19	14	24	20	21	4
24	17	10	25	14	24	4
14	21	4	21	25	24	4
22	23	19	12	25	25	5
24	18	9	17	20	25	4
18	17	12	20	22	23	6
21	27	16	23	20	21	4
23	25	11	23	26	16	4
17	19	18	20	18	17	18
22	22	11	28	22	25	4
24	24	24	24	24	24	6
21	20	17	24	17	23	4
22	19	18	24	24	25	4
16	11	9	24	20	23	5
21	22	19	28	19	28	4
23	22	18	25	20	26	4
22	16	12	21	15	22	5
24	20	23	25	23	19	10
24	24	22	25	26	26	5
16	16	14	18	22	18	8
16	16	14	17	20	18	8
21	22	16	26	24	25	5
26	24	23	28	26	27	4
15	16	7	21	21	12	4
25	27	10	27	25	15	4
18	11	12	22	13	21	5
23	21	12	21	20	23	4
20	20	12	25	22	22	4
17	20	17	22	23	21	8
25	27	21	23	28	24	4
24	20	16	26	22	27	5
17	12	11	19	20	22	14
19	8	14	25	6	28	8
20	21	13	21	21	26	8
15	18	9	13	20	10	4
27	24	19	24	18	19	4
22	16	13	25	23	22	6
23	18	19	26	20	21	4
16	20	13	25	24	24	7
19	20	13	25	22	25	7
25	19	13	22	21	21	4
19	17	14	21	18	20	6
19	16	12	23	21	21	4
26	26	22	25	23	24	7
21	15	11	24	23	23	4
20	22	5	21	15	18	4
24	17	18	21	21	24	8
22	23	19	25	24	24	4
20	21	14	22	23	19	4
18	19	15	20	21	20	10
18	14	12	20	21	18	8
24	17	19	23	20	20	6
24	12	15	28	11	27	4
22	24	17	23	22	23	4
23	18	8	28	27	26	4
22	20	10	24	25	23	5
20	16	12	18	18	17	4
18	20	12	20	20	21	6
25	22	20	28	24	25	4
18	12	12	21	10	23	5
16	16	12	21	27	27	7
20	17	14	25	21	24	8
19	22	6	19	21	20	5
15	12	10	18	18	27	8
19	14	18	21	15	21	10
19	23	18	22	24	24	8
16	15	7	24	22	21	5
17	17	18	15	14	15	12
28	28	9	28	28	25	4
23	20	17	26	18	25	5
25	23	22	23	26	22	4
20	13	11	26	17	24	6
17	18	15	20	19	21	4
23	23	17	22	22	22	4
16	19	15	20	18	23	7
23	23	22	23	24	22	7
11	12	9	22	15	20	10
18	16	13	24	18	23	4
24	23	20	23	26	25	5
23	13	14	22	11	23	8
21	22	14	26	26	22	11
16	18	12	23	21	25	7
24	23	20	27	23	26	4
23	20	20	23	23	22	8
18	10	8	21	15	24	6
20	17	17	26	22	24	7
9	18	9	23	26	25	5
24	15	18	21	16	20	4
25	23	22	27	20	26	8
20	17	10	19	18	21	4
21	17	13	23	22	26	8
25	22	15	25	16	21	6
22	20	18	23	19	22	4
21	20	18	22	20	16	9
21	19	12	22	19	26	5
22	18	12	25	23	28	6
27	22	20	25	24	18	4
24	20	12	28	25	25	4
24	22	16	28	21	23	4
21	18	16	20	21	21	5
18	16	18	25	23	20	6
16	16	16	19	27	25	16
22	16	13	25	23	22	6
20	16	17	22	18	21	6
18	17	13	18	16	16	4
20	18	17	20	16	18	4




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R Server'George Udny Yule' @ yule.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 8 seconds \tabularnewline
R Server & 'George Udny Yule' @ yule.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=146327&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]8 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ yule.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=146327&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=146327&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R Server'George Udny Yule' @ yule.wessa.net







Multiple Linear Regression - Estimated Regression Equation
E3[t] = + 11.1757460102206 + 0.0933465395130204I1[t] -0.214258649425862I2[t] -0.0325037065429095I3[t] + 0.48490362439982E1[t] + 0.183317170772734E2[t] + 0.00644604034031199A[t] -0.74507856106951M1[t] -1.10306484304699M2[t] -1.36210269196833M3[t] -1.61391375859311M4[t] -0.849665634456002M5[t] -1.80668249187344M6[t] -0.697765856712318M7[t] -2.30617763808316M8[t] -3.09883747951009M9[t] -1.09821650493056M10[t] -0.342077502478023M11[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
E3[t] =  +  11.1757460102206 +  0.0933465395130204I1[t] -0.214258649425862I2[t] -0.0325037065429095I3[t] +  0.48490362439982E1[t] +  0.183317170772734E2[t] +  0.00644604034031199A[t] -0.74507856106951M1[t] -1.10306484304699M2[t] -1.36210269196833M3[t] -1.61391375859311M4[t] -0.849665634456002M5[t] -1.80668249187344M6[t] -0.697765856712318M7[t] -2.30617763808316M8[t] -3.09883747951009M9[t] -1.09821650493056M10[t] -0.342077502478023M11[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=146327&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]E3[t] =  +  11.1757460102206 +  0.0933465395130204I1[t] -0.214258649425862I2[t] -0.0325037065429095I3[t] +  0.48490362439982E1[t] +  0.183317170772734E2[t] +  0.00644604034031199A[t] -0.74507856106951M1[t] -1.10306484304699M2[t] -1.36210269196833M3[t] -1.61391375859311M4[t] -0.849665634456002M5[t] -1.80668249187344M6[t] -0.697765856712318M7[t] -2.30617763808316M8[t] -3.09883747951009M9[t] -1.09821650493056M10[t] -0.342077502478023M11[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=146327&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=146327&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
E3[t] = + 11.1757460102206 + 0.0933465395130204I1[t] -0.214258649425862I2[t] -0.0325037065429095I3[t] + 0.48490362439982E1[t] + 0.183317170772734E2[t] + 0.00644604034031199A[t] -0.74507856106951M1[t] -1.10306484304699M2[t] -1.36210269196833M3[t] -1.61391375859311M4[t] -0.849665634456002M5[t] -1.80668249187344M6[t] -0.697765856712318M7[t] -2.30617763808316M8[t] -3.09883747951009M9[t] -1.09821650493056M10[t] -0.342077502478023M11[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)11.17574601022062.8186113.9650.0001155.8e-05
I10.09334653951302040.1124470.83010.4078340.203917
I2-0.2142586494258620.093031-2.30310.0227060.011353
I3-0.03250370654290950.07275-0.44680.6557020.327851
E10.484903624399820.0970894.99442e-061e-06
E20.1833171707727340.0789182.32290.0215860.010793
A0.006446040340311990.1170250.05510.9561490.478075
M1-0.745078561069511.289154-0.5780.5641940.282097
M2-1.103064843046991.279738-0.86190.390150.195075
M3-1.362102691968331.29205-1.05420.2935490.146774
M4-1.613913758593111.285242-1.25570.2112480.105624
M5-0.8496656344560021.281527-0.6630.5083840.254192
M6-1.806682491873441.293269-1.3970.1645660.082283
M7-0.6977658567123181.317342-0.52970.5971510.298576
M8-2.306177638083161.301698-1.77170.0785650.039282
M9-3.098837479510091.299025-2.38550.0183560.009178
M10-1.098216504930561.313657-0.8360.404540.20227
M11-0.3420775024780231.379769-0.24790.8045470.402273

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 11.1757460102206 & 2.818611 & 3.965 & 0.000115 & 5.8e-05 \tabularnewline
I1 & 0.0933465395130204 & 0.112447 & 0.8301 & 0.407834 & 0.203917 \tabularnewline
I2 & -0.214258649425862 & 0.093031 & -2.3031 & 0.022706 & 0.011353 \tabularnewline
I3 & -0.0325037065429095 & 0.07275 & -0.4468 & 0.655702 & 0.327851 \tabularnewline
E1 & 0.48490362439982 & 0.097089 & 4.9944 & 2e-06 & 1e-06 \tabularnewline
E2 & 0.183317170772734 & 0.078918 & 2.3229 & 0.021586 & 0.010793 \tabularnewline
A & 0.00644604034031199 & 0.117025 & 0.0551 & 0.956149 & 0.478075 \tabularnewline
M1 & -0.74507856106951 & 1.289154 & -0.578 & 0.564194 & 0.282097 \tabularnewline
M2 & -1.10306484304699 & 1.279738 & -0.8619 & 0.39015 & 0.195075 \tabularnewline
M3 & -1.36210269196833 & 1.29205 & -1.0542 & 0.293549 & 0.146774 \tabularnewline
M4 & -1.61391375859311 & 1.285242 & -1.2557 & 0.211248 & 0.105624 \tabularnewline
M5 & -0.849665634456002 & 1.281527 & -0.663 & 0.508384 & 0.254192 \tabularnewline
M6 & -1.80668249187344 & 1.293269 & -1.397 & 0.164566 & 0.082283 \tabularnewline
M7 & -0.697765856712318 & 1.317342 & -0.5297 & 0.597151 & 0.298576 \tabularnewline
M8 & -2.30617763808316 & 1.301698 & -1.7717 & 0.078565 & 0.039282 \tabularnewline
M9 & -3.09883747951009 & 1.299025 & -2.3855 & 0.018356 & 0.009178 \tabularnewline
M10 & -1.09821650493056 & 1.313657 & -0.836 & 0.40454 & 0.20227 \tabularnewline
M11 & -0.342077502478023 & 1.379769 & -0.2479 & 0.804547 & 0.402273 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=146327&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]11.1757460102206[/C][C]2.818611[/C][C]3.965[/C][C]0.000115[/C][C]5.8e-05[/C][/ROW]
[ROW][C]I1[/C][C]0.0933465395130204[/C][C]0.112447[/C][C]0.8301[/C][C]0.407834[/C][C]0.203917[/C][/ROW]
[ROW][C]I2[/C][C]-0.214258649425862[/C][C]0.093031[/C][C]-2.3031[/C][C]0.022706[/C][C]0.011353[/C][/ROW]
[ROW][C]I3[/C][C]-0.0325037065429095[/C][C]0.07275[/C][C]-0.4468[/C][C]0.655702[/C][C]0.327851[/C][/ROW]
[ROW][C]E1[/C][C]0.48490362439982[/C][C]0.097089[/C][C]4.9944[/C][C]2e-06[/C][C]1e-06[/C][/ROW]
[ROW][C]E2[/C][C]0.183317170772734[/C][C]0.078918[/C][C]2.3229[/C][C]0.021586[/C][C]0.010793[/C][/ROW]
[ROW][C]A[/C][C]0.00644604034031199[/C][C]0.117025[/C][C]0.0551[/C][C]0.956149[/C][C]0.478075[/C][/ROW]
[ROW][C]M1[/C][C]-0.74507856106951[/C][C]1.289154[/C][C]-0.578[/C][C]0.564194[/C][C]0.282097[/C][/ROW]
[ROW][C]M2[/C][C]-1.10306484304699[/C][C]1.279738[/C][C]-0.8619[/C][C]0.39015[/C][C]0.195075[/C][/ROW]
[ROW][C]M3[/C][C]-1.36210269196833[/C][C]1.29205[/C][C]-1.0542[/C][C]0.293549[/C][C]0.146774[/C][/ROW]
[ROW][C]M4[/C][C]-1.61391375859311[/C][C]1.285242[/C][C]-1.2557[/C][C]0.211248[/C][C]0.105624[/C][/ROW]
[ROW][C]M5[/C][C]-0.849665634456002[/C][C]1.281527[/C][C]-0.663[/C][C]0.508384[/C][C]0.254192[/C][/ROW]
[ROW][C]M6[/C][C]-1.80668249187344[/C][C]1.293269[/C][C]-1.397[/C][C]0.164566[/C][C]0.082283[/C][/ROW]
[ROW][C]M7[/C][C]-0.697765856712318[/C][C]1.317342[/C][C]-0.5297[/C][C]0.597151[/C][C]0.298576[/C][/ROW]
[ROW][C]M8[/C][C]-2.30617763808316[/C][C]1.301698[/C][C]-1.7717[/C][C]0.078565[/C][C]0.039282[/C][/ROW]
[ROW][C]M9[/C][C]-3.09883747951009[/C][C]1.299025[/C][C]-2.3855[/C][C]0.018356[/C][C]0.009178[/C][/ROW]
[ROW][C]M10[/C][C]-1.09821650493056[/C][C]1.313657[/C][C]-0.836[/C][C]0.40454[/C][C]0.20227[/C][/ROW]
[ROW][C]M11[/C][C]-0.342077502478023[/C][C]1.379769[/C][C]-0.2479[/C][C]0.804547[/C][C]0.402273[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=146327&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=146327&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)11.17574601022062.8186113.9650.0001155.8e-05
I10.09334653951302040.1124470.83010.4078340.203917
I2-0.2142586494258620.093031-2.30310.0227060.011353
I3-0.03250370654290950.07275-0.44680.6557020.327851
E10.484903624399820.0970894.99442e-061e-06
E20.1833171707727340.0789182.32290.0215860.010793
A0.006446040340311990.1170250.05510.9561490.478075
M1-0.745078561069511.289154-0.5780.5641940.282097
M2-1.103064843046991.279738-0.86190.390150.195075
M3-1.362102691968331.29205-1.05420.2935490.146774
M4-1.613913758593111.285242-1.25570.2112480.105624
M5-0.8496656344560021.281527-0.6630.5083840.254192
M6-1.806682491873441.293269-1.3970.1645660.082283
M7-0.6977658567123181.317342-0.52970.5971510.298576
M8-2.306177638083161.301698-1.77170.0785650.039282
M9-3.098837479510091.299025-2.38550.0183560.009178
M10-1.098216504930561.313657-0.8360.404540.20227
M11-0.3420775024780231.379769-0.24790.8045470.402273







Multiple Linear Regression - Regression Statistics
Multiple R0.517974442513802
R-squared0.268297523097484
Adjusted R-squared0.181915980685381
F-TEST (value)3.1059589306418
F-TEST (DF numerator)17
F-TEST (DF denominator)144
p-value0.000112094385960715
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation3.29194473072685
Sum Squared Residuals1560.51361586308

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.517974442513802 \tabularnewline
R-squared & 0.268297523097484 \tabularnewline
Adjusted R-squared & 0.181915980685381 \tabularnewline
F-TEST (value) & 3.1059589306418 \tabularnewline
F-TEST (DF numerator) & 17 \tabularnewline
F-TEST (DF denominator) & 144 \tabularnewline
p-value & 0.000112094385960715 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 3.29194473072685 \tabularnewline
Sum Squared Residuals & 1560.51361586308 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=146327&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.517974442513802[/C][/ROW]
[ROW][C]R-squared[/C][C]0.268297523097484[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.181915980685381[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]3.1059589306418[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]17[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]144[/C][/ROW]
[ROW][C]p-value[/C][C]0.000112094385960715[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]3.29194473072685[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]1560.51361586308[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=146327&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=146327&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.517974442513802
R-squared0.268297523097484
Adjusted R-squared0.181915980685381
F-TEST (value)3.1059589306418
F-TEST (DF numerator)17
F-TEST (DF denominator)144
p-value0.000112094385960715
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation3.29194473072685
Sum Squared Residuals1560.51361586308







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
12321.97062742683911.02937257316091
22022.80378101857-2.80378101857003
32020.9375115648831-0.937511564883073
42120.72052143768370.279478562316287
52423.86044184664080.139558153359162
62224.4082704468556-2.40827044685555
72326.1253436641607-3.1253436641607
82024.8789582559732-4.87895825597318
92520.51593683393214.48406316606786
102322.72623968862830.273760311371669
112724.27100869121882.72899130878122
122724.75622262922492.24377737077511
132224.6484597767362-2.64845977673624
142423.38736999768190.612630002318098
152523.77583019162591.22416980837414
162222.3928668685623-0.392866868562341
172825.22943173909792.7705682609021
182823.29558175456574.70441824543428
192723.57951013236563.42048986763442
202524.0407280612350.959271938765037
211617.5056721401812-1.50567214018122
222824.28877803588383.71122196411621
232122.5110758381229-1.51107583812291
242426.1915073908412-2.19150739084118
252725.51641612080821.48358387919183
261422.2897536786517-8.28975367865174
271422.0307158297304-8.0307158297304
282720.43496414036716.56503585963287
292017.22226525480692.7777347451931
302122.8373300646415-1.83733006464146
312223.3538788165939-1.35387881659387
322121.3279429998876-0.327942999887616
331218.7550239828073-6.75502398280733
342020.3860938310731-0.386093831073077
352423.65880396545010.341196034549888
361923.748794831423-4.74879483142303
372825.07377221335022.92622778664975
382323.3521298281659-0.352129828165884
392724.38398170985572.61601829014432
402222.6210076106532-0.621007610653247
412723.95012525276893.04987474723109
422621.93405198198494.06594801801514
432222.2204538848763-0.220453884876313
442120.75033520141560.249664798584396
451918.81582870387250.184171296127495
462421.71500865333952.28499134666054
471922.4568385152378-3.45683851523784
482624.20716126668741.7928387333126
492223.4411397760864-1.44113977608639
502822.11722697305665.88277302694342
512120.98883128889330.0111687111067208
522322.08521020969240.914789790307647
532824.49553920363543.50446079636455
541022.2923681963628-12.2923681963628
552422.96521601123931.0347839887607
562120.48936655415050.51063344584947
572120.74768765269050.252312347309542
582423.06522751010890.934772489891149
592422.3027631398861.69723686011402
602518.11785348221476.88214651778526
612520.45728454052484.54271545947521
622321.49020384669191.50979615330813
632120.31378874685270.686211253147296
641621.9396096154566-5.93960961545665
651720.3708007786535-3.37080077865347
662523.9875197298491.01248027015096
672422.87197588475351.12802411524653
682320.77197275225762.22802724774238
692521.53763458863583.4623654113642
702324.2579562376797-1.25795623767966
712824.548797015073.45120298493004
722623.83867760069022.16132239930979
732221.63107232479770.368927675202336
741923.6835858176535-4.68358581765348
752623.11773838818832.88226161181175
761819.9849979203407-1.98499792034074
771819.8977080785326-1.89770807853256
782523.13492779070761.86507220929239
792725.38452942878651.61547057121345
801220.6725229882035-8.6725229882035
811522.0016627080834-7.00166270808344
822122.0941107528682-1.0941107528682
832321.96626648929621.03373351070378
842224.5488118618058-2.5488118618058
852122.1155656084172-1.1155656084172
862422.25023158729351.74976841270655
872723.9214301664583.07856983354196
882221.18983570208220.81016429791784
892823.20460549685884.79539450314121
902620.39821950695285.60178049304718
911017.7248638916655-7.72486389166552
921920.5933271493192-1.59332714931921
932222.6574076039356-0.657407603935642
942124.04989561132-3.04989561132001
952424.1868169572992-0.186816957299186
962524.44229973677080.557700263229198
972122.8141928972121-1.81419289721215
982021.270177914428-1.27017791442795
992122.7972728084555-1.79727280845551
1002422.08704367010021.91295632989978
1012324.5947032669079-1.59470326690795
1021819.3183033238726-1.31830332387258
1032422.57503836515491.42496163484508
1042421.92565975021622.0743402497838
1051919.8993146173573-0.899314617357299
1062020.8114907569164-0.81149075691637
1071822.7235420454463-4.72354204544632
1082024.0138985126706-4.01389851267061
1092725.23189952926591.76810047073409
1102321.64307971856721.35692028143279
1112626.396577640463-0.396577640463016
1122323.2580925235832-0.258092523583242
1131720.4285867711636-3.42858677116356
1142119.77717590804241.22282409195763
1152525.4505769662085-0.45057696620851
1162319.63703583357173.36296416642829
1172720.92993229923246.0700677007676
1182423.87083088265550.12916911734448
1192020.7935998833891-0.793599883389143
1202721.7593458802055.24065411979503
1212121.6167579675544-0.616757967554431
1222421.4523099214182.547690078582
1232123.5686772075697-2.56867720756973
1241516.8386069062362-1.83860690623617
1252525.3839743655117-0.38397436551166
1262522.61773143740612.38226856259394
1272223.1134271232432-1.1134271232432
1282423.35615832746330.64384167253665
1292118.52647130866232.47352869133767
1302221.47062962122270.529370378777291
1312320.81164704700372.18835295299628
1322223.2772036804049-1.27720368040494
1332022.075939933588-2.07593993358799
1342322.86541252340250.134587476597461
1352522.42719720190032.57280279809971
1362321.20432526430871.79567473569133
1372224.5622626447982-2.56226264479821
1382521.66347421218063.33652578781944
1392624.47475098209711.52524901790293
1402221.50193827325280.498061726747236
1412420.32594001137213.67405998862788
1422424.435094517859-0.435094517859034
1432523.47585831779661.52414168220339
1442022.758951505494-2.75895150549404
1452623.93161005321012.06838994678987
1462120.51083995063230.489160049367654
1472622.94630486364683.05369513635323
1482121.7885914383416-0.788591438341556
1492222.1710583060005-0.171058306000534
1501620.8513386571445-4.85133865714455
1512622.1604348488553.83956515114499
1522823.05405385305384.94594614694624
1531821.7814875492373-3.78148754923732
1542525.828643900445-0.828643900444986
1552325.2929820947832-2.29298209478322
1562122.3392716215674-1.33927162156738
1572024.4752618316096-4.47526183160959
1582521.8838972237873.11610277621298
1592224.3941423914774-2.3941423914774
1602121.4543266925918-0.454326692591813
1611619.6284969946233-3.62849699462328
1621819.483706989434-1.48370698943402

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 23 & 21.9706274268391 & 1.02937257316091 \tabularnewline
2 & 20 & 22.80378101857 & -2.80378101857003 \tabularnewline
3 & 20 & 20.9375115648831 & -0.937511564883073 \tabularnewline
4 & 21 & 20.7205214376837 & 0.279478562316287 \tabularnewline
5 & 24 & 23.8604418466408 & 0.139558153359162 \tabularnewline
6 & 22 & 24.4082704468556 & -2.40827044685555 \tabularnewline
7 & 23 & 26.1253436641607 & -3.1253436641607 \tabularnewline
8 & 20 & 24.8789582559732 & -4.87895825597318 \tabularnewline
9 & 25 & 20.5159368339321 & 4.48406316606786 \tabularnewline
10 & 23 & 22.7262396886283 & 0.273760311371669 \tabularnewline
11 & 27 & 24.2710086912188 & 2.72899130878122 \tabularnewline
12 & 27 & 24.7562226292249 & 2.24377737077511 \tabularnewline
13 & 22 & 24.6484597767362 & -2.64845977673624 \tabularnewline
14 & 24 & 23.3873699976819 & 0.612630002318098 \tabularnewline
15 & 25 & 23.7758301916259 & 1.22416980837414 \tabularnewline
16 & 22 & 22.3928668685623 & -0.392866868562341 \tabularnewline
17 & 28 & 25.2294317390979 & 2.7705682609021 \tabularnewline
18 & 28 & 23.2955817545657 & 4.70441824543428 \tabularnewline
19 & 27 & 23.5795101323656 & 3.42048986763442 \tabularnewline
20 & 25 & 24.040728061235 & 0.959271938765037 \tabularnewline
21 & 16 & 17.5056721401812 & -1.50567214018122 \tabularnewline
22 & 28 & 24.2887780358838 & 3.71122196411621 \tabularnewline
23 & 21 & 22.5110758381229 & -1.51107583812291 \tabularnewline
24 & 24 & 26.1915073908412 & -2.19150739084118 \tabularnewline
25 & 27 & 25.5164161208082 & 1.48358387919183 \tabularnewline
26 & 14 & 22.2897536786517 & -8.28975367865174 \tabularnewline
27 & 14 & 22.0307158297304 & -8.0307158297304 \tabularnewline
28 & 27 & 20.4349641403671 & 6.56503585963287 \tabularnewline
29 & 20 & 17.2222652548069 & 2.7777347451931 \tabularnewline
30 & 21 & 22.8373300646415 & -1.83733006464146 \tabularnewline
31 & 22 & 23.3538788165939 & -1.35387881659387 \tabularnewline
32 & 21 & 21.3279429998876 & -0.327942999887616 \tabularnewline
33 & 12 & 18.7550239828073 & -6.75502398280733 \tabularnewline
34 & 20 & 20.3860938310731 & -0.386093831073077 \tabularnewline
35 & 24 & 23.6588039654501 & 0.341196034549888 \tabularnewline
36 & 19 & 23.748794831423 & -4.74879483142303 \tabularnewline
37 & 28 & 25.0737722133502 & 2.92622778664975 \tabularnewline
38 & 23 & 23.3521298281659 & -0.352129828165884 \tabularnewline
39 & 27 & 24.3839817098557 & 2.61601829014432 \tabularnewline
40 & 22 & 22.6210076106532 & -0.621007610653247 \tabularnewline
41 & 27 & 23.9501252527689 & 3.04987474723109 \tabularnewline
42 & 26 & 21.9340519819849 & 4.06594801801514 \tabularnewline
43 & 22 & 22.2204538848763 & -0.220453884876313 \tabularnewline
44 & 21 & 20.7503352014156 & 0.249664798584396 \tabularnewline
45 & 19 & 18.8158287038725 & 0.184171296127495 \tabularnewline
46 & 24 & 21.7150086533395 & 2.28499134666054 \tabularnewline
47 & 19 & 22.4568385152378 & -3.45683851523784 \tabularnewline
48 & 26 & 24.2071612666874 & 1.7928387333126 \tabularnewline
49 & 22 & 23.4411397760864 & -1.44113977608639 \tabularnewline
50 & 28 & 22.1172269730566 & 5.88277302694342 \tabularnewline
51 & 21 & 20.9888312888933 & 0.0111687111067208 \tabularnewline
52 & 23 & 22.0852102096924 & 0.914789790307647 \tabularnewline
53 & 28 & 24.4955392036354 & 3.50446079636455 \tabularnewline
54 & 10 & 22.2923681963628 & -12.2923681963628 \tabularnewline
55 & 24 & 22.9652160112393 & 1.0347839887607 \tabularnewline
56 & 21 & 20.4893665541505 & 0.51063344584947 \tabularnewline
57 & 21 & 20.7476876526905 & 0.252312347309542 \tabularnewline
58 & 24 & 23.0652275101089 & 0.934772489891149 \tabularnewline
59 & 24 & 22.302763139886 & 1.69723686011402 \tabularnewline
60 & 25 & 18.1178534822147 & 6.88214651778526 \tabularnewline
61 & 25 & 20.4572845405248 & 4.54271545947521 \tabularnewline
62 & 23 & 21.4902038466919 & 1.50979615330813 \tabularnewline
63 & 21 & 20.3137887468527 & 0.686211253147296 \tabularnewline
64 & 16 & 21.9396096154566 & -5.93960961545665 \tabularnewline
65 & 17 & 20.3708007786535 & -3.37080077865347 \tabularnewline
66 & 25 & 23.987519729849 & 1.01248027015096 \tabularnewline
67 & 24 & 22.8719758847535 & 1.12802411524653 \tabularnewline
68 & 23 & 20.7719727522576 & 2.22802724774238 \tabularnewline
69 & 25 & 21.5376345886358 & 3.4623654113642 \tabularnewline
70 & 23 & 24.2579562376797 & -1.25795623767966 \tabularnewline
71 & 28 & 24.54879701507 & 3.45120298493004 \tabularnewline
72 & 26 & 23.8386776006902 & 2.16132239930979 \tabularnewline
73 & 22 & 21.6310723247977 & 0.368927675202336 \tabularnewline
74 & 19 & 23.6835858176535 & -4.68358581765348 \tabularnewline
75 & 26 & 23.1177383881883 & 2.88226161181175 \tabularnewline
76 & 18 & 19.9849979203407 & -1.98499792034074 \tabularnewline
77 & 18 & 19.8977080785326 & -1.89770807853256 \tabularnewline
78 & 25 & 23.1349277907076 & 1.86507220929239 \tabularnewline
79 & 27 & 25.3845294287865 & 1.61547057121345 \tabularnewline
80 & 12 & 20.6725229882035 & -8.6725229882035 \tabularnewline
81 & 15 & 22.0016627080834 & -7.00166270808344 \tabularnewline
82 & 21 & 22.0941107528682 & -1.0941107528682 \tabularnewline
83 & 23 & 21.9662664892962 & 1.03373351070378 \tabularnewline
84 & 22 & 24.5488118618058 & -2.5488118618058 \tabularnewline
85 & 21 & 22.1155656084172 & -1.1155656084172 \tabularnewline
86 & 24 & 22.2502315872935 & 1.74976841270655 \tabularnewline
87 & 27 & 23.921430166458 & 3.07856983354196 \tabularnewline
88 & 22 & 21.1898357020822 & 0.81016429791784 \tabularnewline
89 & 28 & 23.2046054968588 & 4.79539450314121 \tabularnewline
90 & 26 & 20.3982195069528 & 5.60178049304718 \tabularnewline
91 & 10 & 17.7248638916655 & -7.72486389166552 \tabularnewline
92 & 19 & 20.5933271493192 & -1.59332714931921 \tabularnewline
93 & 22 & 22.6574076039356 & -0.657407603935642 \tabularnewline
94 & 21 & 24.04989561132 & -3.04989561132001 \tabularnewline
95 & 24 & 24.1868169572992 & -0.186816957299186 \tabularnewline
96 & 25 & 24.4422997367708 & 0.557700263229198 \tabularnewline
97 & 21 & 22.8141928972121 & -1.81419289721215 \tabularnewline
98 & 20 & 21.270177914428 & -1.27017791442795 \tabularnewline
99 & 21 & 22.7972728084555 & -1.79727280845551 \tabularnewline
100 & 24 & 22.0870436701002 & 1.91295632989978 \tabularnewline
101 & 23 & 24.5947032669079 & -1.59470326690795 \tabularnewline
102 & 18 & 19.3183033238726 & -1.31830332387258 \tabularnewline
103 & 24 & 22.5750383651549 & 1.42496163484508 \tabularnewline
104 & 24 & 21.9256597502162 & 2.0743402497838 \tabularnewline
105 & 19 & 19.8993146173573 & -0.899314617357299 \tabularnewline
106 & 20 & 20.8114907569164 & -0.81149075691637 \tabularnewline
107 & 18 & 22.7235420454463 & -4.72354204544632 \tabularnewline
108 & 20 & 24.0138985126706 & -4.01389851267061 \tabularnewline
109 & 27 & 25.2318995292659 & 1.76810047073409 \tabularnewline
110 & 23 & 21.6430797185672 & 1.35692028143279 \tabularnewline
111 & 26 & 26.396577640463 & -0.396577640463016 \tabularnewline
112 & 23 & 23.2580925235832 & -0.258092523583242 \tabularnewline
113 & 17 & 20.4285867711636 & -3.42858677116356 \tabularnewline
114 & 21 & 19.7771759080424 & 1.22282409195763 \tabularnewline
115 & 25 & 25.4505769662085 & -0.45057696620851 \tabularnewline
116 & 23 & 19.6370358335717 & 3.36296416642829 \tabularnewline
117 & 27 & 20.9299322992324 & 6.0700677007676 \tabularnewline
118 & 24 & 23.8708308826555 & 0.12916911734448 \tabularnewline
119 & 20 & 20.7935998833891 & -0.793599883389143 \tabularnewline
120 & 27 & 21.759345880205 & 5.24065411979503 \tabularnewline
121 & 21 & 21.6167579675544 & -0.616757967554431 \tabularnewline
122 & 24 & 21.452309921418 & 2.547690078582 \tabularnewline
123 & 21 & 23.5686772075697 & -2.56867720756973 \tabularnewline
124 & 15 & 16.8386069062362 & -1.83860690623617 \tabularnewline
125 & 25 & 25.3839743655117 & -0.38397436551166 \tabularnewline
126 & 25 & 22.6177314374061 & 2.38226856259394 \tabularnewline
127 & 22 & 23.1134271232432 & -1.1134271232432 \tabularnewline
128 & 24 & 23.3561583274633 & 0.64384167253665 \tabularnewline
129 & 21 & 18.5264713086623 & 2.47352869133767 \tabularnewline
130 & 22 & 21.4706296212227 & 0.529370378777291 \tabularnewline
131 & 23 & 20.8116470470037 & 2.18835295299628 \tabularnewline
132 & 22 & 23.2772036804049 & -1.27720368040494 \tabularnewline
133 & 20 & 22.075939933588 & -2.07593993358799 \tabularnewline
134 & 23 & 22.8654125234025 & 0.134587476597461 \tabularnewline
135 & 25 & 22.4271972019003 & 2.57280279809971 \tabularnewline
136 & 23 & 21.2043252643087 & 1.79567473569133 \tabularnewline
137 & 22 & 24.5622626447982 & -2.56226264479821 \tabularnewline
138 & 25 & 21.6634742121806 & 3.33652578781944 \tabularnewline
139 & 26 & 24.4747509820971 & 1.52524901790293 \tabularnewline
140 & 22 & 21.5019382732528 & 0.498061726747236 \tabularnewline
141 & 24 & 20.3259400113721 & 3.67405998862788 \tabularnewline
142 & 24 & 24.435094517859 & -0.435094517859034 \tabularnewline
143 & 25 & 23.4758583177966 & 1.52414168220339 \tabularnewline
144 & 20 & 22.758951505494 & -2.75895150549404 \tabularnewline
145 & 26 & 23.9316100532101 & 2.06838994678987 \tabularnewline
146 & 21 & 20.5108399506323 & 0.489160049367654 \tabularnewline
147 & 26 & 22.9463048636468 & 3.05369513635323 \tabularnewline
148 & 21 & 21.7885914383416 & -0.788591438341556 \tabularnewline
149 & 22 & 22.1710583060005 & -0.171058306000534 \tabularnewline
150 & 16 & 20.8513386571445 & -4.85133865714455 \tabularnewline
151 & 26 & 22.160434848855 & 3.83956515114499 \tabularnewline
152 & 28 & 23.0540538530538 & 4.94594614694624 \tabularnewline
153 & 18 & 21.7814875492373 & -3.78148754923732 \tabularnewline
154 & 25 & 25.828643900445 & -0.828643900444986 \tabularnewline
155 & 23 & 25.2929820947832 & -2.29298209478322 \tabularnewline
156 & 21 & 22.3392716215674 & -1.33927162156738 \tabularnewline
157 & 20 & 24.4752618316096 & -4.47526183160959 \tabularnewline
158 & 25 & 21.883897223787 & 3.11610277621298 \tabularnewline
159 & 22 & 24.3941423914774 & -2.3941423914774 \tabularnewline
160 & 21 & 21.4543266925918 & -0.454326692591813 \tabularnewline
161 & 16 & 19.6284969946233 & -3.62849699462328 \tabularnewline
162 & 18 & 19.483706989434 & -1.48370698943402 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=146327&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]23[/C][C]21.9706274268391[/C][C]1.02937257316091[/C][/ROW]
[ROW][C]2[/C][C]20[/C][C]22.80378101857[/C][C]-2.80378101857003[/C][/ROW]
[ROW][C]3[/C][C]20[/C][C]20.9375115648831[/C][C]-0.937511564883073[/C][/ROW]
[ROW][C]4[/C][C]21[/C][C]20.7205214376837[/C][C]0.279478562316287[/C][/ROW]
[ROW][C]5[/C][C]24[/C][C]23.8604418466408[/C][C]0.139558153359162[/C][/ROW]
[ROW][C]6[/C][C]22[/C][C]24.4082704468556[/C][C]-2.40827044685555[/C][/ROW]
[ROW][C]7[/C][C]23[/C][C]26.1253436641607[/C][C]-3.1253436641607[/C][/ROW]
[ROW][C]8[/C][C]20[/C][C]24.8789582559732[/C][C]-4.87895825597318[/C][/ROW]
[ROW][C]9[/C][C]25[/C][C]20.5159368339321[/C][C]4.48406316606786[/C][/ROW]
[ROW][C]10[/C][C]23[/C][C]22.7262396886283[/C][C]0.273760311371669[/C][/ROW]
[ROW][C]11[/C][C]27[/C][C]24.2710086912188[/C][C]2.72899130878122[/C][/ROW]
[ROW][C]12[/C][C]27[/C][C]24.7562226292249[/C][C]2.24377737077511[/C][/ROW]
[ROW][C]13[/C][C]22[/C][C]24.6484597767362[/C][C]-2.64845977673624[/C][/ROW]
[ROW][C]14[/C][C]24[/C][C]23.3873699976819[/C][C]0.612630002318098[/C][/ROW]
[ROW][C]15[/C][C]25[/C][C]23.7758301916259[/C][C]1.22416980837414[/C][/ROW]
[ROW][C]16[/C][C]22[/C][C]22.3928668685623[/C][C]-0.392866868562341[/C][/ROW]
[ROW][C]17[/C][C]28[/C][C]25.2294317390979[/C][C]2.7705682609021[/C][/ROW]
[ROW][C]18[/C][C]28[/C][C]23.2955817545657[/C][C]4.70441824543428[/C][/ROW]
[ROW][C]19[/C][C]27[/C][C]23.5795101323656[/C][C]3.42048986763442[/C][/ROW]
[ROW][C]20[/C][C]25[/C][C]24.040728061235[/C][C]0.959271938765037[/C][/ROW]
[ROW][C]21[/C][C]16[/C][C]17.5056721401812[/C][C]-1.50567214018122[/C][/ROW]
[ROW][C]22[/C][C]28[/C][C]24.2887780358838[/C][C]3.71122196411621[/C][/ROW]
[ROW][C]23[/C][C]21[/C][C]22.5110758381229[/C][C]-1.51107583812291[/C][/ROW]
[ROW][C]24[/C][C]24[/C][C]26.1915073908412[/C][C]-2.19150739084118[/C][/ROW]
[ROW][C]25[/C][C]27[/C][C]25.5164161208082[/C][C]1.48358387919183[/C][/ROW]
[ROW][C]26[/C][C]14[/C][C]22.2897536786517[/C][C]-8.28975367865174[/C][/ROW]
[ROW][C]27[/C][C]14[/C][C]22.0307158297304[/C][C]-8.0307158297304[/C][/ROW]
[ROW][C]28[/C][C]27[/C][C]20.4349641403671[/C][C]6.56503585963287[/C][/ROW]
[ROW][C]29[/C][C]20[/C][C]17.2222652548069[/C][C]2.7777347451931[/C][/ROW]
[ROW][C]30[/C][C]21[/C][C]22.8373300646415[/C][C]-1.83733006464146[/C][/ROW]
[ROW][C]31[/C][C]22[/C][C]23.3538788165939[/C][C]-1.35387881659387[/C][/ROW]
[ROW][C]32[/C][C]21[/C][C]21.3279429998876[/C][C]-0.327942999887616[/C][/ROW]
[ROW][C]33[/C][C]12[/C][C]18.7550239828073[/C][C]-6.75502398280733[/C][/ROW]
[ROW][C]34[/C][C]20[/C][C]20.3860938310731[/C][C]-0.386093831073077[/C][/ROW]
[ROW][C]35[/C][C]24[/C][C]23.6588039654501[/C][C]0.341196034549888[/C][/ROW]
[ROW][C]36[/C][C]19[/C][C]23.748794831423[/C][C]-4.74879483142303[/C][/ROW]
[ROW][C]37[/C][C]28[/C][C]25.0737722133502[/C][C]2.92622778664975[/C][/ROW]
[ROW][C]38[/C][C]23[/C][C]23.3521298281659[/C][C]-0.352129828165884[/C][/ROW]
[ROW][C]39[/C][C]27[/C][C]24.3839817098557[/C][C]2.61601829014432[/C][/ROW]
[ROW][C]40[/C][C]22[/C][C]22.6210076106532[/C][C]-0.621007610653247[/C][/ROW]
[ROW][C]41[/C][C]27[/C][C]23.9501252527689[/C][C]3.04987474723109[/C][/ROW]
[ROW][C]42[/C][C]26[/C][C]21.9340519819849[/C][C]4.06594801801514[/C][/ROW]
[ROW][C]43[/C][C]22[/C][C]22.2204538848763[/C][C]-0.220453884876313[/C][/ROW]
[ROW][C]44[/C][C]21[/C][C]20.7503352014156[/C][C]0.249664798584396[/C][/ROW]
[ROW][C]45[/C][C]19[/C][C]18.8158287038725[/C][C]0.184171296127495[/C][/ROW]
[ROW][C]46[/C][C]24[/C][C]21.7150086533395[/C][C]2.28499134666054[/C][/ROW]
[ROW][C]47[/C][C]19[/C][C]22.4568385152378[/C][C]-3.45683851523784[/C][/ROW]
[ROW][C]48[/C][C]26[/C][C]24.2071612666874[/C][C]1.7928387333126[/C][/ROW]
[ROW][C]49[/C][C]22[/C][C]23.4411397760864[/C][C]-1.44113977608639[/C][/ROW]
[ROW][C]50[/C][C]28[/C][C]22.1172269730566[/C][C]5.88277302694342[/C][/ROW]
[ROW][C]51[/C][C]21[/C][C]20.9888312888933[/C][C]0.0111687111067208[/C][/ROW]
[ROW][C]52[/C][C]23[/C][C]22.0852102096924[/C][C]0.914789790307647[/C][/ROW]
[ROW][C]53[/C][C]28[/C][C]24.4955392036354[/C][C]3.50446079636455[/C][/ROW]
[ROW][C]54[/C][C]10[/C][C]22.2923681963628[/C][C]-12.2923681963628[/C][/ROW]
[ROW][C]55[/C][C]24[/C][C]22.9652160112393[/C][C]1.0347839887607[/C][/ROW]
[ROW][C]56[/C][C]21[/C][C]20.4893665541505[/C][C]0.51063344584947[/C][/ROW]
[ROW][C]57[/C][C]21[/C][C]20.7476876526905[/C][C]0.252312347309542[/C][/ROW]
[ROW][C]58[/C][C]24[/C][C]23.0652275101089[/C][C]0.934772489891149[/C][/ROW]
[ROW][C]59[/C][C]24[/C][C]22.302763139886[/C][C]1.69723686011402[/C][/ROW]
[ROW][C]60[/C][C]25[/C][C]18.1178534822147[/C][C]6.88214651778526[/C][/ROW]
[ROW][C]61[/C][C]25[/C][C]20.4572845405248[/C][C]4.54271545947521[/C][/ROW]
[ROW][C]62[/C][C]23[/C][C]21.4902038466919[/C][C]1.50979615330813[/C][/ROW]
[ROW][C]63[/C][C]21[/C][C]20.3137887468527[/C][C]0.686211253147296[/C][/ROW]
[ROW][C]64[/C][C]16[/C][C]21.9396096154566[/C][C]-5.93960961545665[/C][/ROW]
[ROW][C]65[/C][C]17[/C][C]20.3708007786535[/C][C]-3.37080077865347[/C][/ROW]
[ROW][C]66[/C][C]25[/C][C]23.987519729849[/C][C]1.01248027015096[/C][/ROW]
[ROW][C]67[/C][C]24[/C][C]22.8719758847535[/C][C]1.12802411524653[/C][/ROW]
[ROW][C]68[/C][C]23[/C][C]20.7719727522576[/C][C]2.22802724774238[/C][/ROW]
[ROW][C]69[/C][C]25[/C][C]21.5376345886358[/C][C]3.4623654113642[/C][/ROW]
[ROW][C]70[/C][C]23[/C][C]24.2579562376797[/C][C]-1.25795623767966[/C][/ROW]
[ROW][C]71[/C][C]28[/C][C]24.54879701507[/C][C]3.45120298493004[/C][/ROW]
[ROW][C]72[/C][C]26[/C][C]23.8386776006902[/C][C]2.16132239930979[/C][/ROW]
[ROW][C]73[/C][C]22[/C][C]21.6310723247977[/C][C]0.368927675202336[/C][/ROW]
[ROW][C]74[/C][C]19[/C][C]23.6835858176535[/C][C]-4.68358581765348[/C][/ROW]
[ROW][C]75[/C][C]26[/C][C]23.1177383881883[/C][C]2.88226161181175[/C][/ROW]
[ROW][C]76[/C][C]18[/C][C]19.9849979203407[/C][C]-1.98499792034074[/C][/ROW]
[ROW][C]77[/C][C]18[/C][C]19.8977080785326[/C][C]-1.89770807853256[/C][/ROW]
[ROW][C]78[/C][C]25[/C][C]23.1349277907076[/C][C]1.86507220929239[/C][/ROW]
[ROW][C]79[/C][C]27[/C][C]25.3845294287865[/C][C]1.61547057121345[/C][/ROW]
[ROW][C]80[/C][C]12[/C][C]20.6725229882035[/C][C]-8.6725229882035[/C][/ROW]
[ROW][C]81[/C][C]15[/C][C]22.0016627080834[/C][C]-7.00166270808344[/C][/ROW]
[ROW][C]82[/C][C]21[/C][C]22.0941107528682[/C][C]-1.0941107528682[/C][/ROW]
[ROW][C]83[/C][C]23[/C][C]21.9662664892962[/C][C]1.03373351070378[/C][/ROW]
[ROW][C]84[/C][C]22[/C][C]24.5488118618058[/C][C]-2.5488118618058[/C][/ROW]
[ROW][C]85[/C][C]21[/C][C]22.1155656084172[/C][C]-1.1155656084172[/C][/ROW]
[ROW][C]86[/C][C]24[/C][C]22.2502315872935[/C][C]1.74976841270655[/C][/ROW]
[ROW][C]87[/C][C]27[/C][C]23.921430166458[/C][C]3.07856983354196[/C][/ROW]
[ROW][C]88[/C][C]22[/C][C]21.1898357020822[/C][C]0.81016429791784[/C][/ROW]
[ROW][C]89[/C][C]28[/C][C]23.2046054968588[/C][C]4.79539450314121[/C][/ROW]
[ROW][C]90[/C][C]26[/C][C]20.3982195069528[/C][C]5.60178049304718[/C][/ROW]
[ROW][C]91[/C][C]10[/C][C]17.7248638916655[/C][C]-7.72486389166552[/C][/ROW]
[ROW][C]92[/C][C]19[/C][C]20.5933271493192[/C][C]-1.59332714931921[/C][/ROW]
[ROW][C]93[/C][C]22[/C][C]22.6574076039356[/C][C]-0.657407603935642[/C][/ROW]
[ROW][C]94[/C][C]21[/C][C]24.04989561132[/C][C]-3.04989561132001[/C][/ROW]
[ROW][C]95[/C][C]24[/C][C]24.1868169572992[/C][C]-0.186816957299186[/C][/ROW]
[ROW][C]96[/C][C]25[/C][C]24.4422997367708[/C][C]0.557700263229198[/C][/ROW]
[ROW][C]97[/C][C]21[/C][C]22.8141928972121[/C][C]-1.81419289721215[/C][/ROW]
[ROW][C]98[/C][C]20[/C][C]21.270177914428[/C][C]-1.27017791442795[/C][/ROW]
[ROW][C]99[/C][C]21[/C][C]22.7972728084555[/C][C]-1.79727280845551[/C][/ROW]
[ROW][C]100[/C][C]24[/C][C]22.0870436701002[/C][C]1.91295632989978[/C][/ROW]
[ROW][C]101[/C][C]23[/C][C]24.5947032669079[/C][C]-1.59470326690795[/C][/ROW]
[ROW][C]102[/C][C]18[/C][C]19.3183033238726[/C][C]-1.31830332387258[/C][/ROW]
[ROW][C]103[/C][C]24[/C][C]22.5750383651549[/C][C]1.42496163484508[/C][/ROW]
[ROW][C]104[/C][C]24[/C][C]21.9256597502162[/C][C]2.0743402497838[/C][/ROW]
[ROW][C]105[/C][C]19[/C][C]19.8993146173573[/C][C]-0.899314617357299[/C][/ROW]
[ROW][C]106[/C][C]20[/C][C]20.8114907569164[/C][C]-0.81149075691637[/C][/ROW]
[ROW][C]107[/C][C]18[/C][C]22.7235420454463[/C][C]-4.72354204544632[/C][/ROW]
[ROW][C]108[/C][C]20[/C][C]24.0138985126706[/C][C]-4.01389851267061[/C][/ROW]
[ROW][C]109[/C][C]27[/C][C]25.2318995292659[/C][C]1.76810047073409[/C][/ROW]
[ROW][C]110[/C][C]23[/C][C]21.6430797185672[/C][C]1.35692028143279[/C][/ROW]
[ROW][C]111[/C][C]26[/C][C]26.396577640463[/C][C]-0.396577640463016[/C][/ROW]
[ROW][C]112[/C][C]23[/C][C]23.2580925235832[/C][C]-0.258092523583242[/C][/ROW]
[ROW][C]113[/C][C]17[/C][C]20.4285867711636[/C][C]-3.42858677116356[/C][/ROW]
[ROW][C]114[/C][C]21[/C][C]19.7771759080424[/C][C]1.22282409195763[/C][/ROW]
[ROW][C]115[/C][C]25[/C][C]25.4505769662085[/C][C]-0.45057696620851[/C][/ROW]
[ROW][C]116[/C][C]23[/C][C]19.6370358335717[/C][C]3.36296416642829[/C][/ROW]
[ROW][C]117[/C][C]27[/C][C]20.9299322992324[/C][C]6.0700677007676[/C][/ROW]
[ROW][C]118[/C][C]24[/C][C]23.8708308826555[/C][C]0.12916911734448[/C][/ROW]
[ROW][C]119[/C][C]20[/C][C]20.7935998833891[/C][C]-0.793599883389143[/C][/ROW]
[ROW][C]120[/C][C]27[/C][C]21.759345880205[/C][C]5.24065411979503[/C][/ROW]
[ROW][C]121[/C][C]21[/C][C]21.6167579675544[/C][C]-0.616757967554431[/C][/ROW]
[ROW][C]122[/C][C]24[/C][C]21.452309921418[/C][C]2.547690078582[/C][/ROW]
[ROW][C]123[/C][C]21[/C][C]23.5686772075697[/C][C]-2.56867720756973[/C][/ROW]
[ROW][C]124[/C][C]15[/C][C]16.8386069062362[/C][C]-1.83860690623617[/C][/ROW]
[ROW][C]125[/C][C]25[/C][C]25.3839743655117[/C][C]-0.38397436551166[/C][/ROW]
[ROW][C]126[/C][C]25[/C][C]22.6177314374061[/C][C]2.38226856259394[/C][/ROW]
[ROW][C]127[/C][C]22[/C][C]23.1134271232432[/C][C]-1.1134271232432[/C][/ROW]
[ROW][C]128[/C][C]24[/C][C]23.3561583274633[/C][C]0.64384167253665[/C][/ROW]
[ROW][C]129[/C][C]21[/C][C]18.5264713086623[/C][C]2.47352869133767[/C][/ROW]
[ROW][C]130[/C][C]22[/C][C]21.4706296212227[/C][C]0.529370378777291[/C][/ROW]
[ROW][C]131[/C][C]23[/C][C]20.8116470470037[/C][C]2.18835295299628[/C][/ROW]
[ROW][C]132[/C][C]22[/C][C]23.2772036804049[/C][C]-1.27720368040494[/C][/ROW]
[ROW][C]133[/C][C]20[/C][C]22.075939933588[/C][C]-2.07593993358799[/C][/ROW]
[ROW][C]134[/C][C]23[/C][C]22.8654125234025[/C][C]0.134587476597461[/C][/ROW]
[ROW][C]135[/C][C]25[/C][C]22.4271972019003[/C][C]2.57280279809971[/C][/ROW]
[ROW][C]136[/C][C]23[/C][C]21.2043252643087[/C][C]1.79567473569133[/C][/ROW]
[ROW][C]137[/C][C]22[/C][C]24.5622626447982[/C][C]-2.56226264479821[/C][/ROW]
[ROW][C]138[/C][C]25[/C][C]21.6634742121806[/C][C]3.33652578781944[/C][/ROW]
[ROW][C]139[/C][C]26[/C][C]24.4747509820971[/C][C]1.52524901790293[/C][/ROW]
[ROW][C]140[/C][C]22[/C][C]21.5019382732528[/C][C]0.498061726747236[/C][/ROW]
[ROW][C]141[/C][C]24[/C][C]20.3259400113721[/C][C]3.67405998862788[/C][/ROW]
[ROW][C]142[/C][C]24[/C][C]24.435094517859[/C][C]-0.435094517859034[/C][/ROW]
[ROW][C]143[/C][C]25[/C][C]23.4758583177966[/C][C]1.52414168220339[/C][/ROW]
[ROW][C]144[/C][C]20[/C][C]22.758951505494[/C][C]-2.75895150549404[/C][/ROW]
[ROW][C]145[/C][C]26[/C][C]23.9316100532101[/C][C]2.06838994678987[/C][/ROW]
[ROW][C]146[/C][C]21[/C][C]20.5108399506323[/C][C]0.489160049367654[/C][/ROW]
[ROW][C]147[/C][C]26[/C][C]22.9463048636468[/C][C]3.05369513635323[/C][/ROW]
[ROW][C]148[/C][C]21[/C][C]21.7885914383416[/C][C]-0.788591438341556[/C][/ROW]
[ROW][C]149[/C][C]22[/C][C]22.1710583060005[/C][C]-0.171058306000534[/C][/ROW]
[ROW][C]150[/C][C]16[/C][C]20.8513386571445[/C][C]-4.85133865714455[/C][/ROW]
[ROW][C]151[/C][C]26[/C][C]22.160434848855[/C][C]3.83956515114499[/C][/ROW]
[ROW][C]152[/C][C]28[/C][C]23.0540538530538[/C][C]4.94594614694624[/C][/ROW]
[ROW][C]153[/C][C]18[/C][C]21.7814875492373[/C][C]-3.78148754923732[/C][/ROW]
[ROW][C]154[/C][C]25[/C][C]25.828643900445[/C][C]-0.828643900444986[/C][/ROW]
[ROW][C]155[/C][C]23[/C][C]25.2929820947832[/C][C]-2.29298209478322[/C][/ROW]
[ROW][C]156[/C][C]21[/C][C]22.3392716215674[/C][C]-1.33927162156738[/C][/ROW]
[ROW][C]157[/C][C]20[/C][C]24.4752618316096[/C][C]-4.47526183160959[/C][/ROW]
[ROW][C]158[/C][C]25[/C][C]21.883897223787[/C][C]3.11610277621298[/C][/ROW]
[ROW][C]159[/C][C]22[/C][C]24.3941423914774[/C][C]-2.3941423914774[/C][/ROW]
[ROW][C]160[/C][C]21[/C][C]21.4543266925918[/C][C]-0.454326692591813[/C][/ROW]
[ROW][C]161[/C][C]16[/C][C]19.6284969946233[/C][C]-3.62849699462328[/C][/ROW]
[ROW][C]162[/C][C]18[/C][C]19.483706989434[/C][C]-1.48370698943402[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=146327&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=146327&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
12321.97062742683911.02937257316091
22022.80378101857-2.80378101857003
32020.9375115648831-0.937511564883073
42120.72052143768370.279478562316287
52423.86044184664080.139558153359162
62224.4082704468556-2.40827044685555
72326.1253436641607-3.1253436641607
82024.8789582559732-4.87895825597318
92520.51593683393214.48406316606786
102322.72623968862830.273760311371669
112724.27100869121882.72899130878122
122724.75622262922492.24377737077511
132224.6484597767362-2.64845977673624
142423.38736999768190.612630002318098
152523.77583019162591.22416980837414
162222.3928668685623-0.392866868562341
172825.22943173909792.7705682609021
182823.29558175456574.70441824543428
192723.57951013236563.42048986763442
202524.0407280612350.959271938765037
211617.5056721401812-1.50567214018122
222824.28877803588383.71122196411621
232122.5110758381229-1.51107583812291
242426.1915073908412-2.19150739084118
252725.51641612080821.48358387919183
261422.2897536786517-8.28975367865174
271422.0307158297304-8.0307158297304
282720.43496414036716.56503585963287
292017.22226525480692.7777347451931
302122.8373300646415-1.83733006464146
312223.3538788165939-1.35387881659387
322121.3279429998876-0.327942999887616
331218.7550239828073-6.75502398280733
342020.3860938310731-0.386093831073077
352423.65880396545010.341196034549888
361923.748794831423-4.74879483142303
372825.07377221335022.92622778664975
382323.3521298281659-0.352129828165884
392724.38398170985572.61601829014432
402222.6210076106532-0.621007610653247
412723.95012525276893.04987474723109
422621.93405198198494.06594801801514
432222.2204538848763-0.220453884876313
442120.75033520141560.249664798584396
451918.81582870387250.184171296127495
462421.71500865333952.28499134666054
471922.4568385152378-3.45683851523784
482624.20716126668741.7928387333126
492223.4411397760864-1.44113977608639
502822.11722697305665.88277302694342
512120.98883128889330.0111687111067208
522322.08521020969240.914789790307647
532824.49553920363543.50446079636455
541022.2923681963628-12.2923681963628
552422.96521601123931.0347839887607
562120.48936655415050.51063344584947
572120.74768765269050.252312347309542
582423.06522751010890.934772489891149
592422.3027631398861.69723686011402
602518.11785348221476.88214651778526
612520.45728454052484.54271545947521
622321.49020384669191.50979615330813
632120.31378874685270.686211253147296
641621.9396096154566-5.93960961545665
651720.3708007786535-3.37080077865347
662523.9875197298491.01248027015096
672422.87197588475351.12802411524653
682320.77197275225762.22802724774238
692521.53763458863583.4623654113642
702324.2579562376797-1.25795623767966
712824.548797015073.45120298493004
722623.83867760069022.16132239930979
732221.63107232479770.368927675202336
741923.6835858176535-4.68358581765348
752623.11773838818832.88226161181175
761819.9849979203407-1.98499792034074
771819.8977080785326-1.89770807853256
782523.13492779070761.86507220929239
792725.38452942878651.61547057121345
801220.6725229882035-8.6725229882035
811522.0016627080834-7.00166270808344
822122.0941107528682-1.0941107528682
832321.96626648929621.03373351070378
842224.5488118618058-2.5488118618058
852122.1155656084172-1.1155656084172
862422.25023158729351.74976841270655
872723.9214301664583.07856983354196
882221.18983570208220.81016429791784
892823.20460549685884.79539450314121
902620.39821950695285.60178049304718
911017.7248638916655-7.72486389166552
921920.5933271493192-1.59332714931921
932222.6574076039356-0.657407603935642
942124.04989561132-3.04989561132001
952424.1868169572992-0.186816957299186
962524.44229973677080.557700263229198
972122.8141928972121-1.81419289721215
982021.270177914428-1.27017791442795
992122.7972728084555-1.79727280845551
1002422.08704367010021.91295632989978
1012324.5947032669079-1.59470326690795
1021819.3183033238726-1.31830332387258
1032422.57503836515491.42496163484508
1042421.92565975021622.0743402497838
1051919.8993146173573-0.899314617357299
1062020.8114907569164-0.81149075691637
1071822.7235420454463-4.72354204544632
1082024.0138985126706-4.01389851267061
1092725.23189952926591.76810047073409
1102321.64307971856721.35692028143279
1112626.396577640463-0.396577640463016
1122323.2580925235832-0.258092523583242
1131720.4285867711636-3.42858677116356
1142119.77717590804241.22282409195763
1152525.4505769662085-0.45057696620851
1162319.63703583357173.36296416642829
1172720.92993229923246.0700677007676
1182423.87083088265550.12916911734448
1192020.7935998833891-0.793599883389143
1202721.7593458802055.24065411979503
1212121.6167579675544-0.616757967554431
1222421.4523099214182.547690078582
1232123.5686772075697-2.56867720756973
1241516.8386069062362-1.83860690623617
1252525.3839743655117-0.38397436551166
1262522.61773143740612.38226856259394
1272223.1134271232432-1.1134271232432
1282423.35615832746330.64384167253665
1292118.52647130866232.47352869133767
1302221.47062962122270.529370378777291
1312320.81164704700372.18835295299628
1322223.2772036804049-1.27720368040494
1332022.075939933588-2.07593993358799
1342322.86541252340250.134587476597461
1352522.42719720190032.57280279809971
1362321.20432526430871.79567473569133
1372224.5622626447982-2.56226264479821
1382521.66347421218063.33652578781944
1392624.47475098209711.52524901790293
1402221.50193827325280.498061726747236
1412420.32594001137213.67405998862788
1422424.435094517859-0.435094517859034
1432523.47585831779661.52414168220339
1442022.758951505494-2.75895150549404
1452623.93161005321012.06838994678987
1462120.51083995063230.489160049367654
1472622.94630486364683.05369513635323
1482121.7885914383416-0.788591438341556
1492222.1710583060005-0.171058306000534
1501620.8513386571445-4.85133865714455
1512622.1604348488553.83956515114499
1522823.05405385305384.94594614694624
1531821.7814875492373-3.78148754923732
1542525.828643900445-0.828643900444986
1552325.2929820947832-2.29298209478322
1562122.3392716215674-1.33927162156738
1572024.4752618316096-4.47526183160959
1582521.8838972237873.11610277621298
1592224.3941423914774-2.3941423914774
1602121.4543266925918-0.454326692591813
1611619.6284969946233-3.62849699462328
1621819.483706989434-1.48370698943402







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
210.6737801341369070.6524397317261870.326219865863094
220.7420552815445430.5158894369109130.257944718455457
230.6189728223816070.7620543552367860.381027177618393
240.5248627920572820.9502744158854360.475137207942718
250.5657672200660750.8684655598678490.434232779933925
260.7110638157711170.5778723684577670.288936184228883
270.7325866510822760.5348266978354480.267413348917724
280.8796739649346890.2406520701306220.120326035065311
290.8937769357826140.2124461284347730.106223064217386
300.8518162161269580.2963675677460850.148183783873042
310.814796208184730.3704075836305410.185203791815271
320.7687720619073750.462455876185250.231227938092625
330.7522529412694940.4954941174610110.247747058730506
340.6959069933059270.6081860133881460.304093006694073
350.6451438146987840.7097123706024320.354856185301216
360.6084391497134310.7831217005731380.391560850286569
370.7052980418196280.5894039163607440.294701958180372
380.6902179792868140.6195640414263720.309782020713186
390.6801892662695050.639621467460990.319810733730495
400.7213026727598940.5573946544802130.278697327240106
410.6802260139121180.6395479721757630.319773986087882
420.6907648618821130.6184702762357730.309235138117887
430.6598573819994330.6802852360011350.340142618000567
440.6009201484585440.7981597030829130.399079851541456
450.5427762524619570.9144474950760850.457223747538043
460.5502195518575120.8995608962849760.449780448142488
470.5807797869580430.8384404260839140.419220213041957
480.6220958411543680.7558083176912650.377904158845632
490.5723217672305050.855356465538990.427678232769495
500.7875685151608340.4248629696783330.212431484839166
510.7523666417735360.4952667164529280.247633358226464
520.7107855062392430.5784289875215140.289214493760757
530.703331824766020.593336350467960.29666817523398
540.9806763678751760.03864726424964870.0193236321248244
550.9763635812176640.0472728375646730.0236364187823365
560.9680386019245750.06392279615084940.0319613980754247
570.9575022875291030.08499542494179440.0424977124708972
580.946932178710360.1061356425792790.0530678212896397
590.9357263571117120.1285472857765760.0642736428882881
600.973580150639790.05283969872041810.0264198493602091
610.9834877872958960.03302442540820760.0165122127041038
620.9790718840163040.04185623196739250.0209281159836962
630.9717909401204220.05641811975915680.0282090598795784
640.9881005871491630.02379882570167370.0118994128508369
650.9887573102748070.02248537945038570.0112426897251928
660.9855436073910740.02891278521785270.0144563926089263
670.9811453273289220.03770934534215590.0188546726710779
680.9769966429225380.04600671415492380.0230033570774619
690.977219721850760.04556055629848140.0227802781492407
700.972711106611840.05457778677631970.0272888933881599
710.971055174041420.05788965191715790.0289448259585789
720.9651894771930760.06962104561384710.0348105228069236
730.9574691010405050.085061797918990.042530898959495
740.9766837424092120.04663251518157570.0233162575907879
750.9747458339506360.05050833209872720.0252541660493636
760.9678207031493520.06435859370129660.0321792968506483
770.962418715990350.07516256801929850.0375812840096493
780.9553622923698370.08927541526032580.0446377076301629
790.9441499255082550.1117001489834910.0558500744917453
800.9894763835494140.02104723290117190.0105236164505859
810.9981122684022680.003775463195463890.00188773159773194
820.9973729105427450.005254178914509270.00262708945725464
830.9968948144758360.006210371048327410.0031051855241637
840.9965980744748980.0068038510502030.0034019255251015
850.995125110261970.009749779476060120.00487488973803006
860.9940122393180080.01197552136398420.00598776068199209
870.993862902152210.01227419569558010.00613709784779005
880.991799994338870.016400011322260.00820000566113
890.9933501527567860.01329969448642770.00664984724321384
900.997035789855680.005928420288640350.00296421014432018
910.9997252853920380.0005494292159240090.000274714607962004
920.9996921805865030.0006156388269932020.000307819413496601
930.9995692592628350.0008614814743298820.000430740737164941
940.999494003026930.001011993946140270.000505996973070133
950.9991882852682340.001623429463531970.000811714731765986
960.9987325551072030.002534889785593560.00126744489279678
970.998202550848860.003594898302280210.00179744915114011
980.997762789497740.004474421004520170.00223721050226008
990.996956306105390.006087387789219190.00304369389460959
1000.9964032795757090.007193440848582980.00359672042429149
1010.9952512503073180.00949749938536310.00474874969268155
1020.9950028260148370.009994347970325080.00499717398516254
1030.9929645941219040.01407081175619110.00703540587809555
1040.9904323026828570.01913539463428540.00956769731714272
1050.9901307223213360.01973855535732820.00986927767866411
1060.9868594106168960.02628117876620880.0131405893831044
1070.9881874393494380.0236251213011240.011812560650562
1080.9889858426669540.02202831466609290.0110141573330465
1090.9908952941271720.01820941174565530.00910470587282763
1100.9867563069342540.02648738613149120.0132436930657456
1110.9807199326990820.03856013460183520.0192800673009176
1120.9723447445576660.05531051088466860.0276552554423343
1130.9660282069335660.06794358613286720.0339717930664336
1140.953316386923880.09336722615223840.0466836130761192
1150.9380509145798470.1238981708403060.0619490854201528
1160.9250794060960240.1498411878079520.074920593903976
1170.9516210726512020.0967578546975960.048378927348798
1180.933155918519260.133688162961480.06684408148074
1190.9210961157548720.1578077684902560.0789038842451279
1200.9529119892777730.09417602144445330.0470880107222266
1210.935045197620490.1299096047590210.0649548023795107
1220.9133445927238540.1733108145522920.086655407276146
1230.932959806603460.1340803867930820.0670401933965408
1240.9315139660219060.1369720679561880.0684860339780941
1250.9080116334359940.1839767331280120.0919883665640059
1260.9196644268660770.1606711462678450.0803355731339227
1270.8951971677476460.2096056645047080.104802832252354
1280.867568860879890.264862278240220.13243113912011
1290.8222832503981910.3554334992036170.177716749601809
1300.7620552815432860.4758894369134290.237944718456714
1310.7000348186106640.5999303627786720.299965181389336
1320.621641927680630.756716144638740.37835807231937
1330.7297717212420960.5404565575158080.270228278757904
1340.6878244313067040.6243511373865920.312175568693296
1350.7581415066517670.4837169866964670.241858493348233
1360.6815141246140360.6369717507719290.318485875385964
1370.6692995203415680.6614009593168640.330700479658432
1380.5970743757932510.8058512484134990.402925624206749
1390.4746463883149370.9492927766298750.525353611685062
1400.403261645771510.806523291543020.59673835422849
1410.6093681046869830.7812637906260330.390631895313017

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
21 & 0.673780134136907 & 0.652439731726187 & 0.326219865863094 \tabularnewline
22 & 0.742055281544543 & 0.515889436910913 & 0.257944718455457 \tabularnewline
23 & 0.618972822381607 & 0.762054355236786 & 0.381027177618393 \tabularnewline
24 & 0.524862792057282 & 0.950274415885436 & 0.475137207942718 \tabularnewline
25 & 0.565767220066075 & 0.868465559867849 & 0.434232779933925 \tabularnewline
26 & 0.711063815771117 & 0.577872368457767 & 0.288936184228883 \tabularnewline
27 & 0.732586651082276 & 0.534826697835448 & 0.267413348917724 \tabularnewline
28 & 0.879673964934689 & 0.240652070130622 & 0.120326035065311 \tabularnewline
29 & 0.893776935782614 & 0.212446128434773 & 0.106223064217386 \tabularnewline
30 & 0.851816216126958 & 0.296367567746085 & 0.148183783873042 \tabularnewline
31 & 0.81479620818473 & 0.370407583630541 & 0.185203791815271 \tabularnewline
32 & 0.768772061907375 & 0.46245587618525 & 0.231227938092625 \tabularnewline
33 & 0.752252941269494 & 0.495494117461011 & 0.247747058730506 \tabularnewline
34 & 0.695906993305927 & 0.608186013388146 & 0.304093006694073 \tabularnewline
35 & 0.645143814698784 & 0.709712370602432 & 0.354856185301216 \tabularnewline
36 & 0.608439149713431 & 0.783121700573138 & 0.391560850286569 \tabularnewline
37 & 0.705298041819628 & 0.589403916360744 & 0.294701958180372 \tabularnewline
38 & 0.690217979286814 & 0.619564041426372 & 0.309782020713186 \tabularnewline
39 & 0.680189266269505 & 0.63962146746099 & 0.319810733730495 \tabularnewline
40 & 0.721302672759894 & 0.557394654480213 & 0.278697327240106 \tabularnewline
41 & 0.680226013912118 & 0.639547972175763 & 0.319773986087882 \tabularnewline
42 & 0.690764861882113 & 0.618470276235773 & 0.309235138117887 \tabularnewline
43 & 0.659857381999433 & 0.680285236001135 & 0.340142618000567 \tabularnewline
44 & 0.600920148458544 & 0.798159703082913 & 0.399079851541456 \tabularnewline
45 & 0.542776252461957 & 0.914447495076085 & 0.457223747538043 \tabularnewline
46 & 0.550219551857512 & 0.899560896284976 & 0.449780448142488 \tabularnewline
47 & 0.580779786958043 & 0.838440426083914 & 0.419220213041957 \tabularnewline
48 & 0.622095841154368 & 0.755808317691265 & 0.377904158845632 \tabularnewline
49 & 0.572321767230505 & 0.85535646553899 & 0.427678232769495 \tabularnewline
50 & 0.787568515160834 & 0.424862969678333 & 0.212431484839166 \tabularnewline
51 & 0.752366641773536 & 0.495266716452928 & 0.247633358226464 \tabularnewline
52 & 0.710785506239243 & 0.578428987521514 & 0.289214493760757 \tabularnewline
53 & 0.70333182476602 & 0.59333635046796 & 0.29666817523398 \tabularnewline
54 & 0.980676367875176 & 0.0386472642496487 & 0.0193236321248244 \tabularnewline
55 & 0.976363581217664 & 0.047272837564673 & 0.0236364187823365 \tabularnewline
56 & 0.968038601924575 & 0.0639227961508494 & 0.0319613980754247 \tabularnewline
57 & 0.957502287529103 & 0.0849954249417944 & 0.0424977124708972 \tabularnewline
58 & 0.94693217871036 & 0.106135642579279 & 0.0530678212896397 \tabularnewline
59 & 0.935726357111712 & 0.128547285776576 & 0.0642736428882881 \tabularnewline
60 & 0.97358015063979 & 0.0528396987204181 & 0.0264198493602091 \tabularnewline
61 & 0.983487787295896 & 0.0330244254082076 & 0.0165122127041038 \tabularnewline
62 & 0.979071884016304 & 0.0418562319673925 & 0.0209281159836962 \tabularnewline
63 & 0.971790940120422 & 0.0564181197591568 & 0.0282090598795784 \tabularnewline
64 & 0.988100587149163 & 0.0237988257016737 & 0.0118994128508369 \tabularnewline
65 & 0.988757310274807 & 0.0224853794503857 & 0.0112426897251928 \tabularnewline
66 & 0.985543607391074 & 0.0289127852178527 & 0.0144563926089263 \tabularnewline
67 & 0.981145327328922 & 0.0377093453421559 & 0.0188546726710779 \tabularnewline
68 & 0.976996642922538 & 0.0460067141549238 & 0.0230033570774619 \tabularnewline
69 & 0.97721972185076 & 0.0455605562984814 & 0.0227802781492407 \tabularnewline
70 & 0.97271110661184 & 0.0545777867763197 & 0.0272888933881599 \tabularnewline
71 & 0.97105517404142 & 0.0578896519171579 & 0.0289448259585789 \tabularnewline
72 & 0.965189477193076 & 0.0696210456138471 & 0.0348105228069236 \tabularnewline
73 & 0.957469101040505 & 0.08506179791899 & 0.042530898959495 \tabularnewline
74 & 0.976683742409212 & 0.0466325151815757 & 0.0233162575907879 \tabularnewline
75 & 0.974745833950636 & 0.0505083320987272 & 0.0252541660493636 \tabularnewline
76 & 0.967820703149352 & 0.0643585937012966 & 0.0321792968506483 \tabularnewline
77 & 0.96241871599035 & 0.0751625680192985 & 0.0375812840096493 \tabularnewline
78 & 0.955362292369837 & 0.0892754152603258 & 0.0446377076301629 \tabularnewline
79 & 0.944149925508255 & 0.111700148983491 & 0.0558500744917453 \tabularnewline
80 & 0.989476383549414 & 0.0210472329011719 & 0.0105236164505859 \tabularnewline
81 & 0.998112268402268 & 0.00377546319546389 & 0.00188773159773194 \tabularnewline
82 & 0.997372910542745 & 0.00525417891450927 & 0.00262708945725464 \tabularnewline
83 & 0.996894814475836 & 0.00621037104832741 & 0.0031051855241637 \tabularnewline
84 & 0.996598074474898 & 0.006803851050203 & 0.0034019255251015 \tabularnewline
85 & 0.99512511026197 & 0.00974977947606012 & 0.00487488973803006 \tabularnewline
86 & 0.994012239318008 & 0.0119755213639842 & 0.00598776068199209 \tabularnewline
87 & 0.99386290215221 & 0.0122741956955801 & 0.00613709784779005 \tabularnewline
88 & 0.99179999433887 & 0.01640001132226 & 0.00820000566113 \tabularnewline
89 & 0.993350152756786 & 0.0132996944864277 & 0.00664984724321384 \tabularnewline
90 & 0.99703578985568 & 0.00592842028864035 & 0.00296421014432018 \tabularnewline
91 & 0.999725285392038 & 0.000549429215924009 & 0.000274714607962004 \tabularnewline
92 & 0.999692180586503 & 0.000615638826993202 & 0.000307819413496601 \tabularnewline
93 & 0.999569259262835 & 0.000861481474329882 & 0.000430740737164941 \tabularnewline
94 & 0.99949400302693 & 0.00101199394614027 & 0.000505996973070133 \tabularnewline
95 & 0.999188285268234 & 0.00162342946353197 & 0.000811714731765986 \tabularnewline
96 & 0.998732555107203 & 0.00253488978559356 & 0.00126744489279678 \tabularnewline
97 & 0.99820255084886 & 0.00359489830228021 & 0.00179744915114011 \tabularnewline
98 & 0.99776278949774 & 0.00447442100452017 & 0.00223721050226008 \tabularnewline
99 & 0.99695630610539 & 0.00608738778921919 & 0.00304369389460959 \tabularnewline
100 & 0.996403279575709 & 0.00719344084858298 & 0.00359672042429149 \tabularnewline
101 & 0.995251250307318 & 0.0094974993853631 & 0.00474874969268155 \tabularnewline
102 & 0.995002826014837 & 0.00999434797032508 & 0.00499717398516254 \tabularnewline
103 & 0.992964594121904 & 0.0140708117561911 & 0.00703540587809555 \tabularnewline
104 & 0.990432302682857 & 0.0191353946342854 & 0.00956769731714272 \tabularnewline
105 & 0.990130722321336 & 0.0197385553573282 & 0.00986927767866411 \tabularnewline
106 & 0.986859410616896 & 0.0262811787662088 & 0.0131405893831044 \tabularnewline
107 & 0.988187439349438 & 0.023625121301124 & 0.011812560650562 \tabularnewline
108 & 0.988985842666954 & 0.0220283146660929 & 0.0110141573330465 \tabularnewline
109 & 0.990895294127172 & 0.0182094117456553 & 0.00910470587282763 \tabularnewline
110 & 0.986756306934254 & 0.0264873861314912 & 0.0132436930657456 \tabularnewline
111 & 0.980719932699082 & 0.0385601346018352 & 0.0192800673009176 \tabularnewline
112 & 0.972344744557666 & 0.0553105108846686 & 0.0276552554423343 \tabularnewline
113 & 0.966028206933566 & 0.0679435861328672 & 0.0339717930664336 \tabularnewline
114 & 0.95331638692388 & 0.0933672261522384 & 0.0466836130761192 \tabularnewline
115 & 0.938050914579847 & 0.123898170840306 & 0.0619490854201528 \tabularnewline
116 & 0.925079406096024 & 0.149841187807952 & 0.074920593903976 \tabularnewline
117 & 0.951621072651202 & 0.096757854697596 & 0.048378927348798 \tabularnewline
118 & 0.93315591851926 & 0.13368816296148 & 0.06684408148074 \tabularnewline
119 & 0.921096115754872 & 0.157807768490256 & 0.0789038842451279 \tabularnewline
120 & 0.952911989277773 & 0.0941760214444533 & 0.0470880107222266 \tabularnewline
121 & 0.93504519762049 & 0.129909604759021 & 0.0649548023795107 \tabularnewline
122 & 0.913344592723854 & 0.173310814552292 & 0.086655407276146 \tabularnewline
123 & 0.93295980660346 & 0.134080386793082 & 0.0670401933965408 \tabularnewline
124 & 0.931513966021906 & 0.136972067956188 & 0.0684860339780941 \tabularnewline
125 & 0.908011633435994 & 0.183976733128012 & 0.0919883665640059 \tabularnewline
126 & 0.919664426866077 & 0.160671146267845 & 0.0803355731339227 \tabularnewline
127 & 0.895197167747646 & 0.209605664504708 & 0.104802832252354 \tabularnewline
128 & 0.86756886087989 & 0.26486227824022 & 0.13243113912011 \tabularnewline
129 & 0.822283250398191 & 0.355433499203617 & 0.177716749601809 \tabularnewline
130 & 0.762055281543286 & 0.475889436913429 & 0.237944718456714 \tabularnewline
131 & 0.700034818610664 & 0.599930362778672 & 0.299965181389336 \tabularnewline
132 & 0.62164192768063 & 0.75671614463874 & 0.37835807231937 \tabularnewline
133 & 0.729771721242096 & 0.540456557515808 & 0.270228278757904 \tabularnewline
134 & 0.687824431306704 & 0.624351137386592 & 0.312175568693296 \tabularnewline
135 & 0.758141506651767 & 0.483716986696467 & 0.241858493348233 \tabularnewline
136 & 0.681514124614036 & 0.636971750771929 & 0.318485875385964 \tabularnewline
137 & 0.669299520341568 & 0.661400959316864 & 0.330700479658432 \tabularnewline
138 & 0.597074375793251 & 0.805851248413499 & 0.402925624206749 \tabularnewline
139 & 0.474646388314937 & 0.949292776629875 & 0.525353611685062 \tabularnewline
140 & 0.40326164577151 & 0.80652329154302 & 0.59673835422849 \tabularnewline
141 & 0.609368104686983 & 0.781263790626033 & 0.390631895313017 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=146327&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]21[/C][C]0.673780134136907[/C][C]0.652439731726187[/C][C]0.326219865863094[/C][/ROW]
[ROW][C]22[/C][C]0.742055281544543[/C][C]0.515889436910913[/C][C]0.257944718455457[/C][/ROW]
[ROW][C]23[/C][C]0.618972822381607[/C][C]0.762054355236786[/C][C]0.381027177618393[/C][/ROW]
[ROW][C]24[/C][C]0.524862792057282[/C][C]0.950274415885436[/C][C]0.475137207942718[/C][/ROW]
[ROW][C]25[/C][C]0.565767220066075[/C][C]0.868465559867849[/C][C]0.434232779933925[/C][/ROW]
[ROW][C]26[/C][C]0.711063815771117[/C][C]0.577872368457767[/C][C]0.288936184228883[/C][/ROW]
[ROW][C]27[/C][C]0.732586651082276[/C][C]0.534826697835448[/C][C]0.267413348917724[/C][/ROW]
[ROW][C]28[/C][C]0.879673964934689[/C][C]0.240652070130622[/C][C]0.120326035065311[/C][/ROW]
[ROW][C]29[/C][C]0.893776935782614[/C][C]0.212446128434773[/C][C]0.106223064217386[/C][/ROW]
[ROW][C]30[/C][C]0.851816216126958[/C][C]0.296367567746085[/C][C]0.148183783873042[/C][/ROW]
[ROW][C]31[/C][C]0.81479620818473[/C][C]0.370407583630541[/C][C]0.185203791815271[/C][/ROW]
[ROW][C]32[/C][C]0.768772061907375[/C][C]0.46245587618525[/C][C]0.231227938092625[/C][/ROW]
[ROW][C]33[/C][C]0.752252941269494[/C][C]0.495494117461011[/C][C]0.247747058730506[/C][/ROW]
[ROW][C]34[/C][C]0.695906993305927[/C][C]0.608186013388146[/C][C]0.304093006694073[/C][/ROW]
[ROW][C]35[/C][C]0.645143814698784[/C][C]0.709712370602432[/C][C]0.354856185301216[/C][/ROW]
[ROW][C]36[/C][C]0.608439149713431[/C][C]0.783121700573138[/C][C]0.391560850286569[/C][/ROW]
[ROW][C]37[/C][C]0.705298041819628[/C][C]0.589403916360744[/C][C]0.294701958180372[/C][/ROW]
[ROW][C]38[/C][C]0.690217979286814[/C][C]0.619564041426372[/C][C]0.309782020713186[/C][/ROW]
[ROW][C]39[/C][C]0.680189266269505[/C][C]0.63962146746099[/C][C]0.319810733730495[/C][/ROW]
[ROW][C]40[/C][C]0.721302672759894[/C][C]0.557394654480213[/C][C]0.278697327240106[/C][/ROW]
[ROW][C]41[/C][C]0.680226013912118[/C][C]0.639547972175763[/C][C]0.319773986087882[/C][/ROW]
[ROW][C]42[/C][C]0.690764861882113[/C][C]0.618470276235773[/C][C]0.309235138117887[/C][/ROW]
[ROW][C]43[/C][C]0.659857381999433[/C][C]0.680285236001135[/C][C]0.340142618000567[/C][/ROW]
[ROW][C]44[/C][C]0.600920148458544[/C][C]0.798159703082913[/C][C]0.399079851541456[/C][/ROW]
[ROW][C]45[/C][C]0.542776252461957[/C][C]0.914447495076085[/C][C]0.457223747538043[/C][/ROW]
[ROW][C]46[/C][C]0.550219551857512[/C][C]0.899560896284976[/C][C]0.449780448142488[/C][/ROW]
[ROW][C]47[/C][C]0.580779786958043[/C][C]0.838440426083914[/C][C]0.419220213041957[/C][/ROW]
[ROW][C]48[/C][C]0.622095841154368[/C][C]0.755808317691265[/C][C]0.377904158845632[/C][/ROW]
[ROW][C]49[/C][C]0.572321767230505[/C][C]0.85535646553899[/C][C]0.427678232769495[/C][/ROW]
[ROW][C]50[/C][C]0.787568515160834[/C][C]0.424862969678333[/C][C]0.212431484839166[/C][/ROW]
[ROW][C]51[/C][C]0.752366641773536[/C][C]0.495266716452928[/C][C]0.247633358226464[/C][/ROW]
[ROW][C]52[/C][C]0.710785506239243[/C][C]0.578428987521514[/C][C]0.289214493760757[/C][/ROW]
[ROW][C]53[/C][C]0.70333182476602[/C][C]0.59333635046796[/C][C]0.29666817523398[/C][/ROW]
[ROW][C]54[/C][C]0.980676367875176[/C][C]0.0386472642496487[/C][C]0.0193236321248244[/C][/ROW]
[ROW][C]55[/C][C]0.976363581217664[/C][C]0.047272837564673[/C][C]0.0236364187823365[/C][/ROW]
[ROW][C]56[/C][C]0.968038601924575[/C][C]0.0639227961508494[/C][C]0.0319613980754247[/C][/ROW]
[ROW][C]57[/C][C]0.957502287529103[/C][C]0.0849954249417944[/C][C]0.0424977124708972[/C][/ROW]
[ROW][C]58[/C][C]0.94693217871036[/C][C]0.106135642579279[/C][C]0.0530678212896397[/C][/ROW]
[ROW][C]59[/C][C]0.935726357111712[/C][C]0.128547285776576[/C][C]0.0642736428882881[/C][/ROW]
[ROW][C]60[/C][C]0.97358015063979[/C][C]0.0528396987204181[/C][C]0.0264198493602091[/C][/ROW]
[ROW][C]61[/C][C]0.983487787295896[/C][C]0.0330244254082076[/C][C]0.0165122127041038[/C][/ROW]
[ROW][C]62[/C][C]0.979071884016304[/C][C]0.0418562319673925[/C][C]0.0209281159836962[/C][/ROW]
[ROW][C]63[/C][C]0.971790940120422[/C][C]0.0564181197591568[/C][C]0.0282090598795784[/C][/ROW]
[ROW][C]64[/C][C]0.988100587149163[/C][C]0.0237988257016737[/C][C]0.0118994128508369[/C][/ROW]
[ROW][C]65[/C][C]0.988757310274807[/C][C]0.0224853794503857[/C][C]0.0112426897251928[/C][/ROW]
[ROW][C]66[/C][C]0.985543607391074[/C][C]0.0289127852178527[/C][C]0.0144563926089263[/C][/ROW]
[ROW][C]67[/C][C]0.981145327328922[/C][C]0.0377093453421559[/C][C]0.0188546726710779[/C][/ROW]
[ROW][C]68[/C][C]0.976996642922538[/C][C]0.0460067141549238[/C][C]0.0230033570774619[/C][/ROW]
[ROW][C]69[/C][C]0.97721972185076[/C][C]0.0455605562984814[/C][C]0.0227802781492407[/C][/ROW]
[ROW][C]70[/C][C]0.97271110661184[/C][C]0.0545777867763197[/C][C]0.0272888933881599[/C][/ROW]
[ROW][C]71[/C][C]0.97105517404142[/C][C]0.0578896519171579[/C][C]0.0289448259585789[/C][/ROW]
[ROW][C]72[/C][C]0.965189477193076[/C][C]0.0696210456138471[/C][C]0.0348105228069236[/C][/ROW]
[ROW][C]73[/C][C]0.957469101040505[/C][C]0.08506179791899[/C][C]0.042530898959495[/C][/ROW]
[ROW][C]74[/C][C]0.976683742409212[/C][C]0.0466325151815757[/C][C]0.0233162575907879[/C][/ROW]
[ROW][C]75[/C][C]0.974745833950636[/C][C]0.0505083320987272[/C][C]0.0252541660493636[/C][/ROW]
[ROW][C]76[/C][C]0.967820703149352[/C][C]0.0643585937012966[/C][C]0.0321792968506483[/C][/ROW]
[ROW][C]77[/C][C]0.96241871599035[/C][C]0.0751625680192985[/C][C]0.0375812840096493[/C][/ROW]
[ROW][C]78[/C][C]0.955362292369837[/C][C]0.0892754152603258[/C][C]0.0446377076301629[/C][/ROW]
[ROW][C]79[/C][C]0.944149925508255[/C][C]0.111700148983491[/C][C]0.0558500744917453[/C][/ROW]
[ROW][C]80[/C][C]0.989476383549414[/C][C]0.0210472329011719[/C][C]0.0105236164505859[/C][/ROW]
[ROW][C]81[/C][C]0.998112268402268[/C][C]0.00377546319546389[/C][C]0.00188773159773194[/C][/ROW]
[ROW][C]82[/C][C]0.997372910542745[/C][C]0.00525417891450927[/C][C]0.00262708945725464[/C][/ROW]
[ROW][C]83[/C][C]0.996894814475836[/C][C]0.00621037104832741[/C][C]0.0031051855241637[/C][/ROW]
[ROW][C]84[/C][C]0.996598074474898[/C][C]0.006803851050203[/C][C]0.0034019255251015[/C][/ROW]
[ROW][C]85[/C][C]0.99512511026197[/C][C]0.00974977947606012[/C][C]0.00487488973803006[/C][/ROW]
[ROW][C]86[/C][C]0.994012239318008[/C][C]0.0119755213639842[/C][C]0.00598776068199209[/C][/ROW]
[ROW][C]87[/C][C]0.99386290215221[/C][C]0.0122741956955801[/C][C]0.00613709784779005[/C][/ROW]
[ROW][C]88[/C][C]0.99179999433887[/C][C]0.01640001132226[/C][C]0.00820000566113[/C][/ROW]
[ROW][C]89[/C][C]0.993350152756786[/C][C]0.0132996944864277[/C][C]0.00664984724321384[/C][/ROW]
[ROW][C]90[/C][C]0.99703578985568[/C][C]0.00592842028864035[/C][C]0.00296421014432018[/C][/ROW]
[ROW][C]91[/C][C]0.999725285392038[/C][C]0.000549429215924009[/C][C]0.000274714607962004[/C][/ROW]
[ROW][C]92[/C][C]0.999692180586503[/C][C]0.000615638826993202[/C][C]0.000307819413496601[/C][/ROW]
[ROW][C]93[/C][C]0.999569259262835[/C][C]0.000861481474329882[/C][C]0.000430740737164941[/C][/ROW]
[ROW][C]94[/C][C]0.99949400302693[/C][C]0.00101199394614027[/C][C]0.000505996973070133[/C][/ROW]
[ROW][C]95[/C][C]0.999188285268234[/C][C]0.00162342946353197[/C][C]0.000811714731765986[/C][/ROW]
[ROW][C]96[/C][C]0.998732555107203[/C][C]0.00253488978559356[/C][C]0.00126744489279678[/C][/ROW]
[ROW][C]97[/C][C]0.99820255084886[/C][C]0.00359489830228021[/C][C]0.00179744915114011[/C][/ROW]
[ROW][C]98[/C][C]0.99776278949774[/C][C]0.00447442100452017[/C][C]0.00223721050226008[/C][/ROW]
[ROW][C]99[/C][C]0.99695630610539[/C][C]0.00608738778921919[/C][C]0.00304369389460959[/C][/ROW]
[ROW][C]100[/C][C]0.996403279575709[/C][C]0.00719344084858298[/C][C]0.00359672042429149[/C][/ROW]
[ROW][C]101[/C][C]0.995251250307318[/C][C]0.0094974993853631[/C][C]0.00474874969268155[/C][/ROW]
[ROW][C]102[/C][C]0.995002826014837[/C][C]0.00999434797032508[/C][C]0.00499717398516254[/C][/ROW]
[ROW][C]103[/C][C]0.992964594121904[/C][C]0.0140708117561911[/C][C]0.00703540587809555[/C][/ROW]
[ROW][C]104[/C][C]0.990432302682857[/C][C]0.0191353946342854[/C][C]0.00956769731714272[/C][/ROW]
[ROW][C]105[/C][C]0.990130722321336[/C][C]0.0197385553573282[/C][C]0.00986927767866411[/C][/ROW]
[ROW][C]106[/C][C]0.986859410616896[/C][C]0.0262811787662088[/C][C]0.0131405893831044[/C][/ROW]
[ROW][C]107[/C][C]0.988187439349438[/C][C]0.023625121301124[/C][C]0.011812560650562[/C][/ROW]
[ROW][C]108[/C][C]0.988985842666954[/C][C]0.0220283146660929[/C][C]0.0110141573330465[/C][/ROW]
[ROW][C]109[/C][C]0.990895294127172[/C][C]0.0182094117456553[/C][C]0.00910470587282763[/C][/ROW]
[ROW][C]110[/C][C]0.986756306934254[/C][C]0.0264873861314912[/C][C]0.0132436930657456[/C][/ROW]
[ROW][C]111[/C][C]0.980719932699082[/C][C]0.0385601346018352[/C][C]0.0192800673009176[/C][/ROW]
[ROW][C]112[/C][C]0.972344744557666[/C][C]0.0553105108846686[/C][C]0.0276552554423343[/C][/ROW]
[ROW][C]113[/C][C]0.966028206933566[/C][C]0.0679435861328672[/C][C]0.0339717930664336[/C][/ROW]
[ROW][C]114[/C][C]0.95331638692388[/C][C]0.0933672261522384[/C][C]0.0466836130761192[/C][/ROW]
[ROW][C]115[/C][C]0.938050914579847[/C][C]0.123898170840306[/C][C]0.0619490854201528[/C][/ROW]
[ROW][C]116[/C][C]0.925079406096024[/C][C]0.149841187807952[/C][C]0.074920593903976[/C][/ROW]
[ROW][C]117[/C][C]0.951621072651202[/C][C]0.096757854697596[/C][C]0.048378927348798[/C][/ROW]
[ROW][C]118[/C][C]0.93315591851926[/C][C]0.13368816296148[/C][C]0.06684408148074[/C][/ROW]
[ROW][C]119[/C][C]0.921096115754872[/C][C]0.157807768490256[/C][C]0.0789038842451279[/C][/ROW]
[ROW][C]120[/C][C]0.952911989277773[/C][C]0.0941760214444533[/C][C]0.0470880107222266[/C][/ROW]
[ROW][C]121[/C][C]0.93504519762049[/C][C]0.129909604759021[/C][C]0.0649548023795107[/C][/ROW]
[ROW][C]122[/C][C]0.913344592723854[/C][C]0.173310814552292[/C][C]0.086655407276146[/C][/ROW]
[ROW][C]123[/C][C]0.93295980660346[/C][C]0.134080386793082[/C][C]0.0670401933965408[/C][/ROW]
[ROW][C]124[/C][C]0.931513966021906[/C][C]0.136972067956188[/C][C]0.0684860339780941[/C][/ROW]
[ROW][C]125[/C][C]0.908011633435994[/C][C]0.183976733128012[/C][C]0.0919883665640059[/C][/ROW]
[ROW][C]126[/C][C]0.919664426866077[/C][C]0.160671146267845[/C][C]0.0803355731339227[/C][/ROW]
[ROW][C]127[/C][C]0.895197167747646[/C][C]0.209605664504708[/C][C]0.104802832252354[/C][/ROW]
[ROW][C]128[/C][C]0.86756886087989[/C][C]0.26486227824022[/C][C]0.13243113912011[/C][/ROW]
[ROW][C]129[/C][C]0.822283250398191[/C][C]0.355433499203617[/C][C]0.177716749601809[/C][/ROW]
[ROW][C]130[/C][C]0.762055281543286[/C][C]0.475889436913429[/C][C]0.237944718456714[/C][/ROW]
[ROW][C]131[/C][C]0.700034818610664[/C][C]0.599930362778672[/C][C]0.299965181389336[/C][/ROW]
[ROW][C]132[/C][C]0.62164192768063[/C][C]0.75671614463874[/C][C]0.37835807231937[/C][/ROW]
[ROW][C]133[/C][C]0.729771721242096[/C][C]0.540456557515808[/C][C]0.270228278757904[/C][/ROW]
[ROW][C]134[/C][C]0.687824431306704[/C][C]0.624351137386592[/C][C]0.312175568693296[/C][/ROW]
[ROW][C]135[/C][C]0.758141506651767[/C][C]0.483716986696467[/C][C]0.241858493348233[/C][/ROW]
[ROW][C]136[/C][C]0.681514124614036[/C][C]0.636971750771929[/C][C]0.318485875385964[/C][/ROW]
[ROW][C]137[/C][C]0.669299520341568[/C][C]0.661400959316864[/C][C]0.330700479658432[/C][/ROW]
[ROW][C]138[/C][C]0.597074375793251[/C][C]0.805851248413499[/C][C]0.402925624206749[/C][/ROW]
[ROW][C]139[/C][C]0.474646388314937[/C][C]0.949292776629875[/C][C]0.525353611685062[/C][/ROW]
[ROW][C]140[/C][C]0.40326164577151[/C][C]0.80652329154302[/C][C]0.59673835422849[/C][/ROW]
[ROW][C]141[/C][C]0.609368104686983[/C][C]0.781263790626033[/C][C]0.390631895313017[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=146327&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=146327&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
210.6737801341369070.6524397317261870.326219865863094
220.7420552815445430.5158894369109130.257944718455457
230.6189728223816070.7620543552367860.381027177618393
240.5248627920572820.9502744158854360.475137207942718
250.5657672200660750.8684655598678490.434232779933925
260.7110638157711170.5778723684577670.288936184228883
270.7325866510822760.5348266978354480.267413348917724
280.8796739649346890.2406520701306220.120326035065311
290.8937769357826140.2124461284347730.106223064217386
300.8518162161269580.2963675677460850.148183783873042
310.814796208184730.3704075836305410.185203791815271
320.7687720619073750.462455876185250.231227938092625
330.7522529412694940.4954941174610110.247747058730506
340.6959069933059270.6081860133881460.304093006694073
350.6451438146987840.7097123706024320.354856185301216
360.6084391497134310.7831217005731380.391560850286569
370.7052980418196280.5894039163607440.294701958180372
380.6902179792868140.6195640414263720.309782020713186
390.6801892662695050.639621467460990.319810733730495
400.7213026727598940.5573946544802130.278697327240106
410.6802260139121180.6395479721757630.319773986087882
420.6907648618821130.6184702762357730.309235138117887
430.6598573819994330.6802852360011350.340142618000567
440.6009201484585440.7981597030829130.399079851541456
450.5427762524619570.9144474950760850.457223747538043
460.5502195518575120.8995608962849760.449780448142488
470.5807797869580430.8384404260839140.419220213041957
480.6220958411543680.7558083176912650.377904158845632
490.5723217672305050.855356465538990.427678232769495
500.7875685151608340.4248629696783330.212431484839166
510.7523666417735360.4952667164529280.247633358226464
520.7107855062392430.5784289875215140.289214493760757
530.703331824766020.593336350467960.29666817523398
540.9806763678751760.03864726424964870.0193236321248244
550.9763635812176640.0472728375646730.0236364187823365
560.9680386019245750.06392279615084940.0319613980754247
570.9575022875291030.08499542494179440.0424977124708972
580.946932178710360.1061356425792790.0530678212896397
590.9357263571117120.1285472857765760.0642736428882881
600.973580150639790.05283969872041810.0264198493602091
610.9834877872958960.03302442540820760.0165122127041038
620.9790718840163040.04185623196739250.0209281159836962
630.9717909401204220.05641811975915680.0282090598795784
640.9881005871491630.02379882570167370.0118994128508369
650.9887573102748070.02248537945038570.0112426897251928
660.9855436073910740.02891278521785270.0144563926089263
670.9811453273289220.03770934534215590.0188546726710779
680.9769966429225380.04600671415492380.0230033570774619
690.977219721850760.04556055629848140.0227802781492407
700.972711106611840.05457778677631970.0272888933881599
710.971055174041420.05788965191715790.0289448259585789
720.9651894771930760.06962104561384710.0348105228069236
730.9574691010405050.085061797918990.042530898959495
740.9766837424092120.04663251518157570.0233162575907879
750.9747458339506360.05050833209872720.0252541660493636
760.9678207031493520.06435859370129660.0321792968506483
770.962418715990350.07516256801929850.0375812840096493
780.9553622923698370.08927541526032580.0446377076301629
790.9441499255082550.1117001489834910.0558500744917453
800.9894763835494140.02104723290117190.0105236164505859
810.9981122684022680.003775463195463890.00188773159773194
820.9973729105427450.005254178914509270.00262708945725464
830.9968948144758360.006210371048327410.0031051855241637
840.9965980744748980.0068038510502030.0034019255251015
850.995125110261970.009749779476060120.00487488973803006
860.9940122393180080.01197552136398420.00598776068199209
870.993862902152210.01227419569558010.00613709784779005
880.991799994338870.016400011322260.00820000566113
890.9933501527567860.01329969448642770.00664984724321384
900.997035789855680.005928420288640350.00296421014432018
910.9997252853920380.0005494292159240090.000274714607962004
920.9996921805865030.0006156388269932020.000307819413496601
930.9995692592628350.0008614814743298820.000430740737164941
940.999494003026930.001011993946140270.000505996973070133
950.9991882852682340.001623429463531970.000811714731765986
960.9987325551072030.002534889785593560.00126744489279678
970.998202550848860.003594898302280210.00179744915114011
980.997762789497740.004474421004520170.00223721050226008
990.996956306105390.006087387789219190.00304369389460959
1000.9964032795757090.007193440848582980.00359672042429149
1010.9952512503073180.00949749938536310.00474874969268155
1020.9950028260148370.009994347970325080.00499717398516254
1030.9929645941219040.01407081175619110.00703540587809555
1040.9904323026828570.01913539463428540.00956769731714272
1050.9901307223213360.01973855535732820.00986927767866411
1060.9868594106168960.02628117876620880.0131405893831044
1070.9881874393494380.0236251213011240.011812560650562
1080.9889858426669540.02202831466609290.0110141573330465
1090.9908952941271720.01820941174565530.00910470587282763
1100.9867563069342540.02648738613149120.0132436930657456
1110.9807199326990820.03856013460183520.0192800673009176
1120.9723447445576660.05531051088466860.0276552554423343
1130.9660282069335660.06794358613286720.0339717930664336
1140.953316386923880.09336722615223840.0466836130761192
1150.9380509145798470.1238981708403060.0619490854201528
1160.9250794060960240.1498411878079520.074920593903976
1170.9516210726512020.0967578546975960.048378927348798
1180.933155918519260.133688162961480.06684408148074
1190.9210961157548720.1578077684902560.0789038842451279
1200.9529119892777730.09417602144445330.0470880107222266
1210.935045197620490.1299096047590210.0649548023795107
1220.9133445927238540.1733108145522920.086655407276146
1230.932959806603460.1340803867930820.0670401933965408
1240.9315139660219060.1369720679561880.0684860339780941
1250.9080116334359940.1839767331280120.0919883665640059
1260.9196644268660770.1606711462678450.0803355731339227
1270.8951971677476460.2096056645047080.104802832252354
1280.867568860879890.264862278240220.13243113912011
1290.8222832503981910.3554334992036170.177716749601809
1300.7620552815432860.4758894369134290.237944718456714
1310.7000348186106640.5999303627786720.299965181389336
1320.621641927680630.756716144638740.37835807231937
1330.7297717212420960.5404565575158080.270228278757904
1340.6878244313067040.6243511373865920.312175568693296
1350.7581415066517670.4837169866964670.241858493348233
1360.6815141246140360.6369717507719290.318485875385964
1370.6692995203415680.6614009593168640.330700479658432
1380.5970743757932510.8058512484134990.402925624206749
1390.4746463883149370.9492927766298750.525353611685062
1400.403261645771510.806523291543020.59673835422849
1410.6093681046869830.7812637906260330.390631895313017







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level180.148760330578512NOK
5% type I error level430.355371900826446NOK
10% type I error level600.495867768595041NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 18 & 0.148760330578512 & NOK \tabularnewline
5% type I error level & 43 & 0.355371900826446 & NOK \tabularnewline
10% type I error level & 60 & 0.495867768595041 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=146327&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]18[/C][C]0.148760330578512[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]43[/C][C]0.355371900826446[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]60[/C][C]0.495867768595041[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=146327&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=146327&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level180.148760330578512NOK
5% type I error level430.355371900826446NOK
10% type I error level600.495867768595041NOK



Parameters (Session):
par1 = 6 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 6 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}