Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationMon, 12 Dec 2011 09:58:19 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Dec/12/t1323701927lvvy9rrbovcb6go.htm/, Retrieved Fri, 01 Nov 2024 00:14:36 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=153995, Retrieved Fri, 01 Nov 2024 00:14:36 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact120
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [] [2010-12-05 18:56:24] [b98453cac15ba1066b407e146608df68]
-   PD    [Multiple Regression] [] [2011-12-12 14:58:19] [1da2278adf472a53e0f224e682f25a48] [Current]
- R PD      [Multiple Regression] [] [2011-12-12 15:07:46] [c5b29addb16cc630d2ea8a9650ee6d6d]
Feedback Forum

Post a new message
Dataseries X:
264530	34	124252
135248	30	98956
207253	42	98073
202898	35	106816
145249	26	41449
65295	31	76173
439387	29	177551
33186	18	22807
183696	30	126938
190673	29	61680
287239	42	72117
205260	50	79738
141987	33	57793
322679	49	91677
199717	40	64631
349227	52	106385
276709	33	161961
273576	35	112669
157448	25	114029
242782	43	124550
256814	40	105416
405942	37	72875
161189	25	81964
156389	46	104880
200181	41	76302
192645	35	96740
249893	38	93071
241171	36	78912
143182	28	35224
285266	37	90694
243048	40	125369
176062	42	80849
305210	48	104434
87995	33	65702
343613	39	108179
264159	37	63583
394976	41	95066
192718	32	62486
114673	17	31081
310108	39	94584
292891	36	87408
157518	38	68966
180362	36	88766
146175	35	57139
140319	45	90586
405267	38	109249
78800	26	33032
201970	45	96056
309762	46	146648
166270	41	80613
199186	34	87026
24188	4	5950
346142	41	131106
65029	18	32551
101097	14	31701
255082	37	91072
287314	53	159803
308944	36	143950
280943	37	112368
225816	36	82124
348955	46	144068
283283	28	162627
199642	42	55062
232791	38	95329
212262	33	105612
201345	28	62853
180424	31	125976
204450	40	79146
197813	32	108461
138731	25	99971
216153	42	77826
73566	23	22618
219392	42	84892
181728	38	92059
150006	34	77993
325723	40	104155
265348	36	109840
202410	37	238712
173420	34	67486
162366	37	68007
136341	25	48194
390163	45	134796
145905	26	38692
248834	40	93587
80953	8	56622
133301	27	15986
138630	32	113402
334082	37	97967
277542	57	74844
170849	41	136051
236398	37	50548
207178	38	112215
157125	28	59591
242395	36	59938
273632	33	137639
178489	32	143372
210247	34	138599
268066	35	174110
351056	58	135062
368833	30	175681
247804	45	130307
268118	37	139141
174311	36	44244
43287	19	43750
182915	23	48029
189021	35	95216
237531	36	92288
279589	36	94588
106655	23	197426
135798	41	151244
292930	40	139206
266805	42	106271
23623	1	1168
174970	36	71764
61857	11	25162
147760	42	45635
358662	34	101817
21054	0	855
230091	27	100174
31414	8	14116
284519	38	85008
209481	44	124254
161691	40	105793
137093	28	117129
38214	8	8773
166059	36	94747
319346	47	107549
186273	48	97392
374269	45	126893
275578	48	118850
371645	50	234853
179928	40	74783
94381	32	66089
269169	37	95684
382564	42	139537
118033	35	144253
370878	42	153824
147989	34	63995
236370	41	84891
193456	36	61263
189020	32	106221
344751	35	113587
224936	35	113864
173260	21	37238
291777	45	119906
130908	49	135096
209639	36	151611
262412	39	144645
1	0	0
14688	0	6023
98	0	0
455	0	0
0	0	0
0	0	0
195822	33	77457
347930	47	62464
0	0	0
203	0	0
7199	0	1644
46660	5	6179
17547	1	3926
107465	38	42087
969	0	0
179994	28	87656




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R Server'AstonUniversity' @ aston.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 7 seconds \tabularnewline
R Server & 'AstonUniversity' @ aston.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=153995&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]7 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'AstonUniversity' @ aston.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=153995&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=153995&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R Server'AstonUniversity' @ aston.wessa.net







Multiple Linear Regression - Estimated Regression Equation
Karakters[t] = + 7338.9087425876 + 0.202598542570063Tijd[t] + 1208.75438302851PR[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Karakters[t] =  +  7338.9087425876 +  0.202598542570063Tijd[t] +  1208.75438302851PR[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=153995&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Karakters[t] =  +  7338.9087425876 +  0.202598542570063Tijd[t] +  1208.75438302851PR[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=153995&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=153995&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Karakters[t] = + 7338.9087425876 + 0.202598542570063Tijd[t] + 1208.75438302851PR[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)7338.90874258766820.8023861.0760.2835550.141777
Tijd0.2025985425700630.0383085.288600
PR1208.75438302851297.7332354.05997.6e-053.8e-05

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & 7338.9087425876 & 6820.802386 & 1.076 & 0.283555 & 0.141777 \tabularnewline
Tijd & 0.202598542570063 & 0.038308 & 5.2886 & 0 & 0 \tabularnewline
PR & 1208.75438302851 & 297.733235 & 4.0599 & 7.6e-05 & 3.8e-05 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=153995&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]7338.9087425876[/C][C]6820.802386[/C][C]1.076[/C][C]0.283555[/C][C]0.141777[/C][/ROW]
[ROW][C]Tijd[/C][C]0.202598542570063[/C][C]0.038308[/C][C]5.2886[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]PR[/C][C]1208.75438302851[/C][C]297.733235[/C][C]4.0599[/C][C]7.6e-05[/C][C]3.8e-05[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=153995&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=153995&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)7338.90874258766820.8023861.0760.2835550.141777
Tijd0.2025985425700630.0383085.288600
PR1208.75438302851297.7332354.05997.6e-053.8e-05







Multiple Linear Regression - Regression Statistics
Multiple R0.726938982126506
R-squared0.528440283735121
Adjusted R-squared0.522582399061023
F-TEST (value)90.210086598624
F-TEST (DF numerator)2
F-TEST (DF denominator)161
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation32790.7941344458
Sum Squared Residuals173113024974.785

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.726938982126506 \tabularnewline
R-squared & 0.528440283735121 \tabularnewline
Adjusted R-squared & 0.522582399061023 \tabularnewline
F-TEST (value) & 90.210086598624 \tabularnewline
F-TEST (DF numerator) & 2 \tabularnewline
F-TEST (DF denominator) & 161 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 32790.7941344458 \tabularnewline
Sum Squared Residuals & 173113024974.785 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=153995&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.726938982126506[/C][/ROW]
[ROW][C]R-squared[/C][C]0.528440283735121[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.522582399061023[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]90.210086598624[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]2[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]161[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]32790.7941344458[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]173113024974.785[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=153995&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=153995&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.726938982126506
R-squared0.528440283735121
Adjusted R-squared0.522582399061023
F-TEST (value)90.210086598624
F-TEST (DF numerator)2
F-TEST (DF denominator)161
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation32790.7941344458
Sum Squared Residuals173113024974.785







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1124252102029.95023161622222.0497683841
29895671002.58791895927953.412081041
398073100095.748573058-2022.74857305848
410681690752.151238966316063.8487610337
54144968193.7584110881-26744.7584110881
67617358038.966453583818134.0335464162
7177551131411.95167464746139.0483253531
82280735819.922870831-13012.922870831
912693880818.082109393346119.9178906067
106168081022.8577578762-19342.8577578762
1172117116300.795599068-44183.7955990676
1279738109362.004741944-29624.0047419444
135779375994.1626464241-18201.1626464241
1491677131942.16862895-40265.1686289502
156463196151.4571901935-31520.4571901935
16106385140947.017886186-34562.0178861858
17161961103288.64349854858672.3565014518
18112669105071.4110307337597.58896926681
1911402969456.503648871844572.4963511282
20124550108502.62657505916047.3734249412
21105416107719.226175316-2303.22617531636
2272875134306.078482619-61431.0784826192
238196470214.424796626411749.5752033736
2410488094625.793835888810254.2061641112
257630297454.2172969745-21152.2172969745
269674088674.90838199548065.0916180046
2793071103899.532896132-10828.5328961319
287891299714.9596417788-20802.9596417788
293522470192.4959896528-34968.4959896528
3090694109857.296759434-19163.2967594343
31125369104930.25463829720438.7453617031
328084993776.4974317556-12927.4974317556
33104434127194.220305765-22760.2203057652
346570265055.4621359813646.537864018742
35108179124095.822688827-15916.8226888268
3663583105581.049321408-41998.0493214079
3795066136919.40039691-41853.4003969099
386248685063.4349265175-22577.4349265175
393108151120.3159262092-20039.3159262092
4094584117307.758520017-22723.7585200168
4187408110193.356263502-22785.3562635025
426896685184.4925262223-16218.4925262223
438876687395.14486663581370.85513336417
445713979260.1541087646-22121.1541087646
459058690161.2808737594424.719126240591
46109249135378.078849413-26129.0788494129
473303254731.2878558499-21699.2878558499
4896056102651.683621746-6595.68362174637
49146648125698.94010548720949.0598945129
508061390583.898119881-9970.89811988107
518702688791.3510659177-1765.35106591767
52595017074.3798223863-11124.3798223863
53131106127025.7031690434080.29683095652
543255142271.2682618895-9720.26826188949
553170144743.5749631925-13042.5749631925
5691072103742.062350499-12670.0623504995
57159803129612.28870307430190.711296926
58143950113445.6706673830504.3293326203
59112368108981.4632599043386.53674009613
608212496604.0590206155-14480.0590206155
61144068133639.38478443610428.6152155644
6216262798576.754402261264050.2455977388
635506298553.7710655577-43491.7710655577
6495329100434.692621099-5105.6926210987
6510561290231.775225535315380.2247744647
666285381976.2350211554-19123.2350211554
6712597681363.934061132644612.0659388674
687914697110.3560921776-17964.3560921776
6910846186095.67450091222365.325499088
709997165664.466727587934306.5332724121
7177826101898.875601932-24072.875601932
722261850044.6239349527-27426.6239349527
7384892102555.092281316-17663.0922813165
749205990089.40324184361969.59675815644
757799378827.554742322-834.554742321965
76104155121680.089145277-17525.0891452768
77109840104613.1846054955226.81539450478
7823871293070.791916249145641.208083751
796748683571.1970180574-16085.1970180574
806800784957.9358775735-16950.9358775735
814819465180.2562108454-16986.2562108454
82134796140779.311143634-5983.31114363429
833869268326.663055014-29634.663055014
8493587106102.489805607-12515.4898056073
855662233409.9036234923212.09637651
861598666981.8654074895-50995.8654074895
8711340274105.284955987939296.7150440121
8897967119747.347213534-21780.3472135345
8974844132467.513277193-57623.5132771934
9013605191511.596846309444539.4031536906
915054899956.7111811204-49408.7111811204
9211221595245.536150251716969.4638497483
935959173017.3274687072-13426.3274687072
945993899962.9402578846-40024.9402578846
95137639102665.2477830634973.7522169399
9614337282180.66026428861191.3397357119
9713859991032.293545285247566.7064547149
98174110103955.09306117270154.9069388279
99135062148570.096918717-13508.0969187175
100175681118326.56848518757354.4315148129
101130307111937.58522190318369.4147780973
102139141106383.13695144332757.8630485572
1034424486169.2210855444-41925.2210855444
1044375039075.12513235974674.87486764032
1054802972198.5719664465-24169.5719664465
1069521687940.69126372157275.3087362785
1079228898977.5009468238-6689.50094682377
10894588107498.390450235-12910.3904502355
10919742656748.4071100535140677.592889946
11015124484410.315330686166833.6846693139
111139206115036.27513877724169.7248612232
112106271112160.896980191-5889.89698019089
113116813333.6484967487-12165.6484967487
1147176486302.733525098-14538.7335250981
1152516233167.3450036577-8005.34500365765
1164563588042.5534799377-42407.5534799377
117101817121100.956240821-19283.9562408211
11885511604.4184578577-10749.4184578577
11910017486591.37834284613582.6216571541
1201411623373.3744231117-9257.37442311167
12185008110914.710031163-25906.7100311629
122124254102964.64689196221289.3531080384
12310579388447.445010424217345.5549895758
12411712968958.873463943748170.1265360563
125877324751.0445125881-15978.0445125881
1269474784497.377912256210249.6220877438
127107549128849.398920507-21300.3989205071
12897392103097.75744811-5705.75744810963
129126893137559.209908026-10666.2099080257
130118850121190.820292329-2340.82029232913
131234853143071.36324746491781.6367525356
1327478392142.2346312745-17359.2346312745
1336608965140.5020458052948.49795419483
13495684106596.068019684-10912.068019684
135139537135613.5016695593923.49833044117
13614425373558.625923757870694.3740762422
137153824133245.93510108520578.0648989149
1386399578418.9134819582-14423.9134819582
13984891104786.055954043-19895.0559540425
1406126390047.9701830482-28784.9701830482
14110622184314.225516093421906.7744839066
142113587119491.362298157-5904.36229815744
14311386495217.017920125318646.9820798747
1443723867824.9742718755-30586.9742718755
145119906120846.450934336-940.450934336043
14613509693089.643521746642006.3564782534
14715161193326.622397459658284.3776025404
148144645107644.61843359537000.3815664049
14907339.11134113017-7339.11134113017
150602310314.6761358567-4291.67613585669
15107358.76339975946-7358.76339975946
15207431.09107945698-7431.09107945698
15307338.9087425876-7338.9087425876
15407338.9087425876-7338.9087425876
1557745786901.0551856835-9444.05518568347
15662464134640.47566133-72176.4756613298
15707338.9087425876-7338.9087425876
15807380.03624672933-7380.03624672933
15916448797.41565054949-7153.41565054949
160617922835.9286540493-16656.9286540493
161392612102.659752093-8176.65975209302
1624208775043.827674963-32956.827674963
16307535.22673033799-7535.22673033799
1648765677650.55353874210005.4464612581

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 124252 & 102029.950231616 & 22222.0497683841 \tabularnewline
2 & 98956 & 71002.587918959 & 27953.412081041 \tabularnewline
3 & 98073 & 100095.748573058 & -2022.74857305848 \tabularnewline
4 & 106816 & 90752.1512389663 & 16063.8487610337 \tabularnewline
5 & 41449 & 68193.7584110881 & -26744.7584110881 \tabularnewline
6 & 76173 & 58038.9664535838 & 18134.0335464162 \tabularnewline
7 & 177551 & 131411.951674647 & 46139.0483253531 \tabularnewline
8 & 22807 & 35819.922870831 & -13012.922870831 \tabularnewline
9 & 126938 & 80818.0821093933 & 46119.9178906067 \tabularnewline
10 & 61680 & 81022.8577578762 & -19342.8577578762 \tabularnewline
11 & 72117 & 116300.795599068 & -44183.7955990676 \tabularnewline
12 & 79738 & 109362.004741944 & -29624.0047419444 \tabularnewline
13 & 57793 & 75994.1626464241 & -18201.1626464241 \tabularnewline
14 & 91677 & 131942.16862895 & -40265.1686289502 \tabularnewline
15 & 64631 & 96151.4571901935 & -31520.4571901935 \tabularnewline
16 & 106385 & 140947.017886186 & -34562.0178861858 \tabularnewline
17 & 161961 & 103288.643498548 & 58672.3565014518 \tabularnewline
18 & 112669 & 105071.411030733 & 7597.58896926681 \tabularnewline
19 & 114029 & 69456.5036488718 & 44572.4963511282 \tabularnewline
20 & 124550 & 108502.626575059 & 16047.3734249412 \tabularnewline
21 & 105416 & 107719.226175316 & -2303.22617531636 \tabularnewline
22 & 72875 & 134306.078482619 & -61431.0784826192 \tabularnewline
23 & 81964 & 70214.4247966264 & 11749.5752033736 \tabularnewline
24 & 104880 & 94625.7938358888 & 10254.2061641112 \tabularnewline
25 & 76302 & 97454.2172969745 & -21152.2172969745 \tabularnewline
26 & 96740 & 88674.9083819954 & 8065.0916180046 \tabularnewline
27 & 93071 & 103899.532896132 & -10828.5328961319 \tabularnewline
28 & 78912 & 99714.9596417788 & -20802.9596417788 \tabularnewline
29 & 35224 & 70192.4959896528 & -34968.4959896528 \tabularnewline
30 & 90694 & 109857.296759434 & -19163.2967594343 \tabularnewline
31 & 125369 & 104930.254638297 & 20438.7453617031 \tabularnewline
32 & 80849 & 93776.4974317556 & -12927.4974317556 \tabularnewline
33 & 104434 & 127194.220305765 & -22760.2203057652 \tabularnewline
34 & 65702 & 65055.4621359813 & 646.537864018742 \tabularnewline
35 & 108179 & 124095.822688827 & -15916.8226888268 \tabularnewline
36 & 63583 & 105581.049321408 & -41998.0493214079 \tabularnewline
37 & 95066 & 136919.40039691 & -41853.4003969099 \tabularnewline
38 & 62486 & 85063.4349265175 & -22577.4349265175 \tabularnewline
39 & 31081 & 51120.3159262092 & -20039.3159262092 \tabularnewline
40 & 94584 & 117307.758520017 & -22723.7585200168 \tabularnewline
41 & 87408 & 110193.356263502 & -22785.3562635025 \tabularnewline
42 & 68966 & 85184.4925262223 & -16218.4925262223 \tabularnewline
43 & 88766 & 87395.1448666358 & 1370.85513336417 \tabularnewline
44 & 57139 & 79260.1541087646 & -22121.1541087646 \tabularnewline
45 & 90586 & 90161.2808737594 & 424.719126240591 \tabularnewline
46 & 109249 & 135378.078849413 & -26129.0788494129 \tabularnewline
47 & 33032 & 54731.2878558499 & -21699.2878558499 \tabularnewline
48 & 96056 & 102651.683621746 & -6595.68362174637 \tabularnewline
49 & 146648 & 125698.940105487 & 20949.0598945129 \tabularnewline
50 & 80613 & 90583.898119881 & -9970.89811988107 \tabularnewline
51 & 87026 & 88791.3510659177 & -1765.35106591767 \tabularnewline
52 & 5950 & 17074.3798223863 & -11124.3798223863 \tabularnewline
53 & 131106 & 127025.703169043 & 4080.29683095652 \tabularnewline
54 & 32551 & 42271.2682618895 & -9720.26826188949 \tabularnewline
55 & 31701 & 44743.5749631925 & -13042.5749631925 \tabularnewline
56 & 91072 & 103742.062350499 & -12670.0623504995 \tabularnewline
57 & 159803 & 129612.288703074 & 30190.711296926 \tabularnewline
58 & 143950 & 113445.67066738 & 30504.3293326203 \tabularnewline
59 & 112368 & 108981.463259904 & 3386.53674009613 \tabularnewline
60 & 82124 & 96604.0590206155 & -14480.0590206155 \tabularnewline
61 & 144068 & 133639.384784436 & 10428.6152155644 \tabularnewline
62 & 162627 & 98576.7544022612 & 64050.2455977388 \tabularnewline
63 & 55062 & 98553.7710655577 & -43491.7710655577 \tabularnewline
64 & 95329 & 100434.692621099 & -5105.6926210987 \tabularnewline
65 & 105612 & 90231.7752255353 & 15380.2247744647 \tabularnewline
66 & 62853 & 81976.2350211554 & -19123.2350211554 \tabularnewline
67 & 125976 & 81363.9340611326 & 44612.0659388674 \tabularnewline
68 & 79146 & 97110.3560921776 & -17964.3560921776 \tabularnewline
69 & 108461 & 86095.674500912 & 22365.325499088 \tabularnewline
70 & 99971 & 65664.4667275879 & 34306.5332724121 \tabularnewline
71 & 77826 & 101898.875601932 & -24072.875601932 \tabularnewline
72 & 22618 & 50044.6239349527 & -27426.6239349527 \tabularnewline
73 & 84892 & 102555.092281316 & -17663.0922813165 \tabularnewline
74 & 92059 & 90089.4032418436 & 1969.59675815644 \tabularnewline
75 & 77993 & 78827.554742322 & -834.554742321965 \tabularnewline
76 & 104155 & 121680.089145277 & -17525.0891452768 \tabularnewline
77 & 109840 & 104613.184605495 & 5226.81539450478 \tabularnewline
78 & 238712 & 93070.791916249 & 145641.208083751 \tabularnewline
79 & 67486 & 83571.1970180574 & -16085.1970180574 \tabularnewline
80 & 68007 & 84957.9358775735 & -16950.9358775735 \tabularnewline
81 & 48194 & 65180.2562108454 & -16986.2562108454 \tabularnewline
82 & 134796 & 140779.311143634 & -5983.31114363429 \tabularnewline
83 & 38692 & 68326.663055014 & -29634.663055014 \tabularnewline
84 & 93587 & 106102.489805607 & -12515.4898056073 \tabularnewline
85 & 56622 & 33409.90362349 & 23212.09637651 \tabularnewline
86 & 15986 & 66981.8654074895 & -50995.8654074895 \tabularnewline
87 & 113402 & 74105.2849559879 & 39296.7150440121 \tabularnewline
88 & 97967 & 119747.347213534 & -21780.3472135345 \tabularnewline
89 & 74844 & 132467.513277193 & -57623.5132771934 \tabularnewline
90 & 136051 & 91511.5968463094 & 44539.4031536906 \tabularnewline
91 & 50548 & 99956.7111811204 & -49408.7111811204 \tabularnewline
92 & 112215 & 95245.5361502517 & 16969.4638497483 \tabularnewline
93 & 59591 & 73017.3274687072 & -13426.3274687072 \tabularnewline
94 & 59938 & 99962.9402578846 & -40024.9402578846 \tabularnewline
95 & 137639 & 102665.24778306 & 34973.7522169399 \tabularnewline
96 & 143372 & 82180.660264288 & 61191.3397357119 \tabularnewline
97 & 138599 & 91032.2935452852 & 47566.7064547149 \tabularnewline
98 & 174110 & 103955.093061172 & 70154.9069388279 \tabularnewline
99 & 135062 & 148570.096918717 & -13508.0969187175 \tabularnewline
100 & 175681 & 118326.568485187 & 57354.4315148129 \tabularnewline
101 & 130307 & 111937.585221903 & 18369.4147780973 \tabularnewline
102 & 139141 & 106383.136951443 & 32757.8630485572 \tabularnewline
103 & 44244 & 86169.2210855444 & -41925.2210855444 \tabularnewline
104 & 43750 & 39075.1251323597 & 4674.87486764032 \tabularnewline
105 & 48029 & 72198.5719664465 & -24169.5719664465 \tabularnewline
106 & 95216 & 87940.6912637215 & 7275.3087362785 \tabularnewline
107 & 92288 & 98977.5009468238 & -6689.50094682377 \tabularnewline
108 & 94588 & 107498.390450235 & -12910.3904502355 \tabularnewline
109 & 197426 & 56748.4071100535 & 140677.592889946 \tabularnewline
110 & 151244 & 84410.3153306861 & 66833.6846693139 \tabularnewline
111 & 139206 & 115036.275138777 & 24169.7248612232 \tabularnewline
112 & 106271 & 112160.896980191 & -5889.89698019089 \tabularnewline
113 & 1168 & 13333.6484967487 & -12165.6484967487 \tabularnewline
114 & 71764 & 86302.733525098 & -14538.7335250981 \tabularnewline
115 & 25162 & 33167.3450036577 & -8005.34500365765 \tabularnewline
116 & 45635 & 88042.5534799377 & -42407.5534799377 \tabularnewline
117 & 101817 & 121100.956240821 & -19283.9562408211 \tabularnewline
118 & 855 & 11604.4184578577 & -10749.4184578577 \tabularnewline
119 & 100174 & 86591.378342846 & 13582.6216571541 \tabularnewline
120 & 14116 & 23373.3744231117 & -9257.37442311167 \tabularnewline
121 & 85008 & 110914.710031163 & -25906.7100311629 \tabularnewline
122 & 124254 & 102964.646891962 & 21289.3531080384 \tabularnewline
123 & 105793 & 88447.4450104242 & 17345.5549895758 \tabularnewline
124 & 117129 & 68958.8734639437 & 48170.1265360563 \tabularnewline
125 & 8773 & 24751.0445125881 & -15978.0445125881 \tabularnewline
126 & 94747 & 84497.3779122562 & 10249.6220877438 \tabularnewline
127 & 107549 & 128849.398920507 & -21300.3989205071 \tabularnewline
128 & 97392 & 103097.75744811 & -5705.75744810963 \tabularnewline
129 & 126893 & 137559.209908026 & -10666.2099080257 \tabularnewline
130 & 118850 & 121190.820292329 & -2340.82029232913 \tabularnewline
131 & 234853 & 143071.363247464 & 91781.6367525356 \tabularnewline
132 & 74783 & 92142.2346312745 & -17359.2346312745 \tabularnewline
133 & 66089 & 65140.5020458052 & 948.49795419483 \tabularnewline
134 & 95684 & 106596.068019684 & -10912.068019684 \tabularnewline
135 & 139537 & 135613.501669559 & 3923.49833044117 \tabularnewline
136 & 144253 & 73558.6259237578 & 70694.3740762422 \tabularnewline
137 & 153824 & 133245.935101085 & 20578.0648989149 \tabularnewline
138 & 63995 & 78418.9134819582 & -14423.9134819582 \tabularnewline
139 & 84891 & 104786.055954043 & -19895.0559540425 \tabularnewline
140 & 61263 & 90047.9701830482 & -28784.9701830482 \tabularnewline
141 & 106221 & 84314.2255160934 & 21906.7744839066 \tabularnewline
142 & 113587 & 119491.362298157 & -5904.36229815744 \tabularnewline
143 & 113864 & 95217.0179201253 & 18646.9820798747 \tabularnewline
144 & 37238 & 67824.9742718755 & -30586.9742718755 \tabularnewline
145 & 119906 & 120846.450934336 & -940.450934336043 \tabularnewline
146 & 135096 & 93089.6435217466 & 42006.3564782534 \tabularnewline
147 & 151611 & 93326.6223974596 & 58284.3776025404 \tabularnewline
148 & 144645 & 107644.618433595 & 37000.3815664049 \tabularnewline
149 & 0 & 7339.11134113017 & -7339.11134113017 \tabularnewline
150 & 6023 & 10314.6761358567 & -4291.67613585669 \tabularnewline
151 & 0 & 7358.76339975946 & -7358.76339975946 \tabularnewline
152 & 0 & 7431.09107945698 & -7431.09107945698 \tabularnewline
153 & 0 & 7338.9087425876 & -7338.9087425876 \tabularnewline
154 & 0 & 7338.9087425876 & -7338.9087425876 \tabularnewline
155 & 77457 & 86901.0551856835 & -9444.05518568347 \tabularnewline
156 & 62464 & 134640.47566133 & -72176.4756613298 \tabularnewline
157 & 0 & 7338.9087425876 & -7338.9087425876 \tabularnewline
158 & 0 & 7380.03624672933 & -7380.03624672933 \tabularnewline
159 & 1644 & 8797.41565054949 & -7153.41565054949 \tabularnewline
160 & 6179 & 22835.9286540493 & -16656.9286540493 \tabularnewline
161 & 3926 & 12102.659752093 & -8176.65975209302 \tabularnewline
162 & 42087 & 75043.827674963 & -32956.827674963 \tabularnewline
163 & 0 & 7535.22673033799 & -7535.22673033799 \tabularnewline
164 & 87656 & 77650.553538742 & 10005.4464612581 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=153995&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]124252[/C][C]102029.950231616[/C][C]22222.0497683841[/C][/ROW]
[ROW][C]2[/C][C]98956[/C][C]71002.587918959[/C][C]27953.412081041[/C][/ROW]
[ROW][C]3[/C][C]98073[/C][C]100095.748573058[/C][C]-2022.74857305848[/C][/ROW]
[ROW][C]4[/C][C]106816[/C][C]90752.1512389663[/C][C]16063.8487610337[/C][/ROW]
[ROW][C]5[/C][C]41449[/C][C]68193.7584110881[/C][C]-26744.7584110881[/C][/ROW]
[ROW][C]6[/C][C]76173[/C][C]58038.9664535838[/C][C]18134.0335464162[/C][/ROW]
[ROW][C]7[/C][C]177551[/C][C]131411.951674647[/C][C]46139.0483253531[/C][/ROW]
[ROW][C]8[/C][C]22807[/C][C]35819.922870831[/C][C]-13012.922870831[/C][/ROW]
[ROW][C]9[/C][C]126938[/C][C]80818.0821093933[/C][C]46119.9178906067[/C][/ROW]
[ROW][C]10[/C][C]61680[/C][C]81022.8577578762[/C][C]-19342.8577578762[/C][/ROW]
[ROW][C]11[/C][C]72117[/C][C]116300.795599068[/C][C]-44183.7955990676[/C][/ROW]
[ROW][C]12[/C][C]79738[/C][C]109362.004741944[/C][C]-29624.0047419444[/C][/ROW]
[ROW][C]13[/C][C]57793[/C][C]75994.1626464241[/C][C]-18201.1626464241[/C][/ROW]
[ROW][C]14[/C][C]91677[/C][C]131942.16862895[/C][C]-40265.1686289502[/C][/ROW]
[ROW][C]15[/C][C]64631[/C][C]96151.4571901935[/C][C]-31520.4571901935[/C][/ROW]
[ROW][C]16[/C][C]106385[/C][C]140947.017886186[/C][C]-34562.0178861858[/C][/ROW]
[ROW][C]17[/C][C]161961[/C][C]103288.643498548[/C][C]58672.3565014518[/C][/ROW]
[ROW][C]18[/C][C]112669[/C][C]105071.411030733[/C][C]7597.58896926681[/C][/ROW]
[ROW][C]19[/C][C]114029[/C][C]69456.5036488718[/C][C]44572.4963511282[/C][/ROW]
[ROW][C]20[/C][C]124550[/C][C]108502.626575059[/C][C]16047.3734249412[/C][/ROW]
[ROW][C]21[/C][C]105416[/C][C]107719.226175316[/C][C]-2303.22617531636[/C][/ROW]
[ROW][C]22[/C][C]72875[/C][C]134306.078482619[/C][C]-61431.0784826192[/C][/ROW]
[ROW][C]23[/C][C]81964[/C][C]70214.4247966264[/C][C]11749.5752033736[/C][/ROW]
[ROW][C]24[/C][C]104880[/C][C]94625.7938358888[/C][C]10254.2061641112[/C][/ROW]
[ROW][C]25[/C][C]76302[/C][C]97454.2172969745[/C][C]-21152.2172969745[/C][/ROW]
[ROW][C]26[/C][C]96740[/C][C]88674.9083819954[/C][C]8065.0916180046[/C][/ROW]
[ROW][C]27[/C][C]93071[/C][C]103899.532896132[/C][C]-10828.5328961319[/C][/ROW]
[ROW][C]28[/C][C]78912[/C][C]99714.9596417788[/C][C]-20802.9596417788[/C][/ROW]
[ROW][C]29[/C][C]35224[/C][C]70192.4959896528[/C][C]-34968.4959896528[/C][/ROW]
[ROW][C]30[/C][C]90694[/C][C]109857.296759434[/C][C]-19163.2967594343[/C][/ROW]
[ROW][C]31[/C][C]125369[/C][C]104930.254638297[/C][C]20438.7453617031[/C][/ROW]
[ROW][C]32[/C][C]80849[/C][C]93776.4974317556[/C][C]-12927.4974317556[/C][/ROW]
[ROW][C]33[/C][C]104434[/C][C]127194.220305765[/C][C]-22760.2203057652[/C][/ROW]
[ROW][C]34[/C][C]65702[/C][C]65055.4621359813[/C][C]646.537864018742[/C][/ROW]
[ROW][C]35[/C][C]108179[/C][C]124095.822688827[/C][C]-15916.8226888268[/C][/ROW]
[ROW][C]36[/C][C]63583[/C][C]105581.049321408[/C][C]-41998.0493214079[/C][/ROW]
[ROW][C]37[/C][C]95066[/C][C]136919.40039691[/C][C]-41853.4003969099[/C][/ROW]
[ROW][C]38[/C][C]62486[/C][C]85063.4349265175[/C][C]-22577.4349265175[/C][/ROW]
[ROW][C]39[/C][C]31081[/C][C]51120.3159262092[/C][C]-20039.3159262092[/C][/ROW]
[ROW][C]40[/C][C]94584[/C][C]117307.758520017[/C][C]-22723.7585200168[/C][/ROW]
[ROW][C]41[/C][C]87408[/C][C]110193.356263502[/C][C]-22785.3562635025[/C][/ROW]
[ROW][C]42[/C][C]68966[/C][C]85184.4925262223[/C][C]-16218.4925262223[/C][/ROW]
[ROW][C]43[/C][C]88766[/C][C]87395.1448666358[/C][C]1370.85513336417[/C][/ROW]
[ROW][C]44[/C][C]57139[/C][C]79260.1541087646[/C][C]-22121.1541087646[/C][/ROW]
[ROW][C]45[/C][C]90586[/C][C]90161.2808737594[/C][C]424.719126240591[/C][/ROW]
[ROW][C]46[/C][C]109249[/C][C]135378.078849413[/C][C]-26129.0788494129[/C][/ROW]
[ROW][C]47[/C][C]33032[/C][C]54731.2878558499[/C][C]-21699.2878558499[/C][/ROW]
[ROW][C]48[/C][C]96056[/C][C]102651.683621746[/C][C]-6595.68362174637[/C][/ROW]
[ROW][C]49[/C][C]146648[/C][C]125698.940105487[/C][C]20949.0598945129[/C][/ROW]
[ROW][C]50[/C][C]80613[/C][C]90583.898119881[/C][C]-9970.89811988107[/C][/ROW]
[ROW][C]51[/C][C]87026[/C][C]88791.3510659177[/C][C]-1765.35106591767[/C][/ROW]
[ROW][C]52[/C][C]5950[/C][C]17074.3798223863[/C][C]-11124.3798223863[/C][/ROW]
[ROW][C]53[/C][C]131106[/C][C]127025.703169043[/C][C]4080.29683095652[/C][/ROW]
[ROW][C]54[/C][C]32551[/C][C]42271.2682618895[/C][C]-9720.26826188949[/C][/ROW]
[ROW][C]55[/C][C]31701[/C][C]44743.5749631925[/C][C]-13042.5749631925[/C][/ROW]
[ROW][C]56[/C][C]91072[/C][C]103742.062350499[/C][C]-12670.0623504995[/C][/ROW]
[ROW][C]57[/C][C]159803[/C][C]129612.288703074[/C][C]30190.711296926[/C][/ROW]
[ROW][C]58[/C][C]143950[/C][C]113445.67066738[/C][C]30504.3293326203[/C][/ROW]
[ROW][C]59[/C][C]112368[/C][C]108981.463259904[/C][C]3386.53674009613[/C][/ROW]
[ROW][C]60[/C][C]82124[/C][C]96604.0590206155[/C][C]-14480.0590206155[/C][/ROW]
[ROW][C]61[/C][C]144068[/C][C]133639.384784436[/C][C]10428.6152155644[/C][/ROW]
[ROW][C]62[/C][C]162627[/C][C]98576.7544022612[/C][C]64050.2455977388[/C][/ROW]
[ROW][C]63[/C][C]55062[/C][C]98553.7710655577[/C][C]-43491.7710655577[/C][/ROW]
[ROW][C]64[/C][C]95329[/C][C]100434.692621099[/C][C]-5105.6926210987[/C][/ROW]
[ROW][C]65[/C][C]105612[/C][C]90231.7752255353[/C][C]15380.2247744647[/C][/ROW]
[ROW][C]66[/C][C]62853[/C][C]81976.2350211554[/C][C]-19123.2350211554[/C][/ROW]
[ROW][C]67[/C][C]125976[/C][C]81363.9340611326[/C][C]44612.0659388674[/C][/ROW]
[ROW][C]68[/C][C]79146[/C][C]97110.3560921776[/C][C]-17964.3560921776[/C][/ROW]
[ROW][C]69[/C][C]108461[/C][C]86095.674500912[/C][C]22365.325499088[/C][/ROW]
[ROW][C]70[/C][C]99971[/C][C]65664.4667275879[/C][C]34306.5332724121[/C][/ROW]
[ROW][C]71[/C][C]77826[/C][C]101898.875601932[/C][C]-24072.875601932[/C][/ROW]
[ROW][C]72[/C][C]22618[/C][C]50044.6239349527[/C][C]-27426.6239349527[/C][/ROW]
[ROW][C]73[/C][C]84892[/C][C]102555.092281316[/C][C]-17663.0922813165[/C][/ROW]
[ROW][C]74[/C][C]92059[/C][C]90089.4032418436[/C][C]1969.59675815644[/C][/ROW]
[ROW][C]75[/C][C]77993[/C][C]78827.554742322[/C][C]-834.554742321965[/C][/ROW]
[ROW][C]76[/C][C]104155[/C][C]121680.089145277[/C][C]-17525.0891452768[/C][/ROW]
[ROW][C]77[/C][C]109840[/C][C]104613.184605495[/C][C]5226.81539450478[/C][/ROW]
[ROW][C]78[/C][C]238712[/C][C]93070.791916249[/C][C]145641.208083751[/C][/ROW]
[ROW][C]79[/C][C]67486[/C][C]83571.1970180574[/C][C]-16085.1970180574[/C][/ROW]
[ROW][C]80[/C][C]68007[/C][C]84957.9358775735[/C][C]-16950.9358775735[/C][/ROW]
[ROW][C]81[/C][C]48194[/C][C]65180.2562108454[/C][C]-16986.2562108454[/C][/ROW]
[ROW][C]82[/C][C]134796[/C][C]140779.311143634[/C][C]-5983.31114363429[/C][/ROW]
[ROW][C]83[/C][C]38692[/C][C]68326.663055014[/C][C]-29634.663055014[/C][/ROW]
[ROW][C]84[/C][C]93587[/C][C]106102.489805607[/C][C]-12515.4898056073[/C][/ROW]
[ROW][C]85[/C][C]56622[/C][C]33409.90362349[/C][C]23212.09637651[/C][/ROW]
[ROW][C]86[/C][C]15986[/C][C]66981.8654074895[/C][C]-50995.8654074895[/C][/ROW]
[ROW][C]87[/C][C]113402[/C][C]74105.2849559879[/C][C]39296.7150440121[/C][/ROW]
[ROW][C]88[/C][C]97967[/C][C]119747.347213534[/C][C]-21780.3472135345[/C][/ROW]
[ROW][C]89[/C][C]74844[/C][C]132467.513277193[/C][C]-57623.5132771934[/C][/ROW]
[ROW][C]90[/C][C]136051[/C][C]91511.5968463094[/C][C]44539.4031536906[/C][/ROW]
[ROW][C]91[/C][C]50548[/C][C]99956.7111811204[/C][C]-49408.7111811204[/C][/ROW]
[ROW][C]92[/C][C]112215[/C][C]95245.5361502517[/C][C]16969.4638497483[/C][/ROW]
[ROW][C]93[/C][C]59591[/C][C]73017.3274687072[/C][C]-13426.3274687072[/C][/ROW]
[ROW][C]94[/C][C]59938[/C][C]99962.9402578846[/C][C]-40024.9402578846[/C][/ROW]
[ROW][C]95[/C][C]137639[/C][C]102665.24778306[/C][C]34973.7522169399[/C][/ROW]
[ROW][C]96[/C][C]143372[/C][C]82180.660264288[/C][C]61191.3397357119[/C][/ROW]
[ROW][C]97[/C][C]138599[/C][C]91032.2935452852[/C][C]47566.7064547149[/C][/ROW]
[ROW][C]98[/C][C]174110[/C][C]103955.093061172[/C][C]70154.9069388279[/C][/ROW]
[ROW][C]99[/C][C]135062[/C][C]148570.096918717[/C][C]-13508.0969187175[/C][/ROW]
[ROW][C]100[/C][C]175681[/C][C]118326.568485187[/C][C]57354.4315148129[/C][/ROW]
[ROW][C]101[/C][C]130307[/C][C]111937.585221903[/C][C]18369.4147780973[/C][/ROW]
[ROW][C]102[/C][C]139141[/C][C]106383.136951443[/C][C]32757.8630485572[/C][/ROW]
[ROW][C]103[/C][C]44244[/C][C]86169.2210855444[/C][C]-41925.2210855444[/C][/ROW]
[ROW][C]104[/C][C]43750[/C][C]39075.1251323597[/C][C]4674.87486764032[/C][/ROW]
[ROW][C]105[/C][C]48029[/C][C]72198.5719664465[/C][C]-24169.5719664465[/C][/ROW]
[ROW][C]106[/C][C]95216[/C][C]87940.6912637215[/C][C]7275.3087362785[/C][/ROW]
[ROW][C]107[/C][C]92288[/C][C]98977.5009468238[/C][C]-6689.50094682377[/C][/ROW]
[ROW][C]108[/C][C]94588[/C][C]107498.390450235[/C][C]-12910.3904502355[/C][/ROW]
[ROW][C]109[/C][C]197426[/C][C]56748.4071100535[/C][C]140677.592889946[/C][/ROW]
[ROW][C]110[/C][C]151244[/C][C]84410.3153306861[/C][C]66833.6846693139[/C][/ROW]
[ROW][C]111[/C][C]139206[/C][C]115036.275138777[/C][C]24169.7248612232[/C][/ROW]
[ROW][C]112[/C][C]106271[/C][C]112160.896980191[/C][C]-5889.89698019089[/C][/ROW]
[ROW][C]113[/C][C]1168[/C][C]13333.6484967487[/C][C]-12165.6484967487[/C][/ROW]
[ROW][C]114[/C][C]71764[/C][C]86302.733525098[/C][C]-14538.7335250981[/C][/ROW]
[ROW][C]115[/C][C]25162[/C][C]33167.3450036577[/C][C]-8005.34500365765[/C][/ROW]
[ROW][C]116[/C][C]45635[/C][C]88042.5534799377[/C][C]-42407.5534799377[/C][/ROW]
[ROW][C]117[/C][C]101817[/C][C]121100.956240821[/C][C]-19283.9562408211[/C][/ROW]
[ROW][C]118[/C][C]855[/C][C]11604.4184578577[/C][C]-10749.4184578577[/C][/ROW]
[ROW][C]119[/C][C]100174[/C][C]86591.378342846[/C][C]13582.6216571541[/C][/ROW]
[ROW][C]120[/C][C]14116[/C][C]23373.3744231117[/C][C]-9257.37442311167[/C][/ROW]
[ROW][C]121[/C][C]85008[/C][C]110914.710031163[/C][C]-25906.7100311629[/C][/ROW]
[ROW][C]122[/C][C]124254[/C][C]102964.646891962[/C][C]21289.3531080384[/C][/ROW]
[ROW][C]123[/C][C]105793[/C][C]88447.4450104242[/C][C]17345.5549895758[/C][/ROW]
[ROW][C]124[/C][C]117129[/C][C]68958.8734639437[/C][C]48170.1265360563[/C][/ROW]
[ROW][C]125[/C][C]8773[/C][C]24751.0445125881[/C][C]-15978.0445125881[/C][/ROW]
[ROW][C]126[/C][C]94747[/C][C]84497.3779122562[/C][C]10249.6220877438[/C][/ROW]
[ROW][C]127[/C][C]107549[/C][C]128849.398920507[/C][C]-21300.3989205071[/C][/ROW]
[ROW][C]128[/C][C]97392[/C][C]103097.75744811[/C][C]-5705.75744810963[/C][/ROW]
[ROW][C]129[/C][C]126893[/C][C]137559.209908026[/C][C]-10666.2099080257[/C][/ROW]
[ROW][C]130[/C][C]118850[/C][C]121190.820292329[/C][C]-2340.82029232913[/C][/ROW]
[ROW][C]131[/C][C]234853[/C][C]143071.363247464[/C][C]91781.6367525356[/C][/ROW]
[ROW][C]132[/C][C]74783[/C][C]92142.2346312745[/C][C]-17359.2346312745[/C][/ROW]
[ROW][C]133[/C][C]66089[/C][C]65140.5020458052[/C][C]948.49795419483[/C][/ROW]
[ROW][C]134[/C][C]95684[/C][C]106596.068019684[/C][C]-10912.068019684[/C][/ROW]
[ROW][C]135[/C][C]139537[/C][C]135613.501669559[/C][C]3923.49833044117[/C][/ROW]
[ROW][C]136[/C][C]144253[/C][C]73558.6259237578[/C][C]70694.3740762422[/C][/ROW]
[ROW][C]137[/C][C]153824[/C][C]133245.935101085[/C][C]20578.0648989149[/C][/ROW]
[ROW][C]138[/C][C]63995[/C][C]78418.9134819582[/C][C]-14423.9134819582[/C][/ROW]
[ROW][C]139[/C][C]84891[/C][C]104786.055954043[/C][C]-19895.0559540425[/C][/ROW]
[ROW][C]140[/C][C]61263[/C][C]90047.9701830482[/C][C]-28784.9701830482[/C][/ROW]
[ROW][C]141[/C][C]106221[/C][C]84314.2255160934[/C][C]21906.7744839066[/C][/ROW]
[ROW][C]142[/C][C]113587[/C][C]119491.362298157[/C][C]-5904.36229815744[/C][/ROW]
[ROW][C]143[/C][C]113864[/C][C]95217.0179201253[/C][C]18646.9820798747[/C][/ROW]
[ROW][C]144[/C][C]37238[/C][C]67824.9742718755[/C][C]-30586.9742718755[/C][/ROW]
[ROW][C]145[/C][C]119906[/C][C]120846.450934336[/C][C]-940.450934336043[/C][/ROW]
[ROW][C]146[/C][C]135096[/C][C]93089.6435217466[/C][C]42006.3564782534[/C][/ROW]
[ROW][C]147[/C][C]151611[/C][C]93326.6223974596[/C][C]58284.3776025404[/C][/ROW]
[ROW][C]148[/C][C]144645[/C][C]107644.618433595[/C][C]37000.3815664049[/C][/ROW]
[ROW][C]149[/C][C]0[/C][C]7339.11134113017[/C][C]-7339.11134113017[/C][/ROW]
[ROW][C]150[/C][C]6023[/C][C]10314.6761358567[/C][C]-4291.67613585669[/C][/ROW]
[ROW][C]151[/C][C]0[/C][C]7358.76339975946[/C][C]-7358.76339975946[/C][/ROW]
[ROW][C]152[/C][C]0[/C][C]7431.09107945698[/C][C]-7431.09107945698[/C][/ROW]
[ROW][C]153[/C][C]0[/C][C]7338.9087425876[/C][C]-7338.9087425876[/C][/ROW]
[ROW][C]154[/C][C]0[/C][C]7338.9087425876[/C][C]-7338.9087425876[/C][/ROW]
[ROW][C]155[/C][C]77457[/C][C]86901.0551856835[/C][C]-9444.05518568347[/C][/ROW]
[ROW][C]156[/C][C]62464[/C][C]134640.47566133[/C][C]-72176.4756613298[/C][/ROW]
[ROW][C]157[/C][C]0[/C][C]7338.9087425876[/C][C]-7338.9087425876[/C][/ROW]
[ROW][C]158[/C][C]0[/C][C]7380.03624672933[/C][C]-7380.03624672933[/C][/ROW]
[ROW][C]159[/C][C]1644[/C][C]8797.41565054949[/C][C]-7153.41565054949[/C][/ROW]
[ROW][C]160[/C][C]6179[/C][C]22835.9286540493[/C][C]-16656.9286540493[/C][/ROW]
[ROW][C]161[/C][C]3926[/C][C]12102.659752093[/C][C]-8176.65975209302[/C][/ROW]
[ROW][C]162[/C][C]42087[/C][C]75043.827674963[/C][C]-32956.827674963[/C][/ROW]
[ROW][C]163[/C][C]0[/C][C]7535.22673033799[/C][C]-7535.22673033799[/C][/ROW]
[ROW][C]164[/C][C]87656[/C][C]77650.553538742[/C][C]10005.4464612581[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=153995&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=153995&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1124252102029.95023161622222.0497683841
29895671002.58791895927953.412081041
398073100095.748573058-2022.74857305848
410681690752.151238966316063.8487610337
54144968193.7584110881-26744.7584110881
67617358038.966453583818134.0335464162
7177551131411.95167464746139.0483253531
82280735819.922870831-13012.922870831
912693880818.082109393346119.9178906067
106168081022.8577578762-19342.8577578762
1172117116300.795599068-44183.7955990676
1279738109362.004741944-29624.0047419444
135779375994.1626464241-18201.1626464241
1491677131942.16862895-40265.1686289502
156463196151.4571901935-31520.4571901935
16106385140947.017886186-34562.0178861858
17161961103288.64349854858672.3565014518
18112669105071.4110307337597.58896926681
1911402969456.503648871844572.4963511282
20124550108502.62657505916047.3734249412
21105416107719.226175316-2303.22617531636
2272875134306.078482619-61431.0784826192
238196470214.424796626411749.5752033736
2410488094625.793835888810254.2061641112
257630297454.2172969745-21152.2172969745
269674088674.90838199548065.0916180046
2793071103899.532896132-10828.5328961319
287891299714.9596417788-20802.9596417788
293522470192.4959896528-34968.4959896528
3090694109857.296759434-19163.2967594343
31125369104930.25463829720438.7453617031
328084993776.4974317556-12927.4974317556
33104434127194.220305765-22760.2203057652
346570265055.4621359813646.537864018742
35108179124095.822688827-15916.8226888268
3663583105581.049321408-41998.0493214079
3795066136919.40039691-41853.4003969099
386248685063.4349265175-22577.4349265175
393108151120.3159262092-20039.3159262092
4094584117307.758520017-22723.7585200168
4187408110193.356263502-22785.3562635025
426896685184.4925262223-16218.4925262223
438876687395.14486663581370.85513336417
445713979260.1541087646-22121.1541087646
459058690161.2808737594424.719126240591
46109249135378.078849413-26129.0788494129
473303254731.2878558499-21699.2878558499
4896056102651.683621746-6595.68362174637
49146648125698.94010548720949.0598945129
508061390583.898119881-9970.89811988107
518702688791.3510659177-1765.35106591767
52595017074.3798223863-11124.3798223863
53131106127025.7031690434080.29683095652
543255142271.2682618895-9720.26826188949
553170144743.5749631925-13042.5749631925
5691072103742.062350499-12670.0623504995
57159803129612.28870307430190.711296926
58143950113445.6706673830504.3293326203
59112368108981.4632599043386.53674009613
608212496604.0590206155-14480.0590206155
61144068133639.38478443610428.6152155644
6216262798576.754402261264050.2455977388
635506298553.7710655577-43491.7710655577
6495329100434.692621099-5105.6926210987
6510561290231.775225535315380.2247744647
666285381976.2350211554-19123.2350211554
6712597681363.934061132644612.0659388674
687914697110.3560921776-17964.3560921776
6910846186095.67450091222365.325499088
709997165664.466727587934306.5332724121
7177826101898.875601932-24072.875601932
722261850044.6239349527-27426.6239349527
7384892102555.092281316-17663.0922813165
749205990089.40324184361969.59675815644
757799378827.554742322-834.554742321965
76104155121680.089145277-17525.0891452768
77109840104613.1846054955226.81539450478
7823871293070.791916249145641.208083751
796748683571.1970180574-16085.1970180574
806800784957.9358775735-16950.9358775735
814819465180.2562108454-16986.2562108454
82134796140779.311143634-5983.31114363429
833869268326.663055014-29634.663055014
8493587106102.489805607-12515.4898056073
855662233409.9036234923212.09637651
861598666981.8654074895-50995.8654074895
8711340274105.284955987939296.7150440121
8897967119747.347213534-21780.3472135345
8974844132467.513277193-57623.5132771934
9013605191511.596846309444539.4031536906
915054899956.7111811204-49408.7111811204
9211221595245.536150251716969.4638497483
935959173017.3274687072-13426.3274687072
945993899962.9402578846-40024.9402578846
95137639102665.2477830634973.7522169399
9614337282180.66026428861191.3397357119
9713859991032.293545285247566.7064547149
98174110103955.09306117270154.9069388279
99135062148570.096918717-13508.0969187175
100175681118326.56848518757354.4315148129
101130307111937.58522190318369.4147780973
102139141106383.13695144332757.8630485572
1034424486169.2210855444-41925.2210855444
1044375039075.12513235974674.87486764032
1054802972198.5719664465-24169.5719664465
1069521687940.69126372157275.3087362785
1079228898977.5009468238-6689.50094682377
10894588107498.390450235-12910.3904502355
10919742656748.4071100535140677.592889946
11015124484410.315330686166833.6846693139
111139206115036.27513877724169.7248612232
112106271112160.896980191-5889.89698019089
113116813333.6484967487-12165.6484967487
1147176486302.733525098-14538.7335250981
1152516233167.3450036577-8005.34500365765
1164563588042.5534799377-42407.5534799377
117101817121100.956240821-19283.9562408211
11885511604.4184578577-10749.4184578577
11910017486591.37834284613582.6216571541
1201411623373.3744231117-9257.37442311167
12185008110914.710031163-25906.7100311629
122124254102964.64689196221289.3531080384
12310579388447.445010424217345.5549895758
12411712968958.873463943748170.1265360563
125877324751.0445125881-15978.0445125881
1269474784497.377912256210249.6220877438
127107549128849.398920507-21300.3989205071
12897392103097.75744811-5705.75744810963
129126893137559.209908026-10666.2099080257
130118850121190.820292329-2340.82029232913
131234853143071.36324746491781.6367525356
1327478392142.2346312745-17359.2346312745
1336608965140.5020458052948.49795419483
13495684106596.068019684-10912.068019684
135139537135613.5016695593923.49833044117
13614425373558.625923757870694.3740762422
137153824133245.93510108520578.0648989149
1386399578418.9134819582-14423.9134819582
13984891104786.055954043-19895.0559540425
1406126390047.9701830482-28784.9701830482
14110622184314.225516093421906.7744839066
142113587119491.362298157-5904.36229815744
14311386495217.017920125318646.9820798747
1443723867824.9742718755-30586.9742718755
145119906120846.450934336-940.450934336043
14613509693089.643521746642006.3564782534
14715161193326.622397459658284.3776025404
148144645107644.61843359537000.3815664049
14907339.11134113017-7339.11134113017
150602310314.6761358567-4291.67613585669
15107358.76339975946-7358.76339975946
15207431.09107945698-7431.09107945698
15307338.9087425876-7338.9087425876
15407338.9087425876-7338.9087425876
1557745786901.0551856835-9444.05518568347
15662464134640.47566133-72176.4756613298
15707338.9087425876-7338.9087425876
15807380.03624672933-7380.03624672933
15916448797.41565054949-7153.41565054949
160617922835.9286540493-16656.9286540493
161392612102.659752093-8176.65975209302
1624208775043.827674963-32956.827674963
16307535.22673033799-7535.22673033799
1648765677650.55353874210005.4464612581







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
60.3855071629899510.7710143259799020.614492837010049
70.2867209138645830.5734418277291670.713279086135417
80.1743065140591950.3486130281183910.825693485940805
90.217672029756480.435344059512960.78232797024352
100.2400702797841010.4801405595682020.7599297202159
110.4818881048401250.963776209680250.518111895159875
120.3935693121267990.7871386242535970.606430687873201
130.3215813742782170.6431627485564350.678418625721783
140.3005929924109430.6011859848218860.699407007589057
150.2515926850230.5031853700459990.748407314977
160.19498965096030.38997930192060.8050103490397
170.3029850835945630.6059701671891260.697014916405437
180.2353139018883020.4706278037766030.764686098111698
190.225188309614950.4503766192299010.77481169038505
200.2232702635452040.4465405270904080.776729736454796
210.1707240501206290.3414481002412590.82927594987937
220.4374436213807280.8748872427614560.562556378619272
230.3724889853873850.744977970774770.627511014612615
240.362990651522270.7259813030445390.63700934847773
250.3119563381771310.6239126763542620.688043661822869
260.2586209710320170.5172419420640330.741379028967983
270.2110358268739840.4220716537479690.788964173126016
280.1843546339499880.3687092678999760.815645366050012
290.2252729548672340.4505459097344680.774727045132766
300.1920775970232460.3841551940464910.807922402976754
310.1842912256255350.368582451251070.815708774374465
320.1476032210700420.2952064421400840.852396778929958
330.1185574299157220.2371148598314450.881442570084278
340.09144794022087520.182895880441750.908552059779125
350.07214899295015280.1442979859003060.927851007049847
360.08443665722438030.1688733144487610.91556334277562
370.08687681917380050.1737536383476010.9131231808262
380.07801910313857650.1560382062771530.921980896861423
390.08610895465291960.1722179093058390.91389104534708
400.07069992553508020.141399851070160.92930007446492
410.05876985880416280.1175397176083260.941230141195837
420.04590271941621460.09180543883242920.954097280583785
430.03478666177332490.06957332354664990.965213338226675
440.0287837962393580.0575675924787160.971216203760642
450.02256343869936540.04512687739873080.977436561300635
460.01828545545438080.03657091090876160.98171454454562
470.01683378227517690.03366756455035380.983166217724823
480.01243917138730310.02487834277460610.987560828612697
490.01414277632428430.02828555264856870.985857223675716
500.01022343818438630.02044687636877260.989776561815614
510.007240757294072290.01448151458814460.992759242705928
520.006405604472357770.01281120894471550.993594395527642
530.004843902975587290.009687805951174570.995156097024413
540.003544386116785260.007088772233570510.996455613883215
550.002672784974424850.00534556994884970.997327215025575
560.001861521058947160.003723042117894310.998138478941053
570.002570952675918340.005141905351836690.997429047324082
580.003034217135211740.006068434270423470.996965782864788
590.002143484121801120.004286968243602250.997856515878199
600.001528618812539660.003057237625079310.99847138118746
610.001168748639654480.002337497279308970.998831251360346
620.004633831492510850.00926766298502170.99536616850749
630.00570906790603750.0114181358120750.994290932093962
640.004066423931427250.00813284786285450.995933576068573
650.003210073516224770.006420147032449540.996789926483775
660.002545294325158340.005090588650316690.997454705674842
670.004026540497029450.00805308099405890.99597345950297
680.00307431937128010.00614863874256020.99692568062872
690.00266028261349930.00532056522699860.9973397173865
700.002828695631607260.005657391263214520.997171304368393
710.002318096854408380.004636193708816770.997681903145592
720.002187508243515260.004375016487030520.997812491756485
730.001649725276167620.003299450552335240.998350274723832
740.001157046327700570.002314092655401140.9988429536723
750.0007909410209507430.001581882041901490.99920905897905
760.0005876806748425560.001175361349685110.999412319325157
770.0003992145864786740.0007984291729573470.999600785413521
780.1509364155873460.3018728311746920.849063584412654
790.131923692367530.2638473847350610.86807630763247
800.1151465919555240.2302931839110480.884853408044476
810.1009372727717180.2018745455434360.899062727228282
820.0829634662289120.1659269324578240.917036533771088
830.08118176735266870.1623635347053370.918818232647331
840.067804663837550.13560932767510.93219533616245
850.05893546906535510.117870938130710.941064530934645
860.0827478677760880.1654957355521760.917252132223912
870.09028010665703610.1805602133140720.909719893342964
880.08081261073545040.1616252214709010.91918738926455
890.1226149859470160.2452299718940320.877385014052984
900.1441479067426630.2882958134853260.855852093257337
910.1841991744189730.3683983488379470.815800825581027
920.1629569918092220.3259139836184430.837043008190778
930.1425608308132250.2851216616264510.857439169186775
940.1605021523775920.3210043047551840.839497847622408
950.1615044292297310.3230088584594620.838495570770269
960.2319777267051480.4639554534102960.768022273294852
970.2654998969837820.5309997939675640.734500103016218
980.4043721087887320.8087442175774640.595627891211268
990.375532537978020.751065075956040.62446746202198
1000.4762387379263220.9524774758526440.523761262073678
1010.4438025716116270.8876051432232540.556197428388373
1020.4427041567054880.8854083134109750.557295843294512
1030.4881929395123730.9763858790247450.511807060487627
1040.4415937041071850.8831874082143690.558406295892815
1050.4228786983318720.8457573966637440.577121301668128
1060.3786998220548340.7573996441096680.621300177945166
1070.3376402568467180.6752805136934360.662359743153282
1080.3021254841634870.6042509683269740.697874515836513
1090.9424315371240260.1151369257519470.0575684628759735
1100.973771766941910.05245646611617950.0262282330580898
1110.9704975814332960.05900483713340740.0295024185667037
1120.9616406592066130.07671868158677320.0383593407933866
1130.9528889052914640.09422218941707190.0471110947085359
1140.943554734252610.1128905314947810.0564452657473907
1150.9291051008785510.1417897982428980.0708948991214488
1160.9529743113737240.0940513772525520.047025688626276
1170.9425665256947120.1148669486105770.0574334743052884
1180.9283916933102260.1432166133795470.0716083066897736
1190.9138494886456430.1723010227087140.086150511354357
1200.8932470538073540.2135058923852910.106752946192646
1210.8869574349799590.2260851300400830.113042565020041
1220.8660219791570570.2679560416858870.133978020842943
1230.8390291063059850.321941787388030.160970893694015
1240.8742764141917960.2514471716164080.125723585808204
1250.849915868678590.3001682626428180.150084131321409
1260.8167491134486260.3665017731027470.183250886551374
1270.8036485294586350.3927029410827310.196351470541365
1280.7737287341802540.4525425316394920.226271265819746
1290.7379671919723120.5240656160553770.262032808027688
1300.6964601544133250.6070796911733510.303539845586675
1310.9411404014672650.117719197065470.0588595985327351
1320.934698470211790.1306030595764180.065301529788209
1330.9150043301720240.1699913396559530.0849956698279763
1340.8909520787866420.2180958424267170.109047921213359
1350.8639619656157420.2720760687685160.136038034384258
1360.949775502451890.100448995096220.0502244975481098
1370.9496722702495380.1006554595009240.0503277297504622
1380.9371625629678880.1256748740642230.0628374370321117
1390.925256134020930.149487731958140.0747438659790698
1400.9296687146571780.1406625706856440.0703312853428221
1410.9166800542152830.1666398915694340.0833199457847168
1420.890921542019980.2181569159600390.10907845798002
1430.8751520148022540.2496959703954910.124847985197746
1440.8527077457624780.2945845084750440.147292254237522
1450.8029641088586890.3940717822826220.197035891141311
1460.7988203898115930.4023592203768150.201179610188407
1470.9665236227315920.06695275453681550.0334763772684077
1480.9993834543018440.001233091396312040.000616545698156022
1490.998509401628420.002981196743158830.00149059837157942
1500.9965413851548690.006917229690262410.00345861484513121
1510.9922485224550630.01550295508987370.00775147754493685
1520.9833827750903190.03323444981936280.0166172249096814
1530.9660331130325750.06793377393484960.0339668869674248
1540.9340988648762450.131802270247510.065901135123755
1550.922918683826850.15416263234630.07708131617315
1560.9989744163858350.002051167228329880.00102558361416494
1570.9953875981981770.00922480360364570.00461240180182285
1580.9812639605088050.03747207898238930.0187360394911947

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
6 & 0.385507162989951 & 0.771014325979902 & 0.614492837010049 \tabularnewline
7 & 0.286720913864583 & 0.573441827729167 & 0.713279086135417 \tabularnewline
8 & 0.174306514059195 & 0.348613028118391 & 0.825693485940805 \tabularnewline
9 & 0.21767202975648 & 0.43534405951296 & 0.78232797024352 \tabularnewline
10 & 0.240070279784101 & 0.480140559568202 & 0.7599297202159 \tabularnewline
11 & 0.481888104840125 & 0.96377620968025 & 0.518111895159875 \tabularnewline
12 & 0.393569312126799 & 0.787138624253597 & 0.606430687873201 \tabularnewline
13 & 0.321581374278217 & 0.643162748556435 & 0.678418625721783 \tabularnewline
14 & 0.300592992410943 & 0.601185984821886 & 0.699407007589057 \tabularnewline
15 & 0.251592685023 & 0.503185370045999 & 0.748407314977 \tabularnewline
16 & 0.1949896509603 & 0.3899793019206 & 0.8050103490397 \tabularnewline
17 & 0.302985083594563 & 0.605970167189126 & 0.697014916405437 \tabularnewline
18 & 0.235313901888302 & 0.470627803776603 & 0.764686098111698 \tabularnewline
19 & 0.22518830961495 & 0.450376619229901 & 0.77481169038505 \tabularnewline
20 & 0.223270263545204 & 0.446540527090408 & 0.776729736454796 \tabularnewline
21 & 0.170724050120629 & 0.341448100241259 & 0.82927594987937 \tabularnewline
22 & 0.437443621380728 & 0.874887242761456 & 0.562556378619272 \tabularnewline
23 & 0.372488985387385 & 0.74497797077477 & 0.627511014612615 \tabularnewline
24 & 0.36299065152227 & 0.725981303044539 & 0.63700934847773 \tabularnewline
25 & 0.311956338177131 & 0.623912676354262 & 0.688043661822869 \tabularnewline
26 & 0.258620971032017 & 0.517241942064033 & 0.741379028967983 \tabularnewline
27 & 0.211035826873984 & 0.422071653747969 & 0.788964173126016 \tabularnewline
28 & 0.184354633949988 & 0.368709267899976 & 0.815645366050012 \tabularnewline
29 & 0.225272954867234 & 0.450545909734468 & 0.774727045132766 \tabularnewline
30 & 0.192077597023246 & 0.384155194046491 & 0.807922402976754 \tabularnewline
31 & 0.184291225625535 & 0.36858245125107 & 0.815708774374465 \tabularnewline
32 & 0.147603221070042 & 0.295206442140084 & 0.852396778929958 \tabularnewline
33 & 0.118557429915722 & 0.237114859831445 & 0.881442570084278 \tabularnewline
34 & 0.0914479402208752 & 0.18289588044175 & 0.908552059779125 \tabularnewline
35 & 0.0721489929501528 & 0.144297985900306 & 0.927851007049847 \tabularnewline
36 & 0.0844366572243803 & 0.168873314448761 & 0.91556334277562 \tabularnewline
37 & 0.0868768191738005 & 0.173753638347601 & 0.9131231808262 \tabularnewline
38 & 0.0780191031385765 & 0.156038206277153 & 0.921980896861423 \tabularnewline
39 & 0.0861089546529196 & 0.172217909305839 & 0.91389104534708 \tabularnewline
40 & 0.0706999255350802 & 0.14139985107016 & 0.92930007446492 \tabularnewline
41 & 0.0587698588041628 & 0.117539717608326 & 0.941230141195837 \tabularnewline
42 & 0.0459027194162146 & 0.0918054388324292 & 0.954097280583785 \tabularnewline
43 & 0.0347866617733249 & 0.0695733235466499 & 0.965213338226675 \tabularnewline
44 & 0.028783796239358 & 0.057567592478716 & 0.971216203760642 \tabularnewline
45 & 0.0225634386993654 & 0.0451268773987308 & 0.977436561300635 \tabularnewline
46 & 0.0182854554543808 & 0.0365709109087616 & 0.98171454454562 \tabularnewline
47 & 0.0168337822751769 & 0.0336675645503538 & 0.983166217724823 \tabularnewline
48 & 0.0124391713873031 & 0.0248783427746061 & 0.987560828612697 \tabularnewline
49 & 0.0141427763242843 & 0.0282855526485687 & 0.985857223675716 \tabularnewline
50 & 0.0102234381843863 & 0.0204468763687726 & 0.989776561815614 \tabularnewline
51 & 0.00724075729407229 & 0.0144815145881446 & 0.992759242705928 \tabularnewline
52 & 0.00640560447235777 & 0.0128112089447155 & 0.993594395527642 \tabularnewline
53 & 0.00484390297558729 & 0.00968780595117457 & 0.995156097024413 \tabularnewline
54 & 0.00354438611678526 & 0.00708877223357051 & 0.996455613883215 \tabularnewline
55 & 0.00267278497442485 & 0.0053455699488497 & 0.997327215025575 \tabularnewline
56 & 0.00186152105894716 & 0.00372304211789431 & 0.998138478941053 \tabularnewline
57 & 0.00257095267591834 & 0.00514190535183669 & 0.997429047324082 \tabularnewline
58 & 0.00303421713521174 & 0.00606843427042347 & 0.996965782864788 \tabularnewline
59 & 0.00214348412180112 & 0.00428696824360225 & 0.997856515878199 \tabularnewline
60 & 0.00152861881253966 & 0.00305723762507931 & 0.99847138118746 \tabularnewline
61 & 0.00116874863965448 & 0.00233749727930897 & 0.998831251360346 \tabularnewline
62 & 0.00463383149251085 & 0.0092676629850217 & 0.99536616850749 \tabularnewline
63 & 0.0057090679060375 & 0.011418135812075 & 0.994290932093962 \tabularnewline
64 & 0.00406642393142725 & 0.0081328478628545 & 0.995933576068573 \tabularnewline
65 & 0.00321007351622477 & 0.00642014703244954 & 0.996789926483775 \tabularnewline
66 & 0.00254529432515834 & 0.00509058865031669 & 0.997454705674842 \tabularnewline
67 & 0.00402654049702945 & 0.0080530809940589 & 0.99597345950297 \tabularnewline
68 & 0.0030743193712801 & 0.0061486387425602 & 0.99692568062872 \tabularnewline
69 & 0.0026602826134993 & 0.0053205652269986 & 0.9973397173865 \tabularnewline
70 & 0.00282869563160726 & 0.00565739126321452 & 0.997171304368393 \tabularnewline
71 & 0.00231809685440838 & 0.00463619370881677 & 0.997681903145592 \tabularnewline
72 & 0.00218750824351526 & 0.00437501648703052 & 0.997812491756485 \tabularnewline
73 & 0.00164972527616762 & 0.00329945055233524 & 0.998350274723832 \tabularnewline
74 & 0.00115704632770057 & 0.00231409265540114 & 0.9988429536723 \tabularnewline
75 & 0.000790941020950743 & 0.00158188204190149 & 0.99920905897905 \tabularnewline
76 & 0.000587680674842556 & 0.00117536134968511 & 0.999412319325157 \tabularnewline
77 & 0.000399214586478674 & 0.000798429172957347 & 0.999600785413521 \tabularnewline
78 & 0.150936415587346 & 0.301872831174692 & 0.849063584412654 \tabularnewline
79 & 0.13192369236753 & 0.263847384735061 & 0.86807630763247 \tabularnewline
80 & 0.115146591955524 & 0.230293183911048 & 0.884853408044476 \tabularnewline
81 & 0.100937272771718 & 0.201874545543436 & 0.899062727228282 \tabularnewline
82 & 0.082963466228912 & 0.165926932457824 & 0.917036533771088 \tabularnewline
83 & 0.0811817673526687 & 0.162363534705337 & 0.918818232647331 \tabularnewline
84 & 0.06780466383755 & 0.1356093276751 & 0.93219533616245 \tabularnewline
85 & 0.0589354690653551 & 0.11787093813071 & 0.941064530934645 \tabularnewline
86 & 0.082747867776088 & 0.165495735552176 & 0.917252132223912 \tabularnewline
87 & 0.0902801066570361 & 0.180560213314072 & 0.909719893342964 \tabularnewline
88 & 0.0808126107354504 & 0.161625221470901 & 0.91918738926455 \tabularnewline
89 & 0.122614985947016 & 0.245229971894032 & 0.877385014052984 \tabularnewline
90 & 0.144147906742663 & 0.288295813485326 & 0.855852093257337 \tabularnewline
91 & 0.184199174418973 & 0.368398348837947 & 0.815800825581027 \tabularnewline
92 & 0.162956991809222 & 0.325913983618443 & 0.837043008190778 \tabularnewline
93 & 0.142560830813225 & 0.285121661626451 & 0.857439169186775 \tabularnewline
94 & 0.160502152377592 & 0.321004304755184 & 0.839497847622408 \tabularnewline
95 & 0.161504429229731 & 0.323008858459462 & 0.838495570770269 \tabularnewline
96 & 0.231977726705148 & 0.463955453410296 & 0.768022273294852 \tabularnewline
97 & 0.265499896983782 & 0.530999793967564 & 0.734500103016218 \tabularnewline
98 & 0.404372108788732 & 0.808744217577464 & 0.595627891211268 \tabularnewline
99 & 0.37553253797802 & 0.75106507595604 & 0.62446746202198 \tabularnewline
100 & 0.476238737926322 & 0.952477475852644 & 0.523761262073678 \tabularnewline
101 & 0.443802571611627 & 0.887605143223254 & 0.556197428388373 \tabularnewline
102 & 0.442704156705488 & 0.885408313410975 & 0.557295843294512 \tabularnewline
103 & 0.488192939512373 & 0.976385879024745 & 0.511807060487627 \tabularnewline
104 & 0.441593704107185 & 0.883187408214369 & 0.558406295892815 \tabularnewline
105 & 0.422878698331872 & 0.845757396663744 & 0.577121301668128 \tabularnewline
106 & 0.378699822054834 & 0.757399644109668 & 0.621300177945166 \tabularnewline
107 & 0.337640256846718 & 0.675280513693436 & 0.662359743153282 \tabularnewline
108 & 0.302125484163487 & 0.604250968326974 & 0.697874515836513 \tabularnewline
109 & 0.942431537124026 & 0.115136925751947 & 0.0575684628759735 \tabularnewline
110 & 0.97377176694191 & 0.0524564661161795 & 0.0262282330580898 \tabularnewline
111 & 0.970497581433296 & 0.0590048371334074 & 0.0295024185667037 \tabularnewline
112 & 0.961640659206613 & 0.0767186815867732 & 0.0383593407933866 \tabularnewline
113 & 0.952888905291464 & 0.0942221894170719 & 0.0471110947085359 \tabularnewline
114 & 0.94355473425261 & 0.112890531494781 & 0.0564452657473907 \tabularnewline
115 & 0.929105100878551 & 0.141789798242898 & 0.0708948991214488 \tabularnewline
116 & 0.952974311373724 & 0.094051377252552 & 0.047025688626276 \tabularnewline
117 & 0.942566525694712 & 0.114866948610577 & 0.0574334743052884 \tabularnewline
118 & 0.928391693310226 & 0.143216613379547 & 0.0716083066897736 \tabularnewline
119 & 0.913849488645643 & 0.172301022708714 & 0.086150511354357 \tabularnewline
120 & 0.893247053807354 & 0.213505892385291 & 0.106752946192646 \tabularnewline
121 & 0.886957434979959 & 0.226085130040083 & 0.113042565020041 \tabularnewline
122 & 0.866021979157057 & 0.267956041685887 & 0.133978020842943 \tabularnewline
123 & 0.839029106305985 & 0.32194178738803 & 0.160970893694015 \tabularnewline
124 & 0.874276414191796 & 0.251447171616408 & 0.125723585808204 \tabularnewline
125 & 0.84991586867859 & 0.300168262642818 & 0.150084131321409 \tabularnewline
126 & 0.816749113448626 & 0.366501773102747 & 0.183250886551374 \tabularnewline
127 & 0.803648529458635 & 0.392702941082731 & 0.196351470541365 \tabularnewline
128 & 0.773728734180254 & 0.452542531639492 & 0.226271265819746 \tabularnewline
129 & 0.737967191972312 & 0.524065616055377 & 0.262032808027688 \tabularnewline
130 & 0.696460154413325 & 0.607079691173351 & 0.303539845586675 \tabularnewline
131 & 0.941140401467265 & 0.11771919706547 & 0.0588595985327351 \tabularnewline
132 & 0.93469847021179 & 0.130603059576418 & 0.065301529788209 \tabularnewline
133 & 0.915004330172024 & 0.169991339655953 & 0.0849956698279763 \tabularnewline
134 & 0.890952078786642 & 0.218095842426717 & 0.109047921213359 \tabularnewline
135 & 0.863961965615742 & 0.272076068768516 & 0.136038034384258 \tabularnewline
136 & 0.94977550245189 & 0.10044899509622 & 0.0502244975481098 \tabularnewline
137 & 0.949672270249538 & 0.100655459500924 & 0.0503277297504622 \tabularnewline
138 & 0.937162562967888 & 0.125674874064223 & 0.0628374370321117 \tabularnewline
139 & 0.92525613402093 & 0.14948773195814 & 0.0747438659790698 \tabularnewline
140 & 0.929668714657178 & 0.140662570685644 & 0.0703312853428221 \tabularnewline
141 & 0.916680054215283 & 0.166639891569434 & 0.0833199457847168 \tabularnewline
142 & 0.89092154201998 & 0.218156915960039 & 0.10907845798002 \tabularnewline
143 & 0.875152014802254 & 0.249695970395491 & 0.124847985197746 \tabularnewline
144 & 0.852707745762478 & 0.294584508475044 & 0.147292254237522 \tabularnewline
145 & 0.802964108858689 & 0.394071782282622 & 0.197035891141311 \tabularnewline
146 & 0.798820389811593 & 0.402359220376815 & 0.201179610188407 \tabularnewline
147 & 0.966523622731592 & 0.0669527545368155 & 0.0334763772684077 \tabularnewline
148 & 0.999383454301844 & 0.00123309139631204 & 0.000616545698156022 \tabularnewline
149 & 0.99850940162842 & 0.00298119674315883 & 0.00149059837157942 \tabularnewline
150 & 0.996541385154869 & 0.00691722969026241 & 0.00345861484513121 \tabularnewline
151 & 0.992248522455063 & 0.0155029550898737 & 0.00775147754493685 \tabularnewline
152 & 0.983382775090319 & 0.0332344498193628 & 0.0166172249096814 \tabularnewline
153 & 0.966033113032575 & 0.0679337739348496 & 0.0339668869674248 \tabularnewline
154 & 0.934098864876245 & 0.13180227024751 & 0.065901135123755 \tabularnewline
155 & 0.92291868382685 & 0.1541626323463 & 0.07708131617315 \tabularnewline
156 & 0.998974416385835 & 0.00205116722832988 & 0.00102558361416494 \tabularnewline
157 & 0.995387598198177 & 0.0092248036036457 & 0.00461240180182285 \tabularnewline
158 & 0.981263960508805 & 0.0374720789823893 & 0.0187360394911947 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=153995&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]6[/C][C]0.385507162989951[/C][C]0.771014325979902[/C][C]0.614492837010049[/C][/ROW]
[ROW][C]7[/C][C]0.286720913864583[/C][C]0.573441827729167[/C][C]0.713279086135417[/C][/ROW]
[ROW][C]8[/C][C]0.174306514059195[/C][C]0.348613028118391[/C][C]0.825693485940805[/C][/ROW]
[ROW][C]9[/C][C]0.21767202975648[/C][C]0.43534405951296[/C][C]0.78232797024352[/C][/ROW]
[ROW][C]10[/C][C]0.240070279784101[/C][C]0.480140559568202[/C][C]0.7599297202159[/C][/ROW]
[ROW][C]11[/C][C]0.481888104840125[/C][C]0.96377620968025[/C][C]0.518111895159875[/C][/ROW]
[ROW][C]12[/C][C]0.393569312126799[/C][C]0.787138624253597[/C][C]0.606430687873201[/C][/ROW]
[ROW][C]13[/C][C]0.321581374278217[/C][C]0.643162748556435[/C][C]0.678418625721783[/C][/ROW]
[ROW][C]14[/C][C]0.300592992410943[/C][C]0.601185984821886[/C][C]0.699407007589057[/C][/ROW]
[ROW][C]15[/C][C]0.251592685023[/C][C]0.503185370045999[/C][C]0.748407314977[/C][/ROW]
[ROW][C]16[/C][C]0.1949896509603[/C][C]0.3899793019206[/C][C]0.8050103490397[/C][/ROW]
[ROW][C]17[/C][C]0.302985083594563[/C][C]0.605970167189126[/C][C]0.697014916405437[/C][/ROW]
[ROW][C]18[/C][C]0.235313901888302[/C][C]0.470627803776603[/C][C]0.764686098111698[/C][/ROW]
[ROW][C]19[/C][C]0.22518830961495[/C][C]0.450376619229901[/C][C]0.77481169038505[/C][/ROW]
[ROW][C]20[/C][C]0.223270263545204[/C][C]0.446540527090408[/C][C]0.776729736454796[/C][/ROW]
[ROW][C]21[/C][C]0.170724050120629[/C][C]0.341448100241259[/C][C]0.82927594987937[/C][/ROW]
[ROW][C]22[/C][C]0.437443621380728[/C][C]0.874887242761456[/C][C]0.562556378619272[/C][/ROW]
[ROW][C]23[/C][C]0.372488985387385[/C][C]0.74497797077477[/C][C]0.627511014612615[/C][/ROW]
[ROW][C]24[/C][C]0.36299065152227[/C][C]0.725981303044539[/C][C]0.63700934847773[/C][/ROW]
[ROW][C]25[/C][C]0.311956338177131[/C][C]0.623912676354262[/C][C]0.688043661822869[/C][/ROW]
[ROW][C]26[/C][C]0.258620971032017[/C][C]0.517241942064033[/C][C]0.741379028967983[/C][/ROW]
[ROW][C]27[/C][C]0.211035826873984[/C][C]0.422071653747969[/C][C]0.788964173126016[/C][/ROW]
[ROW][C]28[/C][C]0.184354633949988[/C][C]0.368709267899976[/C][C]0.815645366050012[/C][/ROW]
[ROW][C]29[/C][C]0.225272954867234[/C][C]0.450545909734468[/C][C]0.774727045132766[/C][/ROW]
[ROW][C]30[/C][C]0.192077597023246[/C][C]0.384155194046491[/C][C]0.807922402976754[/C][/ROW]
[ROW][C]31[/C][C]0.184291225625535[/C][C]0.36858245125107[/C][C]0.815708774374465[/C][/ROW]
[ROW][C]32[/C][C]0.147603221070042[/C][C]0.295206442140084[/C][C]0.852396778929958[/C][/ROW]
[ROW][C]33[/C][C]0.118557429915722[/C][C]0.237114859831445[/C][C]0.881442570084278[/C][/ROW]
[ROW][C]34[/C][C]0.0914479402208752[/C][C]0.18289588044175[/C][C]0.908552059779125[/C][/ROW]
[ROW][C]35[/C][C]0.0721489929501528[/C][C]0.144297985900306[/C][C]0.927851007049847[/C][/ROW]
[ROW][C]36[/C][C]0.0844366572243803[/C][C]0.168873314448761[/C][C]0.91556334277562[/C][/ROW]
[ROW][C]37[/C][C]0.0868768191738005[/C][C]0.173753638347601[/C][C]0.9131231808262[/C][/ROW]
[ROW][C]38[/C][C]0.0780191031385765[/C][C]0.156038206277153[/C][C]0.921980896861423[/C][/ROW]
[ROW][C]39[/C][C]0.0861089546529196[/C][C]0.172217909305839[/C][C]0.91389104534708[/C][/ROW]
[ROW][C]40[/C][C]0.0706999255350802[/C][C]0.14139985107016[/C][C]0.92930007446492[/C][/ROW]
[ROW][C]41[/C][C]0.0587698588041628[/C][C]0.117539717608326[/C][C]0.941230141195837[/C][/ROW]
[ROW][C]42[/C][C]0.0459027194162146[/C][C]0.0918054388324292[/C][C]0.954097280583785[/C][/ROW]
[ROW][C]43[/C][C]0.0347866617733249[/C][C]0.0695733235466499[/C][C]0.965213338226675[/C][/ROW]
[ROW][C]44[/C][C]0.028783796239358[/C][C]0.057567592478716[/C][C]0.971216203760642[/C][/ROW]
[ROW][C]45[/C][C]0.0225634386993654[/C][C]0.0451268773987308[/C][C]0.977436561300635[/C][/ROW]
[ROW][C]46[/C][C]0.0182854554543808[/C][C]0.0365709109087616[/C][C]0.98171454454562[/C][/ROW]
[ROW][C]47[/C][C]0.0168337822751769[/C][C]0.0336675645503538[/C][C]0.983166217724823[/C][/ROW]
[ROW][C]48[/C][C]0.0124391713873031[/C][C]0.0248783427746061[/C][C]0.987560828612697[/C][/ROW]
[ROW][C]49[/C][C]0.0141427763242843[/C][C]0.0282855526485687[/C][C]0.985857223675716[/C][/ROW]
[ROW][C]50[/C][C]0.0102234381843863[/C][C]0.0204468763687726[/C][C]0.989776561815614[/C][/ROW]
[ROW][C]51[/C][C]0.00724075729407229[/C][C]0.0144815145881446[/C][C]0.992759242705928[/C][/ROW]
[ROW][C]52[/C][C]0.00640560447235777[/C][C]0.0128112089447155[/C][C]0.993594395527642[/C][/ROW]
[ROW][C]53[/C][C]0.00484390297558729[/C][C]0.00968780595117457[/C][C]0.995156097024413[/C][/ROW]
[ROW][C]54[/C][C]0.00354438611678526[/C][C]0.00708877223357051[/C][C]0.996455613883215[/C][/ROW]
[ROW][C]55[/C][C]0.00267278497442485[/C][C]0.0053455699488497[/C][C]0.997327215025575[/C][/ROW]
[ROW][C]56[/C][C]0.00186152105894716[/C][C]0.00372304211789431[/C][C]0.998138478941053[/C][/ROW]
[ROW][C]57[/C][C]0.00257095267591834[/C][C]0.00514190535183669[/C][C]0.997429047324082[/C][/ROW]
[ROW][C]58[/C][C]0.00303421713521174[/C][C]0.00606843427042347[/C][C]0.996965782864788[/C][/ROW]
[ROW][C]59[/C][C]0.00214348412180112[/C][C]0.00428696824360225[/C][C]0.997856515878199[/C][/ROW]
[ROW][C]60[/C][C]0.00152861881253966[/C][C]0.00305723762507931[/C][C]0.99847138118746[/C][/ROW]
[ROW][C]61[/C][C]0.00116874863965448[/C][C]0.00233749727930897[/C][C]0.998831251360346[/C][/ROW]
[ROW][C]62[/C][C]0.00463383149251085[/C][C]0.0092676629850217[/C][C]0.99536616850749[/C][/ROW]
[ROW][C]63[/C][C]0.0057090679060375[/C][C]0.011418135812075[/C][C]0.994290932093962[/C][/ROW]
[ROW][C]64[/C][C]0.00406642393142725[/C][C]0.0081328478628545[/C][C]0.995933576068573[/C][/ROW]
[ROW][C]65[/C][C]0.00321007351622477[/C][C]0.00642014703244954[/C][C]0.996789926483775[/C][/ROW]
[ROW][C]66[/C][C]0.00254529432515834[/C][C]0.00509058865031669[/C][C]0.997454705674842[/C][/ROW]
[ROW][C]67[/C][C]0.00402654049702945[/C][C]0.0080530809940589[/C][C]0.99597345950297[/C][/ROW]
[ROW][C]68[/C][C]0.0030743193712801[/C][C]0.0061486387425602[/C][C]0.99692568062872[/C][/ROW]
[ROW][C]69[/C][C]0.0026602826134993[/C][C]0.0053205652269986[/C][C]0.9973397173865[/C][/ROW]
[ROW][C]70[/C][C]0.00282869563160726[/C][C]0.00565739126321452[/C][C]0.997171304368393[/C][/ROW]
[ROW][C]71[/C][C]0.00231809685440838[/C][C]0.00463619370881677[/C][C]0.997681903145592[/C][/ROW]
[ROW][C]72[/C][C]0.00218750824351526[/C][C]0.00437501648703052[/C][C]0.997812491756485[/C][/ROW]
[ROW][C]73[/C][C]0.00164972527616762[/C][C]0.00329945055233524[/C][C]0.998350274723832[/C][/ROW]
[ROW][C]74[/C][C]0.00115704632770057[/C][C]0.00231409265540114[/C][C]0.9988429536723[/C][/ROW]
[ROW][C]75[/C][C]0.000790941020950743[/C][C]0.00158188204190149[/C][C]0.99920905897905[/C][/ROW]
[ROW][C]76[/C][C]0.000587680674842556[/C][C]0.00117536134968511[/C][C]0.999412319325157[/C][/ROW]
[ROW][C]77[/C][C]0.000399214586478674[/C][C]0.000798429172957347[/C][C]0.999600785413521[/C][/ROW]
[ROW][C]78[/C][C]0.150936415587346[/C][C]0.301872831174692[/C][C]0.849063584412654[/C][/ROW]
[ROW][C]79[/C][C]0.13192369236753[/C][C]0.263847384735061[/C][C]0.86807630763247[/C][/ROW]
[ROW][C]80[/C][C]0.115146591955524[/C][C]0.230293183911048[/C][C]0.884853408044476[/C][/ROW]
[ROW][C]81[/C][C]0.100937272771718[/C][C]0.201874545543436[/C][C]0.899062727228282[/C][/ROW]
[ROW][C]82[/C][C]0.082963466228912[/C][C]0.165926932457824[/C][C]0.917036533771088[/C][/ROW]
[ROW][C]83[/C][C]0.0811817673526687[/C][C]0.162363534705337[/C][C]0.918818232647331[/C][/ROW]
[ROW][C]84[/C][C]0.06780466383755[/C][C]0.1356093276751[/C][C]0.93219533616245[/C][/ROW]
[ROW][C]85[/C][C]0.0589354690653551[/C][C]0.11787093813071[/C][C]0.941064530934645[/C][/ROW]
[ROW][C]86[/C][C]0.082747867776088[/C][C]0.165495735552176[/C][C]0.917252132223912[/C][/ROW]
[ROW][C]87[/C][C]0.0902801066570361[/C][C]0.180560213314072[/C][C]0.909719893342964[/C][/ROW]
[ROW][C]88[/C][C]0.0808126107354504[/C][C]0.161625221470901[/C][C]0.91918738926455[/C][/ROW]
[ROW][C]89[/C][C]0.122614985947016[/C][C]0.245229971894032[/C][C]0.877385014052984[/C][/ROW]
[ROW][C]90[/C][C]0.144147906742663[/C][C]0.288295813485326[/C][C]0.855852093257337[/C][/ROW]
[ROW][C]91[/C][C]0.184199174418973[/C][C]0.368398348837947[/C][C]0.815800825581027[/C][/ROW]
[ROW][C]92[/C][C]0.162956991809222[/C][C]0.325913983618443[/C][C]0.837043008190778[/C][/ROW]
[ROW][C]93[/C][C]0.142560830813225[/C][C]0.285121661626451[/C][C]0.857439169186775[/C][/ROW]
[ROW][C]94[/C][C]0.160502152377592[/C][C]0.321004304755184[/C][C]0.839497847622408[/C][/ROW]
[ROW][C]95[/C][C]0.161504429229731[/C][C]0.323008858459462[/C][C]0.838495570770269[/C][/ROW]
[ROW][C]96[/C][C]0.231977726705148[/C][C]0.463955453410296[/C][C]0.768022273294852[/C][/ROW]
[ROW][C]97[/C][C]0.265499896983782[/C][C]0.530999793967564[/C][C]0.734500103016218[/C][/ROW]
[ROW][C]98[/C][C]0.404372108788732[/C][C]0.808744217577464[/C][C]0.595627891211268[/C][/ROW]
[ROW][C]99[/C][C]0.37553253797802[/C][C]0.75106507595604[/C][C]0.62446746202198[/C][/ROW]
[ROW][C]100[/C][C]0.476238737926322[/C][C]0.952477475852644[/C][C]0.523761262073678[/C][/ROW]
[ROW][C]101[/C][C]0.443802571611627[/C][C]0.887605143223254[/C][C]0.556197428388373[/C][/ROW]
[ROW][C]102[/C][C]0.442704156705488[/C][C]0.885408313410975[/C][C]0.557295843294512[/C][/ROW]
[ROW][C]103[/C][C]0.488192939512373[/C][C]0.976385879024745[/C][C]0.511807060487627[/C][/ROW]
[ROW][C]104[/C][C]0.441593704107185[/C][C]0.883187408214369[/C][C]0.558406295892815[/C][/ROW]
[ROW][C]105[/C][C]0.422878698331872[/C][C]0.845757396663744[/C][C]0.577121301668128[/C][/ROW]
[ROW][C]106[/C][C]0.378699822054834[/C][C]0.757399644109668[/C][C]0.621300177945166[/C][/ROW]
[ROW][C]107[/C][C]0.337640256846718[/C][C]0.675280513693436[/C][C]0.662359743153282[/C][/ROW]
[ROW][C]108[/C][C]0.302125484163487[/C][C]0.604250968326974[/C][C]0.697874515836513[/C][/ROW]
[ROW][C]109[/C][C]0.942431537124026[/C][C]0.115136925751947[/C][C]0.0575684628759735[/C][/ROW]
[ROW][C]110[/C][C]0.97377176694191[/C][C]0.0524564661161795[/C][C]0.0262282330580898[/C][/ROW]
[ROW][C]111[/C][C]0.970497581433296[/C][C]0.0590048371334074[/C][C]0.0295024185667037[/C][/ROW]
[ROW][C]112[/C][C]0.961640659206613[/C][C]0.0767186815867732[/C][C]0.0383593407933866[/C][/ROW]
[ROW][C]113[/C][C]0.952888905291464[/C][C]0.0942221894170719[/C][C]0.0471110947085359[/C][/ROW]
[ROW][C]114[/C][C]0.94355473425261[/C][C]0.112890531494781[/C][C]0.0564452657473907[/C][/ROW]
[ROW][C]115[/C][C]0.929105100878551[/C][C]0.141789798242898[/C][C]0.0708948991214488[/C][/ROW]
[ROW][C]116[/C][C]0.952974311373724[/C][C]0.094051377252552[/C][C]0.047025688626276[/C][/ROW]
[ROW][C]117[/C][C]0.942566525694712[/C][C]0.114866948610577[/C][C]0.0574334743052884[/C][/ROW]
[ROW][C]118[/C][C]0.928391693310226[/C][C]0.143216613379547[/C][C]0.0716083066897736[/C][/ROW]
[ROW][C]119[/C][C]0.913849488645643[/C][C]0.172301022708714[/C][C]0.086150511354357[/C][/ROW]
[ROW][C]120[/C][C]0.893247053807354[/C][C]0.213505892385291[/C][C]0.106752946192646[/C][/ROW]
[ROW][C]121[/C][C]0.886957434979959[/C][C]0.226085130040083[/C][C]0.113042565020041[/C][/ROW]
[ROW][C]122[/C][C]0.866021979157057[/C][C]0.267956041685887[/C][C]0.133978020842943[/C][/ROW]
[ROW][C]123[/C][C]0.839029106305985[/C][C]0.32194178738803[/C][C]0.160970893694015[/C][/ROW]
[ROW][C]124[/C][C]0.874276414191796[/C][C]0.251447171616408[/C][C]0.125723585808204[/C][/ROW]
[ROW][C]125[/C][C]0.84991586867859[/C][C]0.300168262642818[/C][C]0.150084131321409[/C][/ROW]
[ROW][C]126[/C][C]0.816749113448626[/C][C]0.366501773102747[/C][C]0.183250886551374[/C][/ROW]
[ROW][C]127[/C][C]0.803648529458635[/C][C]0.392702941082731[/C][C]0.196351470541365[/C][/ROW]
[ROW][C]128[/C][C]0.773728734180254[/C][C]0.452542531639492[/C][C]0.226271265819746[/C][/ROW]
[ROW][C]129[/C][C]0.737967191972312[/C][C]0.524065616055377[/C][C]0.262032808027688[/C][/ROW]
[ROW][C]130[/C][C]0.696460154413325[/C][C]0.607079691173351[/C][C]0.303539845586675[/C][/ROW]
[ROW][C]131[/C][C]0.941140401467265[/C][C]0.11771919706547[/C][C]0.0588595985327351[/C][/ROW]
[ROW][C]132[/C][C]0.93469847021179[/C][C]0.130603059576418[/C][C]0.065301529788209[/C][/ROW]
[ROW][C]133[/C][C]0.915004330172024[/C][C]0.169991339655953[/C][C]0.0849956698279763[/C][/ROW]
[ROW][C]134[/C][C]0.890952078786642[/C][C]0.218095842426717[/C][C]0.109047921213359[/C][/ROW]
[ROW][C]135[/C][C]0.863961965615742[/C][C]0.272076068768516[/C][C]0.136038034384258[/C][/ROW]
[ROW][C]136[/C][C]0.94977550245189[/C][C]0.10044899509622[/C][C]0.0502244975481098[/C][/ROW]
[ROW][C]137[/C][C]0.949672270249538[/C][C]0.100655459500924[/C][C]0.0503277297504622[/C][/ROW]
[ROW][C]138[/C][C]0.937162562967888[/C][C]0.125674874064223[/C][C]0.0628374370321117[/C][/ROW]
[ROW][C]139[/C][C]0.92525613402093[/C][C]0.14948773195814[/C][C]0.0747438659790698[/C][/ROW]
[ROW][C]140[/C][C]0.929668714657178[/C][C]0.140662570685644[/C][C]0.0703312853428221[/C][/ROW]
[ROW][C]141[/C][C]0.916680054215283[/C][C]0.166639891569434[/C][C]0.0833199457847168[/C][/ROW]
[ROW][C]142[/C][C]0.89092154201998[/C][C]0.218156915960039[/C][C]0.10907845798002[/C][/ROW]
[ROW][C]143[/C][C]0.875152014802254[/C][C]0.249695970395491[/C][C]0.124847985197746[/C][/ROW]
[ROW][C]144[/C][C]0.852707745762478[/C][C]0.294584508475044[/C][C]0.147292254237522[/C][/ROW]
[ROW][C]145[/C][C]0.802964108858689[/C][C]0.394071782282622[/C][C]0.197035891141311[/C][/ROW]
[ROW][C]146[/C][C]0.798820389811593[/C][C]0.402359220376815[/C][C]0.201179610188407[/C][/ROW]
[ROW][C]147[/C][C]0.966523622731592[/C][C]0.0669527545368155[/C][C]0.0334763772684077[/C][/ROW]
[ROW][C]148[/C][C]0.999383454301844[/C][C]0.00123309139631204[/C][C]0.000616545698156022[/C][/ROW]
[ROW][C]149[/C][C]0.99850940162842[/C][C]0.00298119674315883[/C][C]0.00149059837157942[/C][/ROW]
[ROW][C]150[/C][C]0.996541385154869[/C][C]0.00691722969026241[/C][C]0.00345861484513121[/C][/ROW]
[ROW][C]151[/C][C]0.992248522455063[/C][C]0.0155029550898737[/C][C]0.00775147754493685[/C][/ROW]
[ROW][C]152[/C][C]0.983382775090319[/C][C]0.0332344498193628[/C][C]0.0166172249096814[/C][/ROW]
[ROW][C]153[/C][C]0.966033113032575[/C][C]0.0679337739348496[/C][C]0.0339668869674248[/C][/ROW]
[ROW][C]154[/C][C]0.934098864876245[/C][C]0.13180227024751[/C][C]0.065901135123755[/C][/ROW]
[ROW][C]155[/C][C]0.92291868382685[/C][C]0.1541626323463[/C][C]0.07708131617315[/C][/ROW]
[ROW][C]156[/C][C]0.998974416385835[/C][C]0.00205116722832988[/C][C]0.00102558361416494[/C][/ROW]
[ROW][C]157[/C][C]0.995387598198177[/C][C]0.0092248036036457[/C][C]0.00461240180182285[/C][/ROW]
[ROW][C]158[/C][C]0.981263960508805[/C][C]0.0374720789823893[/C][C]0.0187360394911947[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=153995&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=153995&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
60.3855071629899510.7710143259799020.614492837010049
70.2867209138645830.5734418277291670.713279086135417
80.1743065140591950.3486130281183910.825693485940805
90.217672029756480.435344059512960.78232797024352
100.2400702797841010.4801405595682020.7599297202159
110.4818881048401250.963776209680250.518111895159875
120.3935693121267990.7871386242535970.606430687873201
130.3215813742782170.6431627485564350.678418625721783
140.3005929924109430.6011859848218860.699407007589057
150.2515926850230.5031853700459990.748407314977
160.19498965096030.38997930192060.8050103490397
170.3029850835945630.6059701671891260.697014916405437
180.2353139018883020.4706278037766030.764686098111698
190.225188309614950.4503766192299010.77481169038505
200.2232702635452040.4465405270904080.776729736454796
210.1707240501206290.3414481002412590.82927594987937
220.4374436213807280.8748872427614560.562556378619272
230.3724889853873850.744977970774770.627511014612615
240.362990651522270.7259813030445390.63700934847773
250.3119563381771310.6239126763542620.688043661822869
260.2586209710320170.5172419420640330.741379028967983
270.2110358268739840.4220716537479690.788964173126016
280.1843546339499880.3687092678999760.815645366050012
290.2252729548672340.4505459097344680.774727045132766
300.1920775970232460.3841551940464910.807922402976754
310.1842912256255350.368582451251070.815708774374465
320.1476032210700420.2952064421400840.852396778929958
330.1185574299157220.2371148598314450.881442570084278
340.09144794022087520.182895880441750.908552059779125
350.07214899295015280.1442979859003060.927851007049847
360.08443665722438030.1688733144487610.91556334277562
370.08687681917380050.1737536383476010.9131231808262
380.07801910313857650.1560382062771530.921980896861423
390.08610895465291960.1722179093058390.91389104534708
400.07069992553508020.141399851070160.92930007446492
410.05876985880416280.1175397176083260.941230141195837
420.04590271941621460.09180543883242920.954097280583785
430.03478666177332490.06957332354664990.965213338226675
440.0287837962393580.0575675924787160.971216203760642
450.02256343869936540.04512687739873080.977436561300635
460.01828545545438080.03657091090876160.98171454454562
470.01683378227517690.03366756455035380.983166217724823
480.01243917138730310.02487834277460610.987560828612697
490.01414277632428430.02828555264856870.985857223675716
500.01022343818438630.02044687636877260.989776561815614
510.007240757294072290.01448151458814460.992759242705928
520.006405604472357770.01281120894471550.993594395527642
530.004843902975587290.009687805951174570.995156097024413
540.003544386116785260.007088772233570510.996455613883215
550.002672784974424850.00534556994884970.997327215025575
560.001861521058947160.003723042117894310.998138478941053
570.002570952675918340.005141905351836690.997429047324082
580.003034217135211740.006068434270423470.996965782864788
590.002143484121801120.004286968243602250.997856515878199
600.001528618812539660.003057237625079310.99847138118746
610.001168748639654480.002337497279308970.998831251360346
620.004633831492510850.00926766298502170.99536616850749
630.00570906790603750.0114181358120750.994290932093962
640.004066423931427250.00813284786285450.995933576068573
650.003210073516224770.006420147032449540.996789926483775
660.002545294325158340.005090588650316690.997454705674842
670.004026540497029450.00805308099405890.99597345950297
680.00307431937128010.00614863874256020.99692568062872
690.00266028261349930.00532056522699860.9973397173865
700.002828695631607260.005657391263214520.997171304368393
710.002318096854408380.004636193708816770.997681903145592
720.002187508243515260.004375016487030520.997812491756485
730.001649725276167620.003299450552335240.998350274723832
740.001157046327700570.002314092655401140.9988429536723
750.0007909410209507430.001581882041901490.99920905897905
760.0005876806748425560.001175361349685110.999412319325157
770.0003992145864786740.0007984291729573470.999600785413521
780.1509364155873460.3018728311746920.849063584412654
790.131923692367530.2638473847350610.86807630763247
800.1151465919555240.2302931839110480.884853408044476
810.1009372727717180.2018745455434360.899062727228282
820.0829634662289120.1659269324578240.917036533771088
830.08118176735266870.1623635347053370.918818232647331
840.067804663837550.13560932767510.93219533616245
850.05893546906535510.117870938130710.941064530934645
860.0827478677760880.1654957355521760.917252132223912
870.09028010665703610.1805602133140720.909719893342964
880.08081261073545040.1616252214709010.91918738926455
890.1226149859470160.2452299718940320.877385014052984
900.1441479067426630.2882958134853260.855852093257337
910.1841991744189730.3683983488379470.815800825581027
920.1629569918092220.3259139836184430.837043008190778
930.1425608308132250.2851216616264510.857439169186775
940.1605021523775920.3210043047551840.839497847622408
950.1615044292297310.3230088584594620.838495570770269
960.2319777267051480.4639554534102960.768022273294852
970.2654998969837820.5309997939675640.734500103016218
980.4043721087887320.8087442175774640.595627891211268
990.375532537978020.751065075956040.62446746202198
1000.4762387379263220.9524774758526440.523761262073678
1010.4438025716116270.8876051432232540.556197428388373
1020.4427041567054880.8854083134109750.557295843294512
1030.4881929395123730.9763858790247450.511807060487627
1040.4415937041071850.8831874082143690.558406295892815
1050.4228786983318720.8457573966637440.577121301668128
1060.3786998220548340.7573996441096680.621300177945166
1070.3376402568467180.6752805136934360.662359743153282
1080.3021254841634870.6042509683269740.697874515836513
1090.9424315371240260.1151369257519470.0575684628759735
1100.973771766941910.05245646611617950.0262282330580898
1110.9704975814332960.05900483713340740.0295024185667037
1120.9616406592066130.07671868158677320.0383593407933866
1130.9528889052914640.09422218941707190.0471110947085359
1140.943554734252610.1128905314947810.0564452657473907
1150.9291051008785510.1417897982428980.0708948991214488
1160.9529743113737240.0940513772525520.047025688626276
1170.9425665256947120.1148669486105770.0574334743052884
1180.9283916933102260.1432166133795470.0716083066897736
1190.9138494886456430.1723010227087140.086150511354357
1200.8932470538073540.2135058923852910.106752946192646
1210.8869574349799590.2260851300400830.113042565020041
1220.8660219791570570.2679560416858870.133978020842943
1230.8390291063059850.321941787388030.160970893694015
1240.8742764141917960.2514471716164080.125723585808204
1250.849915868678590.3001682626428180.150084131321409
1260.8167491134486260.3665017731027470.183250886551374
1270.8036485294586350.3927029410827310.196351470541365
1280.7737287341802540.4525425316394920.226271265819746
1290.7379671919723120.5240656160553770.262032808027688
1300.6964601544133250.6070796911733510.303539845586675
1310.9411404014672650.117719197065470.0588595985327351
1320.934698470211790.1306030595764180.065301529788209
1330.9150043301720240.1699913396559530.0849956698279763
1340.8909520787866420.2180958424267170.109047921213359
1350.8639619656157420.2720760687685160.136038034384258
1360.949775502451890.100448995096220.0502244975481098
1370.9496722702495380.1006554595009240.0503277297504622
1380.9371625629678880.1256748740642230.0628374370321117
1390.925256134020930.149487731958140.0747438659790698
1400.9296687146571780.1406625706856440.0703312853428221
1410.9166800542152830.1666398915694340.0833199457847168
1420.890921542019980.2181569159600390.10907845798002
1430.8751520148022540.2496959703954910.124847985197746
1440.8527077457624780.2945845084750440.147292254237522
1450.8029641088586890.3940717822826220.197035891141311
1460.7988203898115930.4023592203768150.201179610188407
1470.9665236227315920.06695275453681550.0334763772684077
1480.9993834543018440.001233091396312040.000616545698156022
1490.998509401628420.002981196743158830.00149059837157942
1500.9965413851548690.006917229690262410.00345861484513121
1510.9922485224550630.01550295508987370.00775147754493685
1520.9833827750903190.03323444981936280.0166172249096814
1530.9660331130325750.06793377393484960.0339668869674248
1540.9340988648762450.131802270247510.065901135123755
1550.922918683826850.15416263234630.07708131617315
1560.9989744163858350.002051167228329880.00102558361416494
1570.9953875981981770.00922480360364570.00461240180182285
1580.9812639605088050.03747207898238930.0187360394911947







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level290.189542483660131NOK
5% type I error level410.26797385620915NOK
10% type I error level510.333333333333333NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 29 & 0.189542483660131 & NOK \tabularnewline
5% type I error level & 41 & 0.26797385620915 & NOK \tabularnewline
10% type I error level & 51 & 0.333333333333333 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=153995&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]29[/C][C]0.189542483660131[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]41[/C][C]0.26797385620915[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]51[/C][C]0.333333333333333[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=153995&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=153995&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level290.189542483660131NOK
5% type I error level410.26797385620915NOK
10% type I error level510.333333333333333NOK



Parameters (Session):
par1 = 3 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 3 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}