Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_regression_trees1.wasp
Title produced by softwareRecursive Partitioning (Regression Trees)
Date of computationTue, 13 Dec 2011 09:20:43 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Dec/13/t1323786082u3emny27t140stt.htm/, Retrieved Sun, 10 Nov 2024 19:44:57 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=154401, Retrieved Sun, 10 Nov 2024 19:44:57 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact145
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Recursive Partitioning (Regression Trees)] [] [2010-12-05 18:59:57] [b98453cac15ba1066b407e146608df68]
-   PD  [Recursive Partitioning (Regression Trees)] [Workshop 10 Recur...] [2010-12-14 15:48:47] [a9e130f95bad0a0597234e75c6380c5a]
- R         [Recursive Partitioning (Regression Trees)] [WS 10 - Recursive...] [2011-12-13 14:20:43] [a30255a61f2fa55603799e7bfe8f38bd] [Current]
- R           [Recursive Partitioning (Regression Trees)] [ws10 deel5] [2012-12-10 15:25:14] [d31c851fa7fbee45412c0a7bcdad10e5]
Feedback Forum

Post a new message
Dataseries X:
0 24 14 11 12 24 26
0 25 11 7 8 25 23
0 17 6 17 8 30 25
1 18 12 10 8 19 23
1 18 8 12 9 22 19
1 16 10 12 7 22 29
1 20 10 11 4 25 25
1 16 11 11 11 23 21
1 18 16 12 7 17 22
1 17 11 13 7 21 25
0 23 13 14 12 19 24
0 30 12 16 10 19 18
1 23 8 11 10 15 22
1 18 12 10 8 16 15
1 15 11 11 8 23 22
1 12 4 15 4 27 28
0 21 9 9 9 22 20
1 15 8 11 8 14 12
1 20 8 17 7 22 24
0 31 14 17 11 23 20
0 27 15 11 9 23 21
1 34 16 18 11 21 20
1 21 9 14 13 19 21
1 31 14 10 8 18 23
1 19 11 11 8 20 28
0 16 8 15 9 23 24
1 20 9 15 6 25 24
1 21 9 13 9 19 24
1 22 9 16 9 24 23
1 17 9 13 6 22 23
1 24 10 9 6 25 29
0 25 16 18 16 26 24
0 26 11 18 5 29 18
1 25 8 12 7 32 25
1 17 9 17 9 25 21
1 32 16 9 6 29 26
1 33 11 9 6 28 22
1 13 16 12 5 17 22
1 32 12 18 12 28 22
1 25 12 12 7 29 23
1 29 14 18 10 26 30
1 22 9 14 9 25 23
1 18 10 15 8 14 17
1 17 9 16 5 25 23
0 20 10 10 8 26 23
1 15 12 11 8 20 25
1 20 14 14 10 18 24
1 33 14 9 6 32 24
0 29 10 12 8 25 23
1 23 14 17 7 25 21
0 26 16 5 4 23 24
1 18 9 12 8 21 24
0 20 10 12 8 20 28
1 11 6 6 4 15 16
1 28 8 24 20 30 20
1 26 13 12 8 24 29
0 22 10 12 8 26 27
1 17 8 14 6 24 22
0 12 7 7 4 22 28
1 14 15 13 8 14 16
1 17 9 12 9 24 25
1 21 10 13 6 24 24
1 19 12 14 7 24 28
1 18 13 8 9 24 24
0 10 10 11 5 19 23
0 29 11 9 5 31 30
1 31 8 11 8 22 24
0 19 9 13 8 27 21
1 9 13 10 6 19 25
1 20 11 11 8 25 25
1 28 8 12 7 20 22
0 19 9 9 7 21 23
0 30 9 15 9 27 26
0 29 15 18 11 23 23
0 26 9 15 6 25 25
0 23 10 12 8 20 21
1 13 14 13 6 21 25
1 21 12 14 9 22 24
1 19 12 10 8 23 29
1 28 11 13 6 25 22
1 23 14 13 10 25 27
1 18 6 11 8 17 26
0 21 12 13 8 19 22
1 20 8 16 10 25 24
1 23 14 8 5 19 27
1 21 11 16 7 20 24
1 21 10 11 5 26 24
1 15 14 9 8 23 29
1 28 12 16 14 27 22
1 19 10 12 7 17 21
1 26 14 14 8 17 24
1 10 5 8 6 19 24
0 16 11 9 5 17 23
1 22 10 15 6 22 20
1 19 9 11 10 21 27
1 31 10 21 12 32 26
0 31 16 14 9 21 25
1 29 13 18 12 21 21
0 19 9 12 7 18 21
1 22 10 13 8 18 19
1 23 10 15 10 23 21
0 15 7 12 6 19 21
0 20 9 19 10 20 16
1 18 8 15 10 21 22
1 23 14 11 10 20 29
1 25 14 11 5 17 15
1 21 8 10 7 18 17
1 24 9 13 10 19 15
1 25 14 15 11 22 21
1 17 14 12 6 15 21
1 13 8 12 7 14 19
1 28 8 16 12 18 24
0 21 8 9 11 24 20
1 25 7 18 11 35 17
0 9 6 8 11 29 23
1 16 8 13 5 21 24
1 19 6 17 8 25 14
1 17 11 9 6 20 19
1 25 14 15 9 22 24
1 20 11 8 4 13 13
1 29 11 7 4 26 22
1 14 11 12 7 17 16
1 22 14 14 11 25 19
1 15 8 6 6 20 25
0 19 20 8 7 19 25
1 20 11 17 8 21 23
0 15 8 10 4 22 24
1 20 11 11 8 24 26
1 18 10 14 9 21 26
1 33 14 11 8 26 25
1 22 11 13 11 24 18
1 16 9 12 8 16 21
1 17 9 11 5 23 26
1 16 8 9 4 18 23
0 21 10 12 8 16 23
0 26 13 20 10 26 22
1 18 13 12 6 19 20
1 18 12 13 9 21 13
1 17 8 12 9 21 24
1 22 13 12 13 22 15
1 30 14 9 9 23 14
0 30 12 15 10 29 22
1 24 14 24 20 21 10
1 21 15 7 5 21 24
1 21 13 17 11 23 22
1 29 16 11 6 27 24
1 31 9 17 9 25 19
1 20 9 11 7 21 20
0 16 9 12 9 10 13
0 22 8 14 10 20 20
1 20 7 11 9 26 22
1 28 16 16 8 24 24
1 38 11 21 7 29 29
0 22 9 14 6 19 12
1 20 11 20 13 24 20
0 17 9 13 6 19 21
1 28 14 11 8 24 24
1 22 13 15 10 22 22
0 31 16 19 16 17 20




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R Server'George Udny Yule' @ yule.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 8 seconds \tabularnewline
R Server & 'George Udny Yule' @ yule.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=154401&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]8 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ yule.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=154401&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=154401&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R Server'George Udny Yule' @ yule.wessa.net







Goodness of Fit
Correlation0.6299
R-squared0.3968
RMSE4.4307

\begin{tabular}{lllllllll}
\hline
Goodness of Fit \tabularnewline
Correlation & 0.6299 \tabularnewline
R-squared & 0.3968 \tabularnewline
RMSE & 4.4307 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=154401&T=1

[TABLE]
[ROW][C]Goodness of Fit[/C][/ROW]
[ROW][C]Correlation[/C][C]0.6299[/C][/ROW]
[ROW][C]R-squared[/C][C]0.3968[/C][/ROW]
[ROW][C]RMSE[/C][C]4.4307[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=154401&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=154401&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goodness of Fit
Correlation0.6299
R-squared0.3968
RMSE4.4307







Actuals, Predictions, and Residuals
#ActualsForecastsResiduals
12425.0714285714286-1.07142857142857
22520.42307692307694.57692307692308
31721.4615384615385-4.46153846153846
41820.4230769230769-2.42307692307692
51820.4230769230769-2.42307692307692
61618.24-2.24
72018.241.76
81620.4230769230769-4.42307692307692
91818.24-0.239999999999998
101718.24-1.24
112325.0714285714286-2.07142857142857
123020.42307692307699.57692307692308
132320.42307692307692.57692307692308
141820.4230769230769-2.42307692307692
151520.4230769230769-5.42307692307692
161221.4615384615385-9.46153846153846
172120.42307692307690.576923076923077
181520.4230769230769-5.42307692307692
192018.241.76
203125.07142857142865.92857142857143
212725.07142857142861.92857142857143
223425.07142857142868.92857142857143
232120.42307692307690.576923076923077
243125.07142857142865.92857142857143
251920.4230769230769-1.42307692307692
261620.4230769230769-4.42307692307692
272018.241.76
282120.42307692307690.576923076923077
292220.42307692307691.57692307692308
301718.24-1.24
312418.245.76
322529.8125-4.8125
332629.8125-3.8125
342521.46153846153853.53846153846154
351720.4230769230769-3.42307692307692
363229.81252.1875
373329.81253.1875
381318.24-5.24
393229.81252.1875
402529.8125-4.8125
412929.8125-0.8125
422220.42307692307691.57692307692308
431820.4230769230769-2.42307692307692
441718.24-1.24
452021.4615384615385-1.46153846153846
461520.4230769230769-5.42307692307692
472025.0714285714286-5.07142857142857
483329.81253.1875
492920.42307692307698.57692307692308
502318.244.76
512618.247.76
521820.4230769230769-2.42307692307692
532020.4230769230769-0.423076923076923
541118.24-7.24
552821.46153846153856.53846153846154
562625.07142857142860.928571428571427
572221.46153846153850.53846153846154
581718.24-1.24
591218.24-6.24
601425.0714285714286-11.0714285714286
611720.4230769230769-3.42307692307692
622118.242.76
631918.240.760000000000002
641825.0714285714286-7.07142857142857
651018.24-8.24
662929.8125-0.8125
673120.423076923076910.5769230769231
681921.4615384615385-2.46153846153846
69918.24-9.24
702020.4230769230769-0.423076923076923
712818.249.76
721918.240.760000000000002
733021.46153846153858.53846153846154
742925.07142857142863.92857142857143
752618.247.76
762320.42307692307692.57692307692308
771318.24-5.24
782120.42307692307690.576923076923077
791920.4230769230769-1.42307692307692
802818.249.76
812325.0714285714286-2.07142857142857
821820.4230769230769-2.42307692307692
832120.42307692307690.576923076923077
842020.4230769230769-0.423076923076923
852318.244.76
862118.242.76
872121.4615384615385-0.46153846153846
881525.0714285714286-10.0714285714286
892829.8125-1.8125
901918.240.760000000000002
912625.07142857142860.928571428571427
921018.24-8.24
931618.24-2.24
942218.243.76
951920.4230769230769-1.42307692307692
963121.46153846153859.53846153846154
973125.07142857142865.92857142857143
982925.07142857142863.92857142857143
991918.240.760000000000002
1002220.42307692307691.57692307692308
1012320.42307692307692.57692307692308
1021518.24-3.24
1032020.4230769230769-0.423076923076923
1041820.4230769230769-2.42307692307692
1052325.0714285714286-2.07142857142857
1062518.246.76
1072118.242.76
1082420.42307692307693.57692307692308
1092525.0714285714286-0.071428571428573
1101718.24-1.24
1111318.24-5.24
1122820.42307692307697.57692307692308
1132120.42307692307690.576923076923077
1142521.46153846153853.53846153846154
115921.4615384615385-12.4615384615385
1161618.24-2.24
1171920.4230769230769-1.42307692307692
1181718.24-1.24
1192525.0714285714286-0.071428571428573
1202018.241.76
1212929.8125-0.8125
1221418.24-4.24
1232225.0714285714286-3.07142857142857
1241518.24-3.24
1251918.240.760000000000002
1262020.4230769230769-0.423076923076923
1271518.24-3.24
1282020.4230769230769-0.423076923076923
1291820.4230769230769-2.42307692307692
1303329.81253.1875
1312220.42307692307691.57692307692308
1321620.4230769230769-4.42307692307692
1331718.24-1.24
1341618.24-2.24
1352120.42307692307690.576923076923077
1362629.8125-3.8125
1371818.24-0.239999999999998
1381820.4230769230769-2.42307692307692
1391720.4230769230769-3.42307692307692
1402225.0714285714286-3.07142857142857
1413025.07142857142864.92857142857143
1423029.81250.1875
1432425.0714285714286-1.07142857142857
1442118.242.76
1452125.0714285714286-4.07142857142857
1462929.8125-0.8125
1473120.423076923076910.5769230769231
1482018.241.76
1491620.4230769230769-4.42307692307692
1502220.42307692307691.57692307692308
1512021.4615384615385-1.46153846153846
1522825.07142857142862.92857142857143
1533829.81258.1875
1542218.243.76
1552020.4230769230769-0.423076923076923
1561718.24-1.24
1572825.07142857142862.92857142857143
1582225.0714285714286-3.07142857142857
1593125.07142857142865.92857142857143

\begin{tabular}{lllllllll}
\hline
Actuals, Predictions, and Residuals \tabularnewline
# & Actuals & Forecasts & Residuals \tabularnewline
1 & 24 & 25.0714285714286 & -1.07142857142857 \tabularnewline
2 & 25 & 20.4230769230769 & 4.57692307692308 \tabularnewline
3 & 17 & 21.4615384615385 & -4.46153846153846 \tabularnewline
4 & 18 & 20.4230769230769 & -2.42307692307692 \tabularnewline
5 & 18 & 20.4230769230769 & -2.42307692307692 \tabularnewline
6 & 16 & 18.24 & -2.24 \tabularnewline
7 & 20 & 18.24 & 1.76 \tabularnewline
8 & 16 & 20.4230769230769 & -4.42307692307692 \tabularnewline
9 & 18 & 18.24 & -0.239999999999998 \tabularnewline
10 & 17 & 18.24 & -1.24 \tabularnewline
11 & 23 & 25.0714285714286 & -2.07142857142857 \tabularnewline
12 & 30 & 20.4230769230769 & 9.57692307692308 \tabularnewline
13 & 23 & 20.4230769230769 & 2.57692307692308 \tabularnewline
14 & 18 & 20.4230769230769 & -2.42307692307692 \tabularnewline
15 & 15 & 20.4230769230769 & -5.42307692307692 \tabularnewline
16 & 12 & 21.4615384615385 & -9.46153846153846 \tabularnewline
17 & 21 & 20.4230769230769 & 0.576923076923077 \tabularnewline
18 & 15 & 20.4230769230769 & -5.42307692307692 \tabularnewline
19 & 20 & 18.24 & 1.76 \tabularnewline
20 & 31 & 25.0714285714286 & 5.92857142857143 \tabularnewline
21 & 27 & 25.0714285714286 & 1.92857142857143 \tabularnewline
22 & 34 & 25.0714285714286 & 8.92857142857143 \tabularnewline
23 & 21 & 20.4230769230769 & 0.576923076923077 \tabularnewline
24 & 31 & 25.0714285714286 & 5.92857142857143 \tabularnewline
25 & 19 & 20.4230769230769 & -1.42307692307692 \tabularnewline
26 & 16 & 20.4230769230769 & -4.42307692307692 \tabularnewline
27 & 20 & 18.24 & 1.76 \tabularnewline
28 & 21 & 20.4230769230769 & 0.576923076923077 \tabularnewline
29 & 22 & 20.4230769230769 & 1.57692307692308 \tabularnewline
30 & 17 & 18.24 & -1.24 \tabularnewline
31 & 24 & 18.24 & 5.76 \tabularnewline
32 & 25 & 29.8125 & -4.8125 \tabularnewline
33 & 26 & 29.8125 & -3.8125 \tabularnewline
34 & 25 & 21.4615384615385 & 3.53846153846154 \tabularnewline
35 & 17 & 20.4230769230769 & -3.42307692307692 \tabularnewline
36 & 32 & 29.8125 & 2.1875 \tabularnewline
37 & 33 & 29.8125 & 3.1875 \tabularnewline
38 & 13 & 18.24 & -5.24 \tabularnewline
39 & 32 & 29.8125 & 2.1875 \tabularnewline
40 & 25 & 29.8125 & -4.8125 \tabularnewline
41 & 29 & 29.8125 & -0.8125 \tabularnewline
42 & 22 & 20.4230769230769 & 1.57692307692308 \tabularnewline
43 & 18 & 20.4230769230769 & -2.42307692307692 \tabularnewline
44 & 17 & 18.24 & -1.24 \tabularnewline
45 & 20 & 21.4615384615385 & -1.46153846153846 \tabularnewline
46 & 15 & 20.4230769230769 & -5.42307692307692 \tabularnewline
47 & 20 & 25.0714285714286 & -5.07142857142857 \tabularnewline
48 & 33 & 29.8125 & 3.1875 \tabularnewline
49 & 29 & 20.4230769230769 & 8.57692307692308 \tabularnewline
50 & 23 & 18.24 & 4.76 \tabularnewline
51 & 26 & 18.24 & 7.76 \tabularnewline
52 & 18 & 20.4230769230769 & -2.42307692307692 \tabularnewline
53 & 20 & 20.4230769230769 & -0.423076923076923 \tabularnewline
54 & 11 & 18.24 & -7.24 \tabularnewline
55 & 28 & 21.4615384615385 & 6.53846153846154 \tabularnewline
56 & 26 & 25.0714285714286 & 0.928571428571427 \tabularnewline
57 & 22 & 21.4615384615385 & 0.53846153846154 \tabularnewline
58 & 17 & 18.24 & -1.24 \tabularnewline
59 & 12 & 18.24 & -6.24 \tabularnewline
60 & 14 & 25.0714285714286 & -11.0714285714286 \tabularnewline
61 & 17 & 20.4230769230769 & -3.42307692307692 \tabularnewline
62 & 21 & 18.24 & 2.76 \tabularnewline
63 & 19 & 18.24 & 0.760000000000002 \tabularnewline
64 & 18 & 25.0714285714286 & -7.07142857142857 \tabularnewline
65 & 10 & 18.24 & -8.24 \tabularnewline
66 & 29 & 29.8125 & -0.8125 \tabularnewline
67 & 31 & 20.4230769230769 & 10.5769230769231 \tabularnewline
68 & 19 & 21.4615384615385 & -2.46153846153846 \tabularnewline
69 & 9 & 18.24 & -9.24 \tabularnewline
70 & 20 & 20.4230769230769 & -0.423076923076923 \tabularnewline
71 & 28 & 18.24 & 9.76 \tabularnewline
72 & 19 & 18.24 & 0.760000000000002 \tabularnewline
73 & 30 & 21.4615384615385 & 8.53846153846154 \tabularnewline
74 & 29 & 25.0714285714286 & 3.92857142857143 \tabularnewline
75 & 26 & 18.24 & 7.76 \tabularnewline
76 & 23 & 20.4230769230769 & 2.57692307692308 \tabularnewline
77 & 13 & 18.24 & -5.24 \tabularnewline
78 & 21 & 20.4230769230769 & 0.576923076923077 \tabularnewline
79 & 19 & 20.4230769230769 & -1.42307692307692 \tabularnewline
80 & 28 & 18.24 & 9.76 \tabularnewline
81 & 23 & 25.0714285714286 & -2.07142857142857 \tabularnewline
82 & 18 & 20.4230769230769 & -2.42307692307692 \tabularnewline
83 & 21 & 20.4230769230769 & 0.576923076923077 \tabularnewline
84 & 20 & 20.4230769230769 & -0.423076923076923 \tabularnewline
85 & 23 & 18.24 & 4.76 \tabularnewline
86 & 21 & 18.24 & 2.76 \tabularnewline
87 & 21 & 21.4615384615385 & -0.46153846153846 \tabularnewline
88 & 15 & 25.0714285714286 & -10.0714285714286 \tabularnewline
89 & 28 & 29.8125 & -1.8125 \tabularnewline
90 & 19 & 18.24 & 0.760000000000002 \tabularnewline
91 & 26 & 25.0714285714286 & 0.928571428571427 \tabularnewline
92 & 10 & 18.24 & -8.24 \tabularnewline
93 & 16 & 18.24 & -2.24 \tabularnewline
94 & 22 & 18.24 & 3.76 \tabularnewline
95 & 19 & 20.4230769230769 & -1.42307692307692 \tabularnewline
96 & 31 & 21.4615384615385 & 9.53846153846154 \tabularnewline
97 & 31 & 25.0714285714286 & 5.92857142857143 \tabularnewline
98 & 29 & 25.0714285714286 & 3.92857142857143 \tabularnewline
99 & 19 & 18.24 & 0.760000000000002 \tabularnewline
100 & 22 & 20.4230769230769 & 1.57692307692308 \tabularnewline
101 & 23 & 20.4230769230769 & 2.57692307692308 \tabularnewline
102 & 15 & 18.24 & -3.24 \tabularnewline
103 & 20 & 20.4230769230769 & -0.423076923076923 \tabularnewline
104 & 18 & 20.4230769230769 & -2.42307692307692 \tabularnewline
105 & 23 & 25.0714285714286 & -2.07142857142857 \tabularnewline
106 & 25 & 18.24 & 6.76 \tabularnewline
107 & 21 & 18.24 & 2.76 \tabularnewline
108 & 24 & 20.4230769230769 & 3.57692307692308 \tabularnewline
109 & 25 & 25.0714285714286 & -0.071428571428573 \tabularnewline
110 & 17 & 18.24 & -1.24 \tabularnewline
111 & 13 & 18.24 & -5.24 \tabularnewline
112 & 28 & 20.4230769230769 & 7.57692307692308 \tabularnewline
113 & 21 & 20.4230769230769 & 0.576923076923077 \tabularnewline
114 & 25 & 21.4615384615385 & 3.53846153846154 \tabularnewline
115 & 9 & 21.4615384615385 & -12.4615384615385 \tabularnewline
116 & 16 & 18.24 & -2.24 \tabularnewline
117 & 19 & 20.4230769230769 & -1.42307692307692 \tabularnewline
118 & 17 & 18.24 & -1.24 \tabularnewline
119 & 25 & 25.0714285714286 & -0.071428571428573 \tabularnewline
120 & 20 & 18.24 & 1.76 \tabularnewline
121 & 29 & 29.8125 & -0.8125 \tabularnewline
122 & 14 & 18.24 & -4.24 \tabularnewline
123 & 22 & 25.0714285714286 & -3.07142857142857 \tabularnewline
124 & 15 & 18.24 & -3.24 \tabularnewline
125 & 19 & 18.24 & 0.760000000000002 \tabularnewline
126 & 20 & 20.4230769230769 & -0.423076923076923 \tabularnewline
127 & 15 & 18.24 & -3.24 \tabularnewline
128 & 20 & 20.4230769230769 & -0.423076923076923 \tabularnewline
129 & 18 & 20.4230769230769 & -2.42307692307692 \tabularnewline
130 & 33 & 29.8125 & 3.1875 \tabularnewline
131 & 22 & 20.4230769230769 & 1.57692307692308 \tabularnewline
132 & 16 & 20.4230769230769 & -4.42307692307692 \tabularnewline
133 & 17 & 18.24 & -1.24 \tabularnewline
134 & 16 & 18.24 & -2.24 \tabularnewline
135 & 21 & 20.4230769230769 & 0.576923076923077 \tabularnewline
136 & 26 & 29.8125 & -3.8125 \tabularnewline
137 & 18 & 18.24 & -0.239999999999998 \tabularnewline
138 & 18 & 20.4230769230769 & -2.42307692307692 \tabularnewline
139 & 17 & 20.4230769230769 & -3.42307692307692 \tabularnewline
140 & 22 & 25.0714285714286 & -3.07142857142857 \tabularnewline
141 & 30 & 25.0714285714286 & 4.92857142857143 \tabularnewline
142 & 30 & 29.8125 & 0.1875 \tabularnewline
143 & 24 & 25.0714285714286 & -1.07142857142857 \tabularnewline
144 & 21 & 18.24 & 2.76 \tabularnewline
145 & 21 & 25.0714285714286 & -4.07142857142857 \tabularnewline
146 & 29 & 29.8125 & -0.8125 \tabularnewline
147 & 31 & 20.4230769230769 & 10.5769230769231 \tabularnewline
148 & 20 & 18.24 & 1.76 \tabularnewline
149 & 16 & 20.4230769230769 & -4.42307692307692 \tabularnewline
150 & 22 & 20.4230769230769 & 1.57692307692308 \tabularnewline
151 & 20 & 21.4615384615385 & -1.46153846153846 \tabularnewline
152 & 28 & 25.0714285714286 & 2.92857142857143 \tabularnewline
153 & 38 & 29.8125 & 8.1875 \tabularnewline
154 & 22 & 18.24 & 3.76 \tabularnewline
155 & 20 & 20.4230769230769 & -0.423076923076923 \tabularnewline
156 & 17 & 18.24 & -1.24 \tabularnewline
157 & 28 & 25.0714285714286 & 2.92857142857143 \tabularnewline
158 & 22 & 25.0714285714286 & -3.07142857142857 \tabularnewline
159 & 31 & 25.0714285714286 & 5.92857142857143 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=154401&T=2

[TABLE]
[ROW][C]Actuals, Predictions, and Residuals[/C][/ROW]
[ROW][C]#[/C][C]Actuals[/C][C]Forecasts[/C][C]Residuals[/C][/ROW]
[ROW][C]1[/C][C]24[/C][C]25.0714285714286[/C][C]-1.07142857142857[/C][/ROW]
[ROW][C]2[/C][C]25[/C][C]20.4230769230769[/C][C]4.57692307692308[/C][/ROW]
[ROW][C]3[/C][C]17[/C][C]21.4615384615385[/C][C]-4.46153846153846[/C][/ROW]
[ROW][C]4[/C][C]18[/C][C]20.4230769230769[/C][C]-2.42307692307692[/C][/ROW]
[ROW][C]5[/C][C]18[/C][C]20.4230769230769[/C][C]-2.42307692307692[/C][/ROW]
[ROW][C]6[/C][C]16[/C][C]18.24[/C][C]-2.24[/C][/ROW]
[ROW][C]7[/C][C]20[/C][C]18.24[/C][C]1.76[/C][/ROW]
[ROW][C]8[/C][C]16[/C][C]20.4230769230769[/C][C]-4.42307692307692[/C][/ROW]
[ROW][C]9[/C][C]18[/C][C]18.24[/C][C]-0.239999999999998[/C][/ROW]
[ROW][C]10[/C][C]17[/C][C]18.24[/C][C]-1.24[/C][/ROW]
[ROW][C]11[/C][C]23[/C][C]25.0714285714286[/C][C]-2.07142857142857[/C][/ROW]
[ROW][C]12[/C][C]30[/C][C]20.4230769230769[/C][C]9.57692307692308[/C][/ROW]
[ROW][C]13[/C][C]23[/C][C]20.4230769230769[/C][C]2.57692307692308[/C][/ROW]
[ROW][C]14[/C][C]18[/C][C]20.4230769230769[/C][C]-2.42307692307692[/C][/ROW]
[ROW][C]15[/C][C]15[/C][C]20.4230769230769[/C][C]-5.42307692307692[/C][/ROW]
[ROW][C]16[/C][C]12[/C][C]21.4615384615385[/C][C]-9.46153846153846[/C][/ROW]
[ROW][C]17[/C][C]21[/C][C]20.4230769230769[/C][C]0.576923076923077[/C][/ROW]
[ROW][C]18[/C][C]15[/C][C]20.4230769230769[/C][C]-5.42307692307692[/C][/ROW]
[ROW][C]19[/C][C]20[/C][C]18.24[/C][C]1.76[/C][/ROW]
[ROW][C]20[/C][C]31[/C][C]25.0714285714286[/C][C]5.92857142857143[/C][/ROW]
[ROW][C]21[/C][C]27[/C][C]25.0714285714286[/C][C]1.92857142857143[/C][/ROW]
[ROW][C]22[/C][C]34[/C][C]25.0714285714286[/C][C]8.92857142857143[/C][/ROW]
[ROW][C]23[/C][C]21[/C][C]20.4230769230769[/C][C]0.576923076923077[/C][/ROW]
[ROW][C]24[/C][C]31[/C][C]25.0714285714286[/C][C]5.92857142857143[/C][/ROW]
[ROW][C]25[/C][C]19[/C][C]20.4230769230769[/C][C]-1.42307692307692[/C][/ROW]
[ROW][C]26[/C][C]16[/C][C]20.4230769230769[/C][C]-4.42307692307692[/C][/ROW]
[ROW][C]27[/C][C]20[/C][C]18.24[/C][C]1.76[/C][/ROW]
[ROW][C]28[/C][C]21[/C][C]20.4230769230769[/C][C]0.576923076923077[/C][/ROW]
[ROW][C]29[/C][C]22[/C][C]20.4230769230769[/C][C]1.57692307692308[/C][/ROW]
[ROW][C]30[/C][C]17[/C][C]18.24[/C][C]-1.24[/C][/ROW]
[ROW][C]31[/C][C]24[/C][C]18.24[/C][C]5.76[/C][/ROW]
[ROW][C]32[/C][C]25[/C][C]29.8125[/C][C]-4.8125[/C][/ROW]
[ROW][C]33[/C][C]26[/C][C]29.8125[/C][C]-3.8125[/C][/ROW]
[ROW][C]34[/C][C]25[/C][C]21.4615384615385[/C][C]3.53846153846154[/C][/ROW]
[ROW][C]35[/C][C]17[/C][C]20.4230769230769[/C][C]-3.42307692307692[/C][/ROW]
[ROW][C]36[/C][C]32[/C][C]29.8125[/C][C]2.1875[/C][/ROW]
[ROW][C]37[/C][C]33[/C][C]29.8125[/C][C]3.1875[/C][/ROW]
[ROW][C]38[/C][C]13[/C][C]18.24[/C][C]-5.24[/C][/ROW]
[ROW][C]39[/C][C]32[/C][C]29.8125[/C][C]2.1875[/C][/ROW]
[ROW][C]40[/C][C]25[/C][C]29.8125[/C][C]-4.8125[/C][/ROW]
[ROW][C]41[/C][C]29[/C][C]29.8125[/C][C]-0.8125[/C][/ROW]
[ROW][C]42[/C][C]22[/C][C]20.4230769230769[/C][C]1.57692307692308[/C][/ROW]
[ROW][C]43[/C][C]18[/C][C]20.4230769230769[/C][C]-2.42307692307692[/C][/ROW]
[ROW][C]44[/C][C]17[/C][C]18.24[/C][C]-1.24[/C][/ROW]
[ROW][C]45[/C][C]20[/C][C]21.4615384615385[/C][C]-1.46153846153846[/C][/ROW]
[ROW][C]46[/C][C]15[/C][C]20.4230769230769[/C][C]-5.42307692307692[/C][/ROW]
[ROW][C]47[/C][C]20[/C][C]25.0714285714286[/C][C]-5.07142857142857[/C][/ROW]
[ROW][C]48[/C][C]33[/C][C]29.8125[/C][C]3.1875[/C][/ROW]
[ROW][C]49[/C][C]29[/C][C]20.4230769230769[/C][C]8.57692307692308[/C][/ROW]
[ROW][C]50[/C][C]23[/C][C]18.24[/C][C]4.76[/C][/ROW]
[ROW][C]51[/C][C]26[/C][C]18.24[/C][C]7.76[/C][/ROW]
[ROW][C]52[/C][C]18[/C][C]20.4230769230769[/C][C]-2.42307692307692[/C][/ROW]
[ROW][C]53[/C][C]20[/C][C]20.4230769230769[/C][C]-0.423076923076923[/C][/ROW]
[ROW][C]54[/C][C]11[/C][C]18.24[/C][C]-7.24[/C][/ROW]
[ROW][C]55[/C][C]28[/C][C]21.4615384615385[/C][C]6.53846153846154[/C][/ROW]
[ROW][C]56[/C][C]26[/C][C]25.0714285714286[/C][C]0.928571428571427[/C][/ROW]
[ROW][C]57[/C][C]22[/C][C]21.4615384615385[/C][C]0.53846153846154[/C][/ROW]
[ROW][C]58[/C][C]17[/C][C]18.24[/C][C]-1.24[/C][/ROW]
[ROW][C]59[/C][C]12[/C][C]18.24[/C][C]-6.24[/C][/ROW]
[ROW][C]60[/C][C]14[/C][C]25.0714285714286[/C][C]-11.0714285714286[/C][/ROW]
[ROW][C]61[/C][C]17[/C][C]20.4230769230769[/C][C]-3.42307692307692[/C][/ROW]
[ROW][C]62[/C][C]21[/C][C]18.24[/C][C]2.76[/C][/ROW]
[ROW][C]63[/C][C]19[/C][C]18.24[/C][C]0.760000000000002[/C][/ROW]
[ROW][C]64[/C][C]18[/C][C]25.0714285714286[/C][C]-7.07142857142857[/C][/ROW]
[ROW][C]65[/C][C]10[/C][C]18.24[/C][C]-8.24[/C][/ROW]
[ROW][C]66[/C][C]29[/C][C]29.8125[/C][C]-0.8125[/C][/ROW]
[ROW][C]67[/C][C]31[/C][C]20.4230769230769[/C][C]10.5769230769231[/C][/ROW]
[ROW][C]68[/C][C]19[/C][C]21.4615384615385[/C][C]-2.46153846153846[/C][/ROW]
[ROW][C]69[/C][C]9[/C][C]18.24[/C][C]-9.24[/C][/ROW]
[ROW][C]70[/C][C]20[/C][C]20.4230769230769[/C][C]-0.423076923076923[/C][/ROW]
[ROW][C]71[/C][C]28[/C][C]18.24[/C][C]9.76[/C][/ROW]
[ROW][C]72[/C][C]19[/C][C]18.24[/C][C]0.760000000000002[/C][/ROW]
[ROW][C]73[/C][C]30[/C][C]21.4615384615385[/C][C]8.53846153846154[/C][/ROW]
[ROW][C]74[/C][C]29[/C][C]25.0714285714286[/C][C]3.92857142857143[/C][/ROW]
[ROW][C]75[/C][C]26[/C][C]18.24[/C][C]7.76[/C][/ROW]
[ROW][C]76[/C][C]23[/C][C]20.4230769230769[/C][C]2.57692307692308[/C][/ROW]
[ROW][C]77[/C][C]13[/C][C]18.24[/C][C]-5.24[/C][/ROW]
[ROW][C]78[/C][C]21[/C][C]20.4230769230769[/C][C]0.576923076923077[/C][/ROW]
[ROW][C]79[/C][C]19[/C][C]20.4230769230769[/C][C]-1.42307692307692[/C][/ROW]
[ROW][C]80[/C][C]28[/C][C]18.24[/C][C]9.76[/C][/ROW]
[ROW][C]81[/C][C]23[/C][C]25.0714285714286[/C][C]-2.07142857142857[/C][/ROW]
[ROW][C]82[/C][C]18[/C][C]20.4230769230769[/C][C]-2.42307692307692[/C][/ROW]
[ROW][C]83[/C][C]21[/C][C]20.4230769230769[/C][C]0.576923076923077[/C][/ROW]
[ROW][C]84[/C][C]20[/C][C]20.4230769230769[/C][C]-0.423076923076923[/C][/ROW]
[ROW][C]85[/C][C]23[/C][C]18.24[/C][C]4.76[/C][/ROW]
[ROW][C]86[/C][C]21[/C][C]18.24[/C][C]2.76[/C][/ROW]
[ROW][C]87[/C][C]21[/C][C]21.4615384615385[/C][C]-0.46153846153846[/C][/ROW]
[ROW][C]88[/C][C]15[/C][C]25.0714285714286[/C][C]-10.0714285714286[/C][/ROW]
[ROW][C]89[/C][C]28[/C][C]29.8125[/C][C]-1.8125[/C][/ROW]
[ROW][C]90[/C][C]19[/C][C]18.24[/C][C]0.760000000000002[/C][/ROW]
[ROW][C]91[/C][C]26[/C][C]25.0714285714286[/C][C]0.928571428571427[/C][/ROW]
[ROW][C]92[/C][C]10[/C][C]18.24[/C][C]-8.24[/C][/ROW]
[ROW][C]93[/C][C]16[/C][C]18.24[/C][C]-2.24[/C][/ROW]
[ROW][C]94[/C][C]22[/C][C]18.24[/C][C]3.76[/C][/ROW]
[ROW][C]95[/C][C]19[/C][C]20.4230769230769[/C][C]-1.42307692307692[/C][/ROW]
[ROW][C]96[/C][C]31[/C][C]21.4615384615385[/C][C]9.53846153846154[/C][/ROW]
[ROW][C]97[/C][C]31[/C][C]25.0714285714286[/C][C]5.92857142857143[/C][/ROW]
[ROW][C]98[/C][C]29[/C][C]25.0714285714286[/C][C]3.92857142857143[/C][/ROW]
[ROW][C]99[/C][C]19[/C][C]18.24[/C][C]0.760000000000002[/C][/ROW]
[ROW][C]100[/C][C]22[/C][C]20.4230769230769[/C][C]1.57692307692308[/C][/ROW]
[ROW][C]101[/C][C]23[/C][C]20.4230769230769[/C][C]2.57692307692308[/C][/ROW]
[ROW][C]102[/C][C]15[/C][C]18.24[/C][C]-3.24[/C][/ROW]
[ROW][C]103[/C][C]20[/C][C]20.4230769230769[/C][C]-0.423076923076923[/C][/ROW]
[ROW][C]104[/C][C]18[/C][C]20.4230769230769[/C][C]-2.42307692307692[/C][/ROW]
[ROW][C]105[/C][C]23[/C][C]25.0714285714286[/C][C]-2.07142857142857[/C][/ROW]
[ROW][C]106[/C][C]25[/C][C]18.24[/C][C]6.76[/C][/ROW]
[ROW][C]107[/C][C]21[/C][C]18.24[/C][C]2.76[/C][/ROW]
[ROW][C]108[/C][C]24[/C][C]20.4230769230769[/C][C]3.57692307692308[/C][/ROW]
[ROW][C]109[/C][C]25[/C][C]25.0714285714286[/C][C]-0.071428571428573[/C][/ROW]
[ROW][C]110[/C][C]17[/C][C]18.24[/C][C]-1.24[/C][/ROW]
[ROW][C]111[/C][C]13[/C][C]18.24[/C][C]-5.24[/C][/ROW]
[ROW][C]112[/C][C]28[/C][C]20.4230769230769[/C][C]7.57692307692308[/C][/ROW]
[ROW][C]113[/C][C]21[/C][C]20.4230769230769[/C][C]0.576923076923077[/C][/ROW]
[ROW][C]114[/C][C]25[/C][C]21.4615384615385[/C][C]3.53846153846154[/C][/ROW]
[ROW][C]115[/C][C]9[/C][C]21.4615384615385[/C][C]-12.4615384615385[/C][/ROW]
[ROW][C]116[/C][C]16[/C][C]18.24[/C][C]-2.24[/C][/ROW]
[ROW][C]117[/C][C]19[/C][C]20.4230769230769[/C][C]-1.42307692307692[/C][/ROW]
[ROW][C]118[/C][C]17[/C][C]18.24[/C][C]-1.24[/C][/ROW]
[ROW][C]119[/C][C]25[/C][C]25.0714285714286[/C][C]-0.071428571428573[/C][/ROW]
[ROW][C]120[/C][C]20[/C][C]18.24[/C][C]1.76[/C][/ROW]
[ROW][C]121[/C][C]29[/C][C]29.8125[/C][C]-0.8125[/C][/ROW]
[ROW][C]122[/C][C]14[/C][C]18.24[/C][C]-4.24[/C][/ROW]
[ROW][C]123[/C][C]22[/C][C]25.0714285714286[/C][C]-3.07142857142857[/C][/ROW]
[ROW][C]124[/C][C]15[/C][C]18.24[/C][C]-3.24[/C][/ROW]
[ROW][C]125[/C][C]19[/C][C]18.24[/C][C]0.760000000000002[/C][/ROW]
[ROW][C]126[/C][C]20[/C][C]20.4230769230769[/C][C]-0.423076923076923[/C][/ROW]
[ROW][C]127[/C][C]15[/C][C]18.24[/C][C]-3.24[/C][/ROW]
[ROW][C]128[/C][C]20[/C][C]20.4230769230769[/C][C]-0.423076923076923[/C][/ROW]
[ROW][C]129[/C][C]18[/C][C]20.4230769230769[/C][C]-2.42307692307692[/C][/ROW]
[ROW][C]130[/C][C]33[/C][C]29.8125[/C][C]3.1875[/C][/ROW]
[ROW][C]131[/C][C]22[/C][C]20.4230769230769[/C][C]1.57692307692308[/C][/ROW]
[ROW][C]132[/C][C]16[/C][C]20.4230769230769[/C][C]-4.42307692307692[/C][/ROW]
[ROW][C]133[/C][C]17[/C][C]18.24[/C][C]-1.24[/C][/ROW]
[ROW][C]134[/C][C]16[/C][C]18.24[/C][C]-2.24[/C][/ROW]
[ROW][C]135[/C][C]21[/C][C]20.4230769230769[/C][C]0.576923076923077[/C][/ROW]
[ROW][C]136[/C][C]26[/C][C]29.8125[/C][C]-3.8125[/C][/ROW]
[ROW][C]137[/C][C]18[/C][C]18.24[/C][C]-0.239999999999998[/C][/ROW]
[ROW][C]138[/C][C]18[/C][C]20.4230769230769[/C][C]-2.42307692307692[/C][/ROW]
[ROW][C]139[/C][C]17[/C][C]20.4230769230769[/C][C]-3.42307692307692[/C][/ROW]
[ROW][C]140[/C][C]22[/C][C]25.0714285714286[/C][C]-3.07142857142857[/C][/ROW]
[ROW][C]141[/C][C]30[/C][C]25.0714285714286[/C][C]4.92857142857143[/C][/ROW]
[ROW][C]142[/C][C]30[/C][C]29.8125[/C][C]0.1875[/C][/ROW]
[ROW][C]143[/C][C]24[/C][C]25.0714285714286[/C][C]-1.07142857142857[/C][/ROW]
[ROW][C]144[/C][C]21[/C][C]18.24[/C][C]2.76[/C][/ROW]
[ROW][C]145[/C][C]21[/C][C]25.0714285714286[/C][C]-4.07142857142857[/C][/ROW]
[ROW][C]146[/C][C]29[/C][C]29.8125[/C][C]-0.8125[/C][/ROW]
[ROW][C]147[/C][C]31[/C][C]20.4230769230769[/C][C]10.5769230769231[/C][/ROW]
[ROW][C]148[/C][C]20[/C][C]18.24[/C][C]1.76[/C][/ROW]
[ROW][C]149[/C][C]16[/C][C]20.4230769230769[/C][C]-4.42307692307692[/C][/ROW]
[ROW][C]150[/C][C]22[/C][C]20.4230769230769[/C][C]1.57692307692308[/C][/ROW]
[ROW][C]151[/C][C]20[/C][C]21.4615384615385[/C][C]-1.46153846153846[/C][/ROW]
[ROW][C]152[/C][C]28[/C][C]25.0714285714286[/C][C]2.92857142857143[/C][/ROW]
[ROW][C]153[/C][C]38[/C][C]29.8125[/C][C]8.1875[/C][/ROW]
[ROW][C]154[/C][C]22[/C][C]18.24[/C][C]3.76[/C][/ROW]
[ROW][C]155[/C][C]20[/C][C]20.4230769230769[/C][C]-0.423076923076923[/C][/ROW]
[ROW][C]156[/C][C]17[/C][C]18.24[/C][C]-1.24[/C][/ROW]
[ROW][C]157[/C][C]28[/C][C]25.0714285714286[/C][C]2.92857142857143[/C][/ROW]
[ROW][C]158[/C][C]22[/C][C]25.0714285714286[/C][C]-3.07142857142857[/C][/ROW]
[ROW][C]159[/C][C]31[/C][C]25.0714285714286[/C][C]5.92857142857143[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=154401&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=154401&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Actuals, Predictions, and Residuals
#ActualsForecastsResiduals
12425.0714285714286-1.07142857142857
22520.42307692307694.57692307692308
31721.4615384615385-4.46153846153846
41820.4230769230769-2.42307692307692
51820.4230769230769-2.42307692307692
61618.24-2.24
72018.241.76
81620.4230769230769-4.42307692307692
91818.24-0.239999999999998
101718.24-1.24
112325.0714285714286-2.07142857142857
123020.42307692307699.57692307692308
132320.42307692307692.57692307692308
141820.4230769230769-2.42307692307692
151520.4230769230769-5.42307692307692
161221.4615384615385-9.46153846153846
172120.42307692307690.576923076923077
181520.4230769230769-5.42307692307692
192018.241.76
203125.07142857142865.92857142857143
212725.07142857142861.92857142857143
223425.07142857142868.92857142857143
232120.42307692307690.576923076923077
243125.07142857142865.92857142857143
251920.4230769230769-1.42307692307692
261620.4230769230769-4.42307692307692
272018.241.76
282120.42307692307690.576923076923077
292220.42307692307691.57692307692308
301718.24-1.24
312418.245.76
322529.8125-4.8125
332629.8125-3.8125
342521.46153846153853.53846153846154
351720.4230769230769-3.42307692307692
363229.81252.1875
373329.81253.1875
381318.24-5.24
393229.81252.1875
402529.8125-4.8125
412929.8125-0.8125
422220.42307692307691.57692307692308
431820.4230769230769-2.42307692307692
441718.24-1.24
452021.4615384615385-1.46153846153846
461520.4230769230769-5.42307692307692
472025.0714285714286-5.07142857142857
483329.81253.1875
492920.42307692307698.57692307692308
502318.244.76
512618.247.76
521820.4230769230769-2.42307692307692
532020.4230769230769-0.423076923076923
541118.24-7.24
552821.46153846153856.53846153846154
562625.07142857142860.928571428571427
572221.46153846153850.53846153846154
581718.24-1.24
591218.24-6.24
601425.0714285714286-11.0714285714286
611720.4230769230769-3.42307692307692
622118.242.76
631918.240.760000000000002
641825.0714285714286-7.07142857142857
651018.24-8.24
662929.8125-0.8125
673120.423076923076910.5769230769231
681921.4615384615385-2.46153846153846
69918.24-9.24
702020.4230769230769-0.423076923076923
712818.249.76
721918.240.760000000000002
733021.46153846153858.53846153846154
742925.07142857142863.92857142857143
752618.247.76
762320.42307692307692.57692307692308
771318.24-5.24
782120.42307692307690.576923076923077
791920.4230769230769-1.42307692307692
802818.249.76
812325.0714285714286-2.07142857142857
821820.4230769230769-2.42307692307692
832120.42307692307690.576923076923077
842020.4230769230769-0.423076923076923
852318.244.76
862118.242.76
872121.4615384615385-0.46153846153846
881525.0714285714286-10.0714285714286
892829.8125-1.8125
901918.240.760000000000002
912625.07142857142860.928571428571427
921018.24-8.24
931618.24-2.24
942218.243.76
951920.4230769230769-1.42307692307692
963121.46153846153859.53846153846154
973125.07142857142865.92857142857143
982925.07142857142863.92857142857143
991918.240.760000000000002
1002220.42307692307691.57692307692308
1012320.42307692307692.57692307692308
1021518.24-3.24
1032020.4230769230769-0.423076923076923
1041820.4230769230769-2.42307692307692
1052325.0714285714286-2.07142857142857
1062518.246.76
1072118.242.76
1082420.42307692307693.57692307692308
1092525.0714285714286-0.071428571428573
1101718.24-1.24
1111318.24-5.24
1122820.42307692307697.57692307692308
1132120.42307692307690.576923076923077
1142521.46153846153853.53846153846154
115921.4615384615385-12.4615384615385
1161618.24-2.24
1171920.4230769230769-1.42307692307692
1181718.24-1.24
1192525.0714285714286-0.071428571428573
1202018.241.76
1212929.8125-0.8125
1221418.24-4.24
1232225.0714285714286-3.07142857142857
1241518.24-3.24
1251918.240.760000000000002
1262020.4230769230769-0.423076923076923
1271518.24-3.24
1282020.4230769230769-0.423076923076923
1291820.4230769230769-2.42307692307692
1303329.81253.1875
1312220.42307692307691.57692307692308
1321620.4230769230769-4.42307692307692
1331718.24-1.24
1341618.24-2.24
1352120.42307692307690.576923076923077
1362629.8125-3.8125
1371818.24-0.239999999999998
1381820.4230769230769-2.42307692307692
1391720.4230769230769-3.42307692307692
1402225.0714285714286-3.07142857142857
1413025.07142857142864.92857142857143
1423029.81250.1875
1432425.0714285714286-1.07142857142857
1442118.242.76
1452125.0714285714286-4.07142857142857
1462929.8125-0.8125
1473120.423076923076910.5769230769231
1482018.241.76
1491620.4230769230769-4.42307692307692
1502220.42307692307691.57692307692308
1512021.4615384615385-1.46153846153846
1522825.07142857142862.92857142857143
1533829.81258.1875
1542218.243.76
1552020.4230769230769-0.423076923076923
1561718.24-1.24
1572825.07142857142862.92857142857143
1582225.0714285714286-3.07142857142857
1593125.07142857142865.92857142857143



Parameters (Session):
par1 = 2 ; par2 = none ; par3 = 0 ; par4 = no ;
Parameters (R input):
par1 = 2 ; par2 = none ; par3 = 0 ; par4 = no ;
R code (references can be found in the software module):
library(party)
library(Hmisc)
par1 <- as.numeric(par1)
par3 <- as.numeric(par3)
x <- data.frame(t(y))
is.data.frame(x)
x <- x[!is.na(x[,par1]),]
k <- length(x[1,])
n <- length(x[,1])
colnames(x)[par1]
x[,par1]
if (par2 == 'kmeans') {
cl <- kmeans(x[,par1], par3)
print(cl)
clm <- matrix(cbind(cl$centers,1:par3),ncol=2)
clm <- clm[sort.list(clm[,1]),]
for (i in 1:par3) {
cl$cluster[cl$cluster==clm[i,2]] <- paste('C',i,sep='')
}
cl$cluster <- as.factor(cl$cluster)
print(cl$cluster)
x[,par1] <- cl$cluster
}
if (par2 == 'quantiles') {
x[,par1] <- cut2(x[,par1],g=par3)
}
if (par2 == 'hclust') {
hc <- hclust(dist(x[,par1])^2, 'cen')
print(hc)
memb <- cutree(hc, k = par3)
dum <- c(mean(x[memb==1,par1]))
for (i in 2:par3) {
dum <- c(dum, mean(x[memb==i,par1]))
}
hcm <- matrix(cbind(dum,1:par3),ncol=2)
hcm <- hcm[sort.list(hcm[,1]),]
for (i in 1:par3) {
memb[memb==hcm[i,2]] <- paste('C',i,sep='')
}
memb <- as.factor(memb)
print(memb)
x[,par1] <- memb
}
if (par2=='equal') {
ed <- cut(as.numeric(x[,par1]),par3,labels=paste('C',1:par3,sep=''))
x[,par1] <- as.factor(ed)
}
table(x[,par1])
colnames(x)
colnames(x)[par1]
x[,par1]
if (par2 == 'none') {
m <- ctree(as.formula(paste(colnames(x)[par1],' ~ .',sep='')),data = x)
}
load(file='createtable')
if (par2 != 'none') {
m <- ctree(as.formula(paste('as.factor(',colnames(x)[par1],') ~ .',sep='')),data = x)
if (par4=='yes') {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'10-Fold Cross Validation',3+2*par3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'',1,TRUE)
a<-table.element(a,'Prediction (training)',par3+1,TRUE)
a<-table.element(a,'Prediction (testing)',par3+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Actual',1,TRUE)
for (jjj in 1:par3) a<-table.element(a,paste('C',jjj,sep=''),1,TRUE)
a<-table.element(a,'CV',1,TRUE)
for (jjj in 1:par3) a<-table.element(a,paste('C',jjj,sep=''),1,TRUE)
a<-table.element(a,'CV',1,TRUE)
a<-table.row.end(a)
for (i in 1:10) {
ind <- sample(2, nrow(x), replace=T, prob=c(0.9,0.1))
m.ct <- ctree(as.formula(paste('as.factor(',colnames(x)[par1],') ~ .',sep='')),data =x[ind==1,])
if (i==1) {
m.ct.i.pred <- predict(m.ct, newdata=x[ind==1,])
m.ct.i.actu <- x[ind==1,par1]
m.ct.x.pred <- predict(m.ct, newdata=x[ind==2,])
m.ct.x.actu <- x[ind==2,par1]
} else {
m.ct.i.pred <- c(m.ct.i.pred,predict(m.ct, newdata=x[ind==1,]))
m.ct.i.actu <- c(m.ct.i.actu,x[ind==1,par1])
m.ct.x.pred <- c(m.ct.x.pred,predict(m.ct, newdata=x[ind==2,]))
m.ct.x.actu <- c(m.ct.x.actu,x[ind==2,par1])
}
}
print(m.ct.i.tab <- table(m.ct.i.actu,m.ct.i.pred))
numer <- 0
for (i in 1:par3) {
print(m.ct.i.tab[i,i] / sum(m.ct.i.tab[i,]))
numer <- numer + m.ct.i.tab[i,i]
}
print(m.ct.i.cp <- numer / sum(m.ct.i.tab))
print(m.ct.x.tab <- table(m.ct.x.actu,m.ct.x.pred))
numer <- 0
for (i in 1:par3) {
print(m.ct.x.tab[i,i] / sum(m.ct.x.tab[i,]))
numer <- numer + m.ct.x.tab[i,i]
}
print(m.ct.x.cp <- numer / sum(m.ct.x.tab))
for (i in 1:par3) {
a<-table.row.start(a)
a<-table.element(a,paste('C',i,sep=''),1,TRUE)
for (jjj in 1:par3) a<-table.element(a,m.ct.i.tab[i,jjj])
a<-table.element(a,round(m.ct.i.tab[i,i]/sum(m.ct.i.tab[i,]),4))
for (jjj in 1:par3) a<-table.element(a,m.ct.x.tab[i,jjj])
a<-table.element(a,round(m.ct.x.tab[i,i]/sum(m.ct.x.tab[i,]),4))
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,'Overall',1,TRUE)
for (jjj in 1:par3) a<-table.element(a,'-')
a<-table.element(a,round(m.ct.i.cp,4))
for (jjj in 1:par3) a<-table.element(a,'-')
a<-table.element(a,round(m.ct.x.cp,4))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
}
}
m
bitmap(file='test1.png')
plot(m)
dev.off()
bitmap(file='test1a.png')
plot(x[,par1] ~ as.factor(where(m)),main='Response by Terminal Node',xlab='Terminal Node',ylab='Response')
dev.off()
if (par2 == 'none') {
forec <- predict(m)
result <- as.data.frame(cbind(x[,par1],forec,x[,par1]-forec))
colnames(result) <- c('Actuals','Forecasts','Residuals')
print(result)
}
if (par2 != 'none') {
print(cbind(as.factor(x[,par1]),predict(m)))
myt <- table(as.factor(x[,par1]),predict(m))
print(myt)
}
bitmap(file='test2.png')
if(par2=='none') {
op <- par(mfrow=c(2,2))
plot(density(result$Actuals),main='Kernel Density Plot of Actuals')
plot(density(result$Residuals),main='Kernel Density Plot of Residuals')
plot(result$Forecasts,result$Actuals,main='Actuals versus Predictions',xlab='Predictions',ylab='Actuals')
plot(density(result$Forecasts),main='Kernel Density Plot of Predictions')
par(op)
}
if(par2!='none') {
plot(myt,main='Confusion Matrix',xlab='Actual',ylab='Predicted')
}
dev.off()
if (par2 == 'none') {
detcoef <- cor(result$Forecasts,result$Actuals)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goodness of Fit',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Correlation',1,TRUE)
a<-table.element(a,round(detcoef,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'R-squared',1,TRUE)
a<-table.element(a,round(detcoef*detcoef,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'RMSE',1,TRUE)
a<-table.element(a,round(sqrt(mean((result$Residuals)^2)),4))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Actuals, Predictions, and Residuals',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'#',header=TRUE)
a<-table.element(a,'Actuals',header=TRUE)
a<-table.element(a,'Forecasts',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(result$Actuals)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,result$Actuals[i])
a<-table.element(a,result$Forecasts[i])
a<-table.element(a,result$Residuals[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
}
if (par2 != 'none') {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Confusion Matrix (predicted in columns / actuals in rows)',par3+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'',1,TRUE)
for (i in 1:par3) {
a<-table.element(a,paste('C',i,sep=''),1,TRUE)
}
a<-table.row.end(a)
for (i in 1:par3) {
a<-table.row.start(a)
a<-table.element(a,paste('C',i,sep=''),1,TRUE)
for (j in 1:par3) {
a<-table.element(a,myt[i,j])
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
}