Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_regression_trees1dm.wasp
Title produced by softwareRecursive Partitioning (Regression Trees)
Date of computationTue, 01 May 2012 15:23:38 -0400
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/May/01/t13359002756rvyzaecwxsft2h.htm/, Retrieved Fri, 01 Nov 2024 00:32:36 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=165752, Retrieved Fri, 01 Nov 2024 00:32:36 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact140
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Recursive Partitioning (Regression Trees)] [tree] [2012-05-01 19:23:38] [98013ab554c8e0dbe4733b402984d95f] [Current]
Feedback Forum

Post a new message




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 5 seconds \tabularnewline
R Server & 'Gertrude Mary Cox' @ cox.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=165752&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]5 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gertrude Mary Cox' @ cox.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=165752&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=165752&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net







Goodness of Fit
Correlation0.8471
R-squared0.7176
RMSE2.6165

\begin{tabular}{lllllllll}
\hline
Goodness of Fit \tabularnewline
Correlation & 0.8471 \tabularnewline
R-squared & 0.7176 \tabularnewline
RMSE & 2.6165 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=165752&T=1

[TABLE]
[ROW][C]Goodness of Fit[/C][/ROW]
[ROW][C]Correlation[/C][C]0.8471[/C][/ROW]
[ROW][C]R-squared[/C][C]0.7176[/C][/ROW]
[ROW][C]RMSE[/C][C]2.6165[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=165752&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=165752&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goodness of Fit
Correlation0.8471
R-squared0.7176
RMSE2.6165







Actuals, Predictions, and Residuals
#ActualsForecastsResiduals
12832.6-4.6
23632.63.4
33635.91666666666670.0833333333333357
43032.6-2.6
53636.6470588235294-0.647058823529413
63333.5217391304348-0.521739130434781
71623.9230769230769-7.92307692307692
83130.56250.4375
93939.15-0.149999999999999
103234.3846153846154-2.38461538461539
113030.5625-0.5625
123436-2
133436-2
142630.5384615384615-4.53846153846154
152123.9230769230769-2.92307692307692
163536-1
173536.6470588235294-1.64705882352941
183436.6470588235294-2.64705882352941
191923.9230769230769-4.92307692307692
203636.6470588235294-0.647058823529413
213230.56251.4375
223332.60.399999999999999
233737.1666666666667-0.166666666666664
242230.5384615384615-8.53846153846154
253333.5217391304348-0.521739130434781
263132.6-1.6
273332.60.399999999999999
283132.6-1.6
292623.92307692307692.07692307692308
302730.5625-3.5625
313837.16666666666670.833333333333336
323436-2
333236-4
343839.15-1.15
353334.3846153846154-1.38461538461539
363433.52173913043480.478260869565219
373736.85714285714290.142857142857146
383333.5217391304348-0.521739130434781
393432.61.4
403537.1666666666667-2.16666666666666
413233.5217391304348-1.52173913043478
423230.53846153846151.46153846153846
433332.60.399999999999999
443536-1
453837.16666666666670.833333333333336
463634.38461538461541.61538461538461
472423.92307692307690.0769230769230766
483436.6470588235294-2.64705882352941
494139.151.85
503436-2
513935.91666666666673.08333333333334
523230.53846153846151.46153846153846
532930.5625-1.5625
543336-3
553033.5217391304348-3.52173913043478
563937.16666666666671.83333333333334
573940-1
583234.3846153846154-2.38461538461539
593537.1666666666667-2.16666666666666
603637.1666666666667-1.16666666666666
613439.15-5.15
622932.6-3.6
633433.52173913043480.478260869565219
643134.3846153846154-3.38461538461539
6538362
663637.1666666666667-1.16666666666666
673333.5217391304348-0.521739130434781
683736.85714285714290.142857142857146
6941401
703933.52173913043485.47826086956522
712923.92307692307695.07692307692308
723730.53846153846156.46153846153846
733936.64705882352942.35294117647059
7442402
754243.2-1.2
7637361
773535.9166666666667-0.916666666666664
783332.60.399999999999999
7939363
802932.6-3.6
813032.6-2.6
823536-1
833330.53846153846152.46153846153846
843430.56253.4375
853536.6470588235294-1.64705882352941
8637361
874243.2-1.2
883937.16666666666671.83333333333334
894032.67.4
9042402
914143.2-2.2
923033.5217391304348-3.52173913043478
933434.3846153846154-0.384615384615387
943636.8571428571429-0.857142857142854
953532.62.4
964239.152.85
973939.15-0.149999999999999
983832.65.4
993736.64705882352940.352941176470587
1004343.2-0.200000000000003
1014437.16666666666676.83333333333334
10238362
1033836.85714285714291.14285714285715
1043330.56252.4375
1053737.1666666666667-0.166666666666664
1064239.152.85
1073030.5625-0.5625
1084233.52173913043488.47826086956522
1093132.6-1.6
1104039.150.850000000000001
1113030.5625-0.5625
1123233.5217391304348-1.52173913043478
11339363
1143432.61.4
11537361
11637361
1173837.16666666666670.833333333333336
1183735.91666666666671.08333333333334
1193636.6470588235294-0.647058823529413
1203537.1666666666667-2.16666666666666
12140400
1223736.85714285714290.142857142857146
1233032.6-2.6
1243333.5217391304348-0.521739130434781
1252830.5384615384615-2.53846153846154
1263130.53846153846150.46153846153846
1273335.9166666666667-2.91666666666666
1284036.64705882352943.35294117647059
1293639.15-3.15
1303640-4
1313332.60.399999999999999
13240400
1333030.5625-0.5625
1343533.52173913043481.47826086956522
1353233.5217391304348-1.52173913043478
1362523.92307692307691.07692307692308
1373839.15-1.15
13837361
1393333.5217391304348-0.521739130434781
1403032.6-2.6
1413839.15-1.15
1423839.15-1.15
1433439.15-5.15
1443633.52173913043482.47826086956522
1452830.5384615384615-2.53846153846154
1464039.150.850000000000001
1473634.38461538461541.61538461538461
1482933.5217391304348-4.52173913043478
14940400
1503637.1666666666667-1.16666666666666
1514136.64705882352944.35294117647059
1524039.150.850000000000001
1533634.38461538461541.61538461538461
1542230.5625-8.5625
1553537.1666666666667-2.16666666666666
1564043.2-3.2
1573839.15-1.15
1583530.53846153846154.46153846153846
1593336.6470588235294-3.64705882352941
1603936.64705882352942.35294117647059
1614943.25.8
1623637.1666666666667-1.16666666666666
1634139.151.85
1643535.9166666666667-0.916666666666664
1653530.56254.4375
16642402
1673734.38461538461542.61538461538461
1683636.6470588235294-0.647058823529413
1693940-1
1703233.5217391304348-1.52173913043478
1713737.1666666666667-0.166666666666664
1723535.9166666666667-0.916666666666664
1733940-1
1743935.91666666666673.08333333333334
1752523.92307692307691.07692307692308
1763532.62.4
1773836.64705882352941.35294117647059
1784239.152.85
1793434.3846153846154-0.384615384615387
1802623.92307692307692.07692307692308
1813436.6470588235294-2.64705882352941
1822623.92307692307692.07692307692308
1833333.5217391304348-0.521739130434781
1843936.85714285714292.14285714285715
1853232.6-0.600000000000001
1864243.2-1.2
1873434.3846153846154-0.384615384615387
1883834.38461538461543.61538461538461
1894143.2-2.2
1903632.63.4
1913635.91666666666670.0833333333333357
1923432.61.4
1933434.3846153846154-0.384615384615387
1943030.5625-0.5625
1953532.62.4
1963232.6-0.600000000000001
19742402
1983837.16666666666670.833333333333336
1993030.5384615384615-0.53846153846154
2003333.5217391304348-0.521739130434781
2014036.64705882352943.35294117647059
2023332.60.399999999999999
20338362
2042623.92307692307692.07692307692308
2054239.152.85
2063436.8571428571429-2.85714285714285
2073635.91666666666670.0833333333333357
2083635.91666666666670.0833333333333357
2092932.6-3.6
2104443.20.799999999999997
2113330.56252.4375
2123435.9166666666667-1.91666666666666
2133330.56252.4375
2143840-2
2154139.151.85
2163230.53846153846151.46153846153846
2173132.6-1.6
2183030.5625-0.5625
2193733.52173913043483.47826086956522
2203023.92307692307696.07692307692308
2211823.9230769230769-5.92307692307692
2223130.53846153846150.46153846153846
2234843.24.8
2243333.5217391304348-0.521739130434781
22537361

\begin{tabular}{lllllllll}
\hline
Actuals, Predictions, and Residuals \tabularnewline
# & Actuals & Forecasts & Residuals \tabularnewline
1 & 28 & 32.6 & -4.6 \tabularnewline
2 & 36 & 32.6 & 3.4 \tabularnewline
3 & 36 & 35.9166666666667 & 0.0833333333333357 \tabularnewline
4 & 30 & 32.6 & -2.6 \tabularnewline
5 & 36 & 36.6470588235294 & -0.647058823529413 \tabularnewline
6 & 33 & 33.5217391304348 & -0.521739130434781 \tabularnewline
7 & 16 & 23.9230769230769 & -7.92307692307692 \tabularnewline
8 & 31 & 30.5625 & 0.4375 \tabularnewline
9 & 39 & 39.15 & -0.149999999999999 \tabularnewline
10 & 32 & 34.3846153846154 & -2.38461538461539 \tabularnewline
11 & 30 & 30.5625 & -0.5625 \tabularnewline
12 & 34 & 36 & -2 \tabularnewline
13 & 34 & 36 & -2 \tabularnewline
14 & 26 & 30.5384615384615 & -4.53846153846154 \tabularnewline
15 & 21 & 23.9230769230769 & -2.92307692307692 \tabularnewline
16 & 35 & 36 & -1 \tabularnewline
17 & 35 & 36.6470588235294 & -1.64705882352941 \tabularnewline
18 & 34 & 36.6470588235294 & -2.64705882352941 \tabularnewline
19 & 19 & 23.9230769230769 & -4.92307692307692 \tabularnewline
20 & 36 & 36.6470588235294 & -0.647058823529413 \tabularnewline
21 & 32 & 30.5625 & 1.4375 \tabularnewline
22 & 33 & 32.6 & 0.399999999999999 \tabularnewline
23 & 37 & 37.1666666666667 & -0.166666666666664 \tabularnewline
24 & 22 & 30.5384615384615 & -8.53846153846154 \tabularnewline
25 & 33 & 33.5217391304348 & -0.521739130434781 \tabularnewline
26 & 31 & 32.6 & -1.6 \tabularnewline
27 & 33 & 32.6 & 0.399999999999999 \tabularnewline
28 & 31 & 32.6 & -1.6 \tabularnewline
29 & 26 & 23.9230769230769 & 2.07692307692308 \tabularnewline
30 & 27 & 30.5625 & -3.5625 \tabularnewline
31 & 38 & 37.1666666666667 & 0.833333333333336 \tabularnewline
32 & 34 & 36 & -2 \tabularnewline
33 & 32 & 36 & -4 \tabularnewline
34 & 38 & 39.15 & -1.15 \tabularnewline
35 & 33 & 34.3846153846154 & -1.38461538461539 \tabularnewline
36 & 34 & 33.5217391304348 & 0.478260869565219 \tabularnewline
37 & 37 & 36.8571428571429 & 0.142857142857146 \tabularnewline
38 & 33 & 33.5217391304348 & -0.521739130434781 \tabularnewline
39 & 34 & 32.6 & 1.4 \tabularnewline
40 & 35 & 37.1666666666667 & -2.16666666666666 \tabularnewline
41 & 32 & 33.5217391304348 & -1.52173913043478 \tabularnewline
42 & 32 & 30.5384615384615 & 1.46153846153846 \tabularnewline
43 & 33 & 32.6 & 0.399999999999999 \tabularnewline
44 & 35 & 36 & -1 \tabularnewline
45 & 38 & 37.1666666666667 & 0.833333333333336 \tabularnewline
46 & 36 & 34.3846153846154 & 1.61538461538461 \tabularnewline
47 & 24 & 23.9230769230769 & 0.0769230769230766 \tabularnewline
48 & 34 & 36.6470588235294 & -2.64705882352941 \tabularnewline
49 & 41 & 39.15 & 1.85 \tabularnewline
50 & 34 & 36 & -2 \tabularnewline
51 & 39 & 35.9166666666667 & 3.08333333333334 \tabularnewline
52 & 32 & 30.5384615384615 & 1.46153846153846 \tabularnewline
53 & 29 & 30.5625 & -1.5625 \tabularnewline
54 & 33 & 36 & -3 \tabularnewline
55 & 30 & 33.5217391304348 & -3.52173913043478 \tabularnewline
56 & 39 & 37.1666666666667 & 1.83333333333334 \tabularnewline
57 & 39 & 40 & -1 \tabularnewline
58 & 32 & 34.3846153846154 & -2.38461538461539 \tabularnewline
59 & 35 & 37.1666666666667 & -2.16666666666666 \tabularnewline
60 & 36 & 37.1666666666667 & -1.16666666666666 \tabularnewline
61 & 34 & 39.15 & -5.15 \tabularnewline
62 & 29 & 32.6 & -3.6 \tabularnewline
63 & 34 & 33.5217391304348 & 0.478260869565219 \tabularnewline
64 & 31 & 34.3846153846154 & -3.38461538461539 \tabularnewline
65 & 38 & 36 & 2 \tabularnewline
66 & 36 & 37.1666666666667 & -1.16666666666666 \tabularnewline
67 & 33 & 33.5217391304348 & -0.521739130434781 \tabularnewline
68 & 37 & 36.8571428571429 & 0.142857142857146 \tabularnewline
69 & 41 & 40 & 1 \tabularnewline
70 & 39 & 33.5217391304348 & 5.47826086956522 \tabularnewline
71 & 29 & 23.9230769230769 & 5.07692307692308 \tabularnewline
72 & 37 & 30.5384615384615 & 6.46153846153846 \tabularnewline
73 & 39 & 36.6470588235294 & 2.35294117647059 \tabularnewline
74 & 42 & 40 & 2 \tabularnewline
75 & 42 & 43.2 & -1.2 \tabularnewline
76 & 37 & 36 & 1 \tabularnewline
77 & 35 & 35.9166666666667 & -0.916666666666664 \tabularnewline
78 & 33 & 32.6 & 0.399999999999999 \tabularnewline
79 & 39 & 36 & 3 \tabularnewline
80 & 29 & 32.6 & -3.6 \tabularnewline
81 & 30 & 32.6 & -2.6 \tabularnewline
82 & 35 & 36 & -1 \tabularnewline
83 & 33 & 30.5384615384615 & 2.46153846153846 \tabularnewline
84 & 34 & 30.5625 & 3.4375 \tabularnewline
85 & 35 & 36.6470588235294 & -1.64705882352941 \tabularnewline
86 & 37 & 36 & 1 \tabularnewline
87 & 42 & 43.2 & -1.2 \tabularnewline
88 & 39 & 37.1666666666667 & 1.83333333333334 \tabularnewline
89 & 40 & 32.6 & 7.4 \tabularnewline
90 & 42 & 40 & 2 \tabularnewline
91 & 41 & 43.2 & -2.2 \tabularnewline
92 & 30 & 33.5217391304348 & -3.52173913043478 \tabularnewline
93 & 34 & 34.3846153846154 & -0.384615384615387 \tabularnewline
94 & 36 & 36.8571428571429 & -0.857142857142854 \tabularnewline
95 & 35 & 32.6 & 2.4 \tabularnewline
96 & 42 & 39.15 & 2.85 \tabularnewline
97 & 39 & 39.15 & -0.149999999999999 \tabularnewline
98 & 38 & 32.6 & 5.4 \tabularnewline
99 & 37 & 36.6470588235294 & 0.352941176470587 \tabularnewline
100 & 43 & 43.2 & -0.200000000000003 \tabularnewline
101 & 44 & 37.1666666666667 & 6.83333333333334 \tabularnewline
102 & 38 & 36 & 2 \tabularnewline
103 & 38 & 36.8571428571429 & 1.14285714285715 \tabularnewline
104 & 33 & 30.5625 & 2.4375 \tabularnewline
105 & 37 & 37.1666666666667 & -0.166666666666664 \tabularnewline
106 & 42 & 39.15 & 2.85 \tabularnewline
107 & 30 & 30.5625 & -0.5625 \tabularnewline
108 & 42 & 33.5217391304348 & 8.47826086956522 \tabularnewline
109 & 31 & 32.6 & -1.6 \tabularnewline
110 & 40 & 39.15 & 0.850000000000001 \tabularnewline
111 & 30 & 30.5625 & -0.5625 \tabularnewline
112 & 32 & 33.5217391304348 & -1.52173913043478 \tabularnewline
113 & 39 & 36 & 3 \tabularnewline
114 & 34 & 32.6 & 1.4 \tabularnewline
115 & 37 & 36 & 1 \tabularnewline
116 & 37 & 36 & 1 \tabularnewline
117 & 38 & 37.1666666666667 & 0.833333333333336 \tabularnewline
118 & 37 & 35.9166666666667 & 1.08333333333334 \tabularnewline
119 & 36 & 36.6470588235294 & -0.647058823529413 \tabularnewline
120 & 35 & 37.1666666666667 & -2.16666666666666 \tabularnewline
121 & 40 & 40 & 0 \tabularnewline
122 & 37 & 36.8571428571429 & 0.142857142857146 \tabularnewline
123 & 30 & 32.6 & -2.6 \tabularnewline
124 & 33 & 33.5217391304348 & -0.521739130434781 \tabularnewline
125 & 28 & 30.5384615384615 & -2.53846153846154 \tabularnewline
126 & 31 & 30.5384615384615 & 0.46153846153846 \tabularnewline
127 & 33 & 35.9166666666667 & -2.91666666666666 \tabularnewline
128 & 40 & 36.6470588235294 & 3.35294117647059 \tabularnewline
129 & 36 & 39.15 & -3.15 \tabularnewline
130 & 36 & 40 & -4 \tabularnewline
131 & 33 & 32.6 & 0.399999999999999 \tabularnewline
132 & 40 & 40 & 0 \tabularnewline
133 & 30 & 30.5625 & -0.5625 \tabularnewline
134 & 35 & 33.5217391304348 & 1.47826086956522 \tabularnewline
135 & 32 & 33.5217391304348 & -1.52173913043478 \tabularnewline
136 & 25 & 23.9230769230769 & 1.07692307692308 \tabularnewline
137 & 38 & 39.15 & -1.15 \tabularnewline
138 & 37 & 36 & 1 \tabularnewline
139 & 33 & 33.5217391304348 & -0.521739130434781 \tabularnewline
140 & 30 & 32.6 & -2.6 \tabularnewline
141 & 38 & 39.15 & -1.15 \tabularnewline
142 & 38 & 39.15 & -1.15 \tabularnewline
143 & 34 & 39.15 & -5.15 \tabularnewline
144 & 36 & 33.5217391304348 & 2.47826086956522 \tabularnewline
145 & 28 & 30.5384615384615 & -2.53846153846154 \tabularnewline
146 & 40 & 39.15 & 0.850000000000001 \tabularnewline
147 & 36 & 34.3846153846154 & 1.61538461538461 \tabularnewline
148 & 29 & 33.5217391304348 & -4.52173913043478 \tabularnewline
149 & 40 & 40 & 0 \tabularnewline
150 & 36 & 37.1666666666667 & -1.16666666666666 \tabularnewline
151 & 41 & 36.6470588235294 & 4.35294117647059 \tabularnewline
152 & 40 & 39.15 & 0.850000000000001 \tabularnewline
153 & 36 & 34.3846153846154 & 1.61538461538461 \tabularnewline
154 & 22 & 30.5625 & -8.5625 \tabularnewline
155 & 35 & 37.1666666666667 & -2.16666666666666 \tabularnewline
156 & 40 & 43.2 & -3.2 \tabularnewline
157 & 38 & 39.15 & -1.15 \tabularnewline
158 & 35 & 30.5384615384615 & 4.46153846153846 \tabularnewline
159 & 33 & 36.6470588235294 & -3.64705882352941 \tabularnewline
160 & 39 & 36.6470588235294 & 2.35294117647059 \tabularnewline
161 & 49 & 43.2 & 5.8 \tabularnewline
162 & 36 & 37.1666666666667 & -1.16666666666666 \tabularnewline
163 & 41 & 39.15 & 1.85 \tabularnewline
164 & 35 & 35.9166666666667 & -0.916666666666664 \tabularnewline
165 & 35 & 30.5625 & 4.4375 \tabularnewline
166 & 42 & 40 & 2 \tabularnewline
167 & 37 & 34.3846153846154 & 2.61538461538461 \tabularnewline
168 & 36 & 36.6470588235294 & -0.647058823529413 \tabularnewline
169 & 39 & 40 & -1 \tabularnewline
170 & 32 & 33.5217391304348 & -1.52173913043478 \tabularnewline
171 & 37 & 37.1666666666667 & -0.166666666666664 \tabularnewline
172 & 35 & 35.9166666666667 & -0.916666666666664 \tabularnewline
173 & 39 & 40 & -1 \tabularnewline
174 & 39 & 35.9166666666667 & 3.08333333333334 \tabularnewline
175 & 25 & 23.9230769230769 & 1.07692307692308 \tabularnewline
176 & 35 & 32.6 & 2.4 \tabularnewline
177 & 38 & 36.6470588235294 & 1.35294117647059 \tabularnewline
178 & 42 & 39.15 & 2.85 \tabularnewline
179 & 34 & 34.3846153846154 & -0.384615384615387 \tabularnewline
180 & 26 & 23.9230769230769 & 2.07692307692308 \tabularnewline
181 & 34 & 36.6470588235294 & -2.64705882352941 \tabularnewline
182 & 26 & 23.9230769230769 & 2.07692307692308 \tabularnewline
183 & 33 & 33.5217391304348 & -0.521739130434781 \tabularnewline
184 & 39 & 36.8571428571429 & 2.14285714285715 \tabularnewline
185 & 32 & 32.6 & -0.600000000000001 \tabularnewline
186 & 42 & 43.2 & -1.2 \tabularnewline
187 & 34 & 34.3846153846154 & -0.384615384615387 \tabularnewline
188 & 38 & 34.3846153846154 & 3.61538461538461 \tabularnewline
189 & 41 & 43.2 & -2.2 \tabularnewline
190 & 36 & 32.6 & 3.4 \tabularnewline
191 & 36 & 35.9166666666667 & 0.0833333333333357 \tabularnewline
192 & 34 & 32.6 & 1.4 \tabularnewline
193 & 34 & 34.3846153846154 & -0.384615384615387 \tabularnewline
194 & 30 & 30.5625 & -0.5625 \tabularnewline
195 & 35 & 32.6 & 2.4 \tabularnewline
196 & 32 & 32.6 & -0.600000000000001 \tabularnewline
197 & 42 & 40 & 2 \tabularnewline
198 & 38 & 37.1666666666667 & 0.833333333333336 \tabularnewline
199 & 30 & 30.5384615384615 & -0.53846153846154 \tabularnewline
200 & 33 & 33.5217391304348 & -0.521739130434781 \tabularnewline
201 & 40 & 36.6470588235294 & 3.35294117647059 \tabularnewline
202 & 33 & 32.6 & 0.399999999999999 \tabularnewline
203 & 38 & 36 & 2 \tabularnewline
204 & 26 & 23.9230769230769 & 2.07692307692308 \tabularnewline
205 & 42 & 39.15 & 2.85 \tabularnewline
206 & 34 & 36.8571428571429 & -2.85714285714285 \tabularnewline
207 & 36 & 35.9166666666667 & 0.0833333333333357 \tabularnewline
208 & 36 & 35.9166666666667 & 0.0833333333333357 \tabularnewline
209 & 29 & 32.6 & -3.6 \tabularnewline
210 & 44 & 43.2 & 0.799999999999997 \tabularnewline
211 & 33 & 30.5625 & 2.4375 \tabularnewline
212 & 34 & 35.9166666666667 & -1.91666666666666 \tabularnewline
213 & 33 & 30.5625 & 2.4375 \tabularnewline
214 & 38 & 40 & -2 \tabularnewline
215 & 41 & 39.15 & 1.85 \tabularnewline
216 & 32 & 30.5384615384615 & 1.46153846153846 \tabularnewline
217 & 31 & 32.6 & -1.6 \tabularnewline
218 & 30 & 30.5625 & -0.5625 \tabularnewline
219 & 37 & 33.5217391304348 & 3.47826086956522 \tabularnewline
220 & 30 & 23.9230769230769 & 6.07692307692308 \tabularnewline
221 & 18 & 23.9230769230769 & -5.92307692307692 \tabularnewline
222 & 31 & 30.5384615384615 & 0.46153846153846 \tabularnewline
223 & 48 & 43.2 & 4.8 \tabularnewline
224 & 33 & 33.5217391304348 & -0.521739130434781 \tabularnewline
225 & 37 & 36 & 1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=165752&T=2

[TABLE]
[ROW][C]Actuals, Predictions, and Residuals[/C][/ROW]
[ROW][C]#[/C][C]Actuals[/C][C]Forecasts[/C][C]Residuals[/C][/ROW]
[ROW][C]1[/C][C]28[/C][C]32.6[/C][C]-4.6[/C][/ROW]
[ROW][C]2[/C][C]36[/C][C]32.6[/C][C]3.4[/C][/ROW]
[ROW][C]3[/C][C]36[/C][C]35.9166666666667[/C][C]0.0833333333333357[/C][/ROW]
[ROW][C]4[/C][C]30[/C][C]32.6[/C][C]-2.6[/C][/ROW]
[ROW][C]5[/C][C]36[/C][C]36.6470588235294[/C][C]-0.647058823529413[/C][/ROW]
[ROW][C]6[/C][C]33[/C][C]33.5217391304348[/C][C]-0.521739130434781[/C][/ROW]
[ROW][C]7[/C][C]16[/C][C]23.9230769230769[/C][C]-7.92307692307692[/C][/ROW]
[ROW][C]8[/C][C]31[/C][C]30.5625[/C][C]0.4375[/C][/ROW]
[ROW][C]9[/C][C]39[/C][C]39.15[/C][C]-0.149999999999999[/C][/ROW]
[ROW][C]10[/C][C]32[/C][C]34.3846153846154[/C][C]-2.38461538461539[/C][/ROW]
[ROW][C]11[/C][C]30[/C][C]30.5625[/C][C]-0.5625[/C][/ROW]
[ROW][C]12[/C][C]34[/C][C]36[/C][C]-2[/C][/ROW]
[ROW][C]13[/C][C]34[/C][C]36[/C][C]-2[/C][/ROW]
[ROW][C]14[/C][C]26[/C][C]30.5384615384615[/C][C]-4.53846153846154[/C][/ROW]
[ROW][C]15[/C][C]21[/C][C]23.9230769230769[/C][C]-2.92307692307692[/C][/ROW]
[ROW][C]16[/C][C]35[/C][C]36[/C][C]-1[/C][/ROW]
[ROW][C]17[/C][C]35[/C][C]36.6470588235294[/C][C]-1.64705882352941[/C][/ROW]
[ROW][C]18[/C][C]34[/C][C]36.6470588235294[/C][C]-2.64705882352941[/C][/ROW]
[ROW][C]19[/C][C]19[/C][C]23.9230769230769[/C][C]-4.92307692307692[/C][/ROW]
[ROW][C]20[/C][C]36[/C][C]36.6470588235294[/C][C]-0.647058823529413[/C][/ROW]
[ROW][C]21[/C][C]32[/C][C]30.5625[/C][C]1.4375[/C][/ROW]
[ROW][C]22[/C][C]33[/C][C]32.6[/C][C]0.399999999999999[/C][/ROW]
[ROW][C]23[/C][C]37[/C][C]37.1666666666667[/C][C]-0.166666666666664[/C][/ROW]
[ROW][C]24[/C][C]22[/C][C]30.5384615384615[/C][C]-8.53846153846154[/C][/ROW]
[ROW][C]25[/C][C]33[/C][C]33.5217391304348[/C][C]-0.521739130434781[/C][/ROW]
[ROW][C]26[/C][C]31[/C][C]32.6[/C][C]-1.6[/C][/ROW]
[ROW][C]27[/C][C]33[/C][C]32.6[/C][C]0.399999999999999[/C][/ROW]
[ROW][C]28[/C][C]31[/C][C]32.6[/C][C]-1.6[/C][/ROW]
[ROW][C]29[/C][C]26[/C][C]23.9230769230769[/C][C]2.07692307692308[/C][/ROW]
[ROW][C]30[/C][C]27[/C][C]30.5625[/C][C]-3.5625[/C][/ROW]
[ROW][C]31[/C][C]38[/C][C]37.1666666666667[/C][C]0.833333333333336[/C][/ROW]
[ROW][C]32[/C][C]34[/C][C]36[/C][C]-2[/C][/ROW]
[ROW][C]33[/C][C]32[/C][C]36[/C][C]-4[/C][/ROW]
[ROW][C]34[/C][C]38[/C][C]39.15[/C][C]-1.15[/C][/ROW]
[ROW][C]35[/C][C]33[/C][C]34.3846153846154[/C][C]-1.38461538461539[/C][/ROW]
[ROW][C]36[/C][C]34[/C][C]33.5217391304348[/C][C]0.478260869565219[/C][/ROW]
[ROW][C]37[/C][C]37[/C][C]36.8571428571429[/C][C]0.142857142857146[/C][/ROW]
[ROW][C]38[/C][C]33[/C][C]33.5217391304348[/C][C]-0.521739130434781[/C][/ROW]
[ROW][C]39[/C][C]34[/C][C]32.6[/C][C]1.4[/C][/ROW]
[ROW][C]40[/C][C]35[/C][C]37.1666666666667[/C][C]-2.16666666666666[/C][/ROW]
[ROW][C]41[/C][C]32[/C][C]33.5217391304348[/C][C]-1.52173913043478[/C][/ROW]
[ROW][C]42[/C][C]32[/C][C]30.5384615384615[/C][C]1.46153846153846[/C][/ROW]
[ROW][C]43[/C][C]33[/C][C]32.6[/C][C]0.399999999999999[/C][/ROW]
[ROW][C]44[/C][C]35[/C][C]36[/C][C]-1[/C][/ROW]
[ROW][C]45[/C][C]38[/C][C]37.1666666666667[/C][C]0.833333333333336[/C][/ROW]
[ROW][C]46[/C][C]36[/C][C]34.3846153846154[/C][C]1.61538461538461[/C][/ROW]
[ROW][C]47[/C][C]24[/C][C]23.9230769230769[/C][C]0.0769230769230766[/C][/ROW]
[ROW][C]48[/C][C]34[/C][C]36.6470588235294[/C][C]-2.64705882352941[/C][/ROW]
[ROW][C]49[/C][C]41[/C][C]39.15[/C][C]1.85[/C][/ROW]
[ROW][C]50[/C][C]34[/C][C]36[/C][C]-2[/C][/ROW]
[ROW][C]51[/C][C]39[/C][C]35.9166666666667[/C][C]3.08333333333334[/C][/ROW]
[ROW][C]52[/C][C]32[/C][C]30.5384615384615[/C][C]1.46153846153846[/C][/ROW]
[ROW][C]53[/C][C]29[/C][C]30.5625[/C][C]-1.5625[/C][/ROW]
[ROW][C]54[/C][C]33[/C][C]36[/C][C]-3[/C][/ROW]
[ROW][C]55[/C][C]30[/C][C]33.5217391304348[/C][C]-3.52173913043478[/C][/ROW]
[ROW][C]56[/C][C]39[/C][C]37.1666666666667[/C][C]1.83333333333334[/C][/ROW]
[ROW][C]57[/C][C]39[/C][C]40[/C][C]-1[/C][/ROW]
[ROW][C]58[/C][C]32[/C][C]34.3846153846154[/C][C]-2.38461538461539[/C][/ROW]
[ROW][C]59[/C][C]35[/C][C]37.1666666666667[/C][C]-2.16666666666666[/C][/ROW]
[ROW][C]60[/C][C]36[/C][C]37.1666666666667[/C][C]-1.16666666666666[/C][/ROW]
[ROW][C]61[/C][C]34[/C][C]39.15[/C][C]-5.15[/C][/ROW]
[ROW][C]62[/C][C]29[/C][C]32.6[/C][C]-3.6[/C][/ROW]
[ROW][C]63[/C][C]34[/C][C]33.5217391304348[/C][C]0.478260869565219[/C][/ROW]
[ROW][C]64[/C][C]31[/C][C]34.3846153846154[/C][C]-3.38461538461539[/C][/ROW]
[ROW][C]65[/C][C]38[/C][C]36[/C][C]2[/C][/ROW]
[ROW][C]66[/C][C]36[/C][C]37.1666666666667[/C][C]-1.16666666666666[/C][/ROW]
[ROW][C]67[/C][C]33[/C][C]33.5217391304348[/C][C]-0.521739130434781[/C][/ROW]
[ROW][C]68[/C][C]37[/C][C]36.8571428571429[/C][C]0.142857142857146[/C][/ROW]
[ROW][C]69[/C][C]41[/C][C]40[/C][C]1[/C][/ROW]
[ROW][C]70[/C][C]39[/C][C]33.5217391304348[/C][C]5.47826086956522[/C][/ROW]
[ROW][C]71[/C][C]29[/C][C]23.9230769230769[/C][C]5.07692307692308[/C][/ROW]
[ROW][C]72[/C][C]37[/C][C]30.5384615384615[/C][C]6.46153846153846[/C][/ROW]
[ROW][C]73[/C][C]39[/C][C]36.6470588235294[/C][C]2.35294117647059[/C][/ROW]
[ROW][C]74[/C][C]42[/C][C]40[/C][C]2[/C][/ROW]
[ROW][C]75[/C][C]42[/C][C]43.2[/C][C]-1.2[/C][/ROW]
[ROW][C]76[/C][C]37[/C][C]36[/C][C]1[/C][/ROW]
[ROW][C]77[/C][C]35[/C][C]35.9166666666667[/C][C]-0.916666666666664[/C][/ROW]
[ROW][C]78[/C][C]33[/C][C]32.6[/C][C]0.399999999999999[/C][/ROW]
[ROW][C]79[/C][C]39[/C][C]36[/C][C]3[/C][/ROW]
[ROW][C]80[/C][C]29[/C][C]32.6[/C][C]-3.6[/C][/ROW]
[ROW][C]81[/C][C]30[/C][C]32.6[/C][C]-2.6[/C][/ROW]
[ROW][C]82[/C][C]35[/C][C]36[/C][C]-1[/C][/ROW]
[ROW][C]83[/C][C]33[/C][C]30.5384615384615[/C][C]2.46153846153846[/C][/ROW]
[ROW][C]84[/C][C]34[/C][C]30.5625[/C][C]3.4375[/C][/ROW]
[ROW][C]85[/C][C]35[/C][C]36.6470588235294[/C][C]-1.64705882352941[/C][/ROW]
[ROW][C]86[/C][C]37[/C][C]36[/C][C]1[/C][/ROW]
[ROW][C]87[/C][C]42[/C][C]43.2[/C][C]-1.2[/C][/ROW]
[ROW][C]88[/C][C]39[/C][C]37.1666666666667[/C][C]1.83333333333334[/C][/ROW]
[ROW][C]89[/C][C]40[/C][C]32.6[/C][C]7.4[/C][/ROW]
[ROW][C]90[/C][C]42[/C][C]40[/C][C]2[/C][/ROW]
[ROW][C]91[/C][C]41[/C][C]43.2[/C][C]-2.2[/C][/ROW]
[ROW][C]92[/C][C]30[/C][C]33.5217391304348[/C][C]-3.52173913043478[/C][/ROW]
[ROW][C]93[/C][C]34[/C][C]34.3846153846154[/C][C]-0.384615384615387[/C][/ROW]
[ROW][C]94[/C][C]36[/C][C]36.8571428571429[/C][C]-0.857142857142854[/C][/ROW]
[ROW][C]95[/C][C]35[/C][C]32.6[/C][C]2.4[/C][/ROW]
[ROW][C]96[/C][C]42[/C][C]39.15[/C][C]2.85[/C][/ROW]
[ROW][C]97[/C][C]39[/C][C]39.15[/C][C]-0.149999999999999[/C][/ROW]
[ROW][C]98[/C][C]38[/C][C]32.6[/C][C]5.4[/C][/ROW]
[ROW][C]99[/C][C]37[/C][C]36.6470588235294[/C][C]0.352941176470587[/C][/ROW]
[ROW][C]100[/C][C]43[/C][C]43.2[/C][C]-0.200000000000003[/C][/ROW]
[ROW][C]101[/C][C]44[/C][C]37.1666666666667[/C][C]6.83333333333334[/C][/ROW]
[ROW][C]102[/C][C]38[/C][C]36[/C][C]2[/C][/ROW]
[ROW][C]103[/C][C]38[/C][C]36.8571428571429[/C][C]1.14285714285715[/C][/ROW]
[ROW][C]104[/C][C]33[/C][C]30.5625[/C][C]2.4375[/C][/ROW]
[ROW][C]105[/C][C]37[/C][C]37.1666666666667[/C][C]-0.166666666666664[/C][/ROW]
[ROW][C]106[/C][C]42[/C][C]39.15[/C][C]2.85[/C][/ROW]
[ROW][C]107[/C][C]30[/C][C]30.5625[/C][C]-0.5625[/C][/ROW]
[ROW][C]108[/C][C]42[/C][C]33.5217391304348[/C][C]8.47826086956522[/C][/ROW]
[ROW][C]109[/C][C]31[/C][C]32.6[/C][C]-1.6[/C][/ROW]
[ROW][C]110[/C][C]40[/C][C]39.15[/C][C]0.850000000000001[/C][/ROW]
[ROW][C]111[/C][C]30[/C][C]30.5625[/C][C]-0.5625[/C][/ROW]
[ROW][C]112[/C][C]32[/C][C]33.5217391304348[/C][C]-1.52173913043478[/C][/ROW]
[ROW][C]113[/C][C]39[/C][C]36[/C][C]3[/C][/ROW]
[ROW][C]114[/C][C]34[/C][C]32.6[/C][C]1.4[/C][/ROW]
[ROW][C]115[/C][C]37[/C][C]36[/C][C]1[/C][/ROW]
[ROW][C]116[/C][C]37[/C][C]36[/C][C]1[/C][/ROW]
[ROW][C]117[/C][C]38[/C][C]37.1666666666667[/C][C]0.833333333333336[/C][/ROW]
[ROW][C]118[/C][C]37[/C][C]35.9166666666667[/C][C]1.08333333333334[/C][/ROW]
[ROW][C]119[/C][C]36[/C][C]36.6470588235294[/C][C]-0.647058823529413[/C][/ROW]
[ROW][C]120[/C][C]35[/C][C]37.1666666666667[/C][C]-2.16666666666666[/C][/ROW]
[ROW][C]121[/C][C]40[/C][C]40[/C][C]0[/C][/ROW]
[ROW][C]122[/C][C]37[/C][C]36.8571428571429[/C][C]0.142857142857146[/C][/ROW]
[ROW][C]123[/C][C]30[/C][C]32.6[/C][C]-2.6[/C][/ROW]
[ROW][C]124[/C][C]33[/C][C]33.5217391304348[/C][C]-0.521739130434781[/C][/ROW]
[ROW][C]125[/C][C]28[/C][C]30.5384615384615[/C][C]-2.53846153846154[/C][/ROW]
[ROW][C]126[/C][C]31[/C][C]30.5384615384615[/C][C]0.46153846153846[/C][/ROW]
[ROW][C]127[/C][C]33[/C][C]35.9166666666667[/C][C]-2.91666666666666[/C][/ROW]
[ROW][C]128[/C][C]40[/C][C]36.6470588235294[/C][C]3.35294117647059[/C][/ROW]
[ROW][C]129[/C][C]36[/C][C]39.15[/C][C]-3.15[/C][/ROW]
[ROW][C]130[/C][C]36[/C][C]40[/C][C]-4[/C][/ROW]
[ROW][C]131[/C][C]33[/C][C]32.6[/C][C]0.399999999999999[/C][/ROW]
[ROW][C]132[/C][C]40[/C][C]40[/C][C]0[/C][/ROW]
[ROW][C]133[/C][C]30[/C][C]30.5625[/C][C]-0.5625[/C][/ROW]
[ROW][C]134[/C][C]35[/C][C]33.5217391304348[/C][C]1.47826086956522[/C][/ROW]
[ROW][C]135[/C][C]32[/C][C]33.5217391304348[/C][C]-1.52173913043478[/C][/ROW]
[ROW][C]136[/C][C]25[/C][C]23.9230769230769[/C][C]1.07692307692308[/C][/ROW]
[ROW][C]137[/C][C]38[/C][C]39.15[/C][C]-1.15[/C][/ROW]
[ROW][C]138[/C][C]37[/C][C]36[/C][C]1[/C][/ROW]
[ROW][C]139[/C][C]33[/C][C]33.5217391304348[/C][C]-0.521739130434781[/C][/ROW]
[ROW][C]140[/C][C]30[/C][C]32.6[/C][C]-2.6[/C][/ROW]
[ROW][C]141[/C][C]38[/C][C]39.15[/C][C]-1.15[/C][/ROW]
[ROW][C]142[/C][C]38[/C][C]39.15[/C][C]-1.15[/C][/ROW]
[ROW][C]143[/C][C]34[/C][C]39.15[/C][C]-5.15[/C][/ROW]
[ROW][C]144[/C][C]36[/C][C]33.5217391304348[/C][C]2.47826086956522[/C][/ROW]
[ROW][C]145[/C][C]28[/C][C]30.5384615384615[/C][C]-2.53846153846154[/C][/ROW]
[ROW][C]146[/C][C]40[/C][C]39.15[/C][C]0.850000000000001[/C][/ROW]
[ROW][C]147[/C][C]36[/C][C]34.3846153846154[/C][C]1.61538461538461[/C][/ROW]
[ROW][C]148[/C][C]29[/C][C]33.5217391304348[/C][C]-4.52173913043478[/C][/ROW]
[ROW][C]149[/C][C]40[/C][C]40[/C][C]0[/C][/ROW]
[ROW][C]150[/C][C]36[/C][C]37.1666666666667[/C][C]-1.16666666666666[/C][/ROW]
[ROW][C]151[/C][C]41[/C][C]36.6470588235294[/C][C]4.35294117647059[/C][/ROW]
[ROW][C]152[/C][C]40[/C][C]39.15[/C][C]0.850000000000001[/C][/ROW]
[ROW][C]153[/C][C]36[/C][C]34.3846153846154[/C][C]1.61538461538461[/C][/ROW]
[ROW][C]154[/C][C]22[/C][C]30.5625[/C][C]-8.5625[/C][/ROW]
[ROW][C]155[/C][C]35[/C][C]37.1666666666667[/C][C]-2.16666666666666[/C][/ROW]
[ROW][C]156[/C][C]40[/C][C]43.2[/C][C]-3.2[/C][/ROW]
[ROW][C]157[/C][C]38[/C][C]39.15[/C][C]-1.15[/C][/ROW]
[ROW][C]158[/C][C]35[/C][C]30.5384615384615[/C][C]4.46153846153846[/C][/ROW]
[ROW][C]159[/C][C]33[/C][C]36.6470588235294[/C][C]-3.64705882352941[/C][/ROW]
[ROW][C]160[/C][C]39[/C][C]36.6470588235294[/C][C]2.35294117647059[/C][/ROW]
[ROW][C]161[/C][C]49[/C][C]43.2[/C][C]5.8[/C][/ROW]
[ROW][C]162[/C][C]36[/C][C]37.1666666666667[/C][C]-1.16666666666666[/C][/ROW]
[ROW][C]163[/C][C]41[/C][C]39.15[/C][C]1.85[/C][/ROW]
[ROW][C]164[/C][C]35[/C][C]35.9166666666667[/C][C]-0.916666666666664[/C][/ROW]
[ROW][C]165[/C][C]35[/C][C]30.5625[/C][C]4.4375[/C][/ROW]
[ROW][C]166[/C][C]42[/C][C]40[/C][C]2[/C][/ROW]
[ROW][C]167[/C][C]37[/C][C]34.3846153846154[/C][C]2.61538461538461[/C][/ROW]
[ROW][C]168[/C][C]36[/C][C]36.6470588235294[/C][C]-0.647058823529413[/C][/ROW]
[ROW][C]169[/C][C]39[/C][C]40[/C][C]-1[/C][/ROW]
[ROW][C]170[/C][C]32[/C][C]33.5217391304348[/C][C]-1.52173913043478[/C][/ROW]
[ROW][C]171[/C][C]37[/C][C]37.1666666666667[/C][C]-0.166666666666664[/C][/ROW]
[ROW][C]172[/C][C]35[/C][C]35.9166666666667[/C][C]-0.916666666666664[/C][/ROW]
[ROW][C]173[/C][C]39[/C][C]40[/C][C]-1[/C][/ROW]
[ROW][C]174[/C][C]39[/C][C]35.9166666666667[/C][C]3.08333333333334[/C][/ROW]
[ROW][C]175[/C][C]25[/C][C]23.9230769230769[/C][C]1.07692307692308[/C][/ROW]
[ROW][C]176[/C][C]35[/C][C]32.6[/C][C]2.4[/C][/ROW]
[ROW][C]177[/C][C]38[/C][C]36.6470588235294[/C][C]1.35294117647059[/C][/ROW]
[ROW][C]178[/C][C]42[/C][C]39.15[/C][C]2.85[/C][/ROW]
[ROW][C]179[/C][C]34[/C][C]34.3846153846154[/C][C]-0.384615384615387[/C][/ROW]
[ROW][C]180[/C][C]26[/C][C]23.9230769230769[/C][C]2.07692307692308[/C][/ROW]
[ROW][C]181[/C][C]34[/C][C]36.6470588235294[/C][C]-2.64705882352941[/C][/ROW]
[ROW][C]182[/C][C]26[/C][C]23.9230769230769[/C][C]2.07692307692308[/C][/ROW]
[ROW][C]183[/C][C]33[/C][C]33.5217391304348[/C][C]-0.521739130434781[/C][/ROW]
[ROW][C]184[/C][C]39[/C][C]36.8571428571429[/C][C]2.14285714285715[/C][/ROW]
[ROW][C]185[/C][C]32[/C][C]32.6[/C][C]-0.600000000000001[/C][/ROW]
[ROW][C]186[/C][C]42[/C][C]43.2[/C][C]-1.2[/C][/ROW]
[ROW][C]187[/C][C]34[/C][C]34.3846153846154[/C][C]-0.384615384615387[/C][/ROW]
[ROW][C]188[/C][C]38[/C][C]34.3846153846154[/C][C]3.61538461538461[/C][/ROW]
[ROW][C]189[/C][C]41[/C][C]43.2[/C][C]-2.2[/C][/ROW]
[ROW][C]190[/C][C]36[/C][C]32.6[/C][C]3.4[/C][/ROW]
[ROW][C]191[/C][C]36[/C][C]35.9166666666667[/C][C]0.0833333333333357[/C][/ROW]
[ROW][C]192[/C][C]34[/C][C]32.6[/C][C]1.4[/C][/ROW]
[ROW][C]193[/C][C]34[/C][C]34.3846153846154[/C][C]-0.384615384615387[/C][/ROW]
[ROW][C]194[/C][C]30[/C][C]30.5625[/C][C]-0.5625[/C][/ROW]
[ROW][C]195[/C][C]35[/C][C]32.6[/C][C]2.4[/C][/ROW]
[ROW][C]196[/C][C]32[/C][C]32.6[/C][C]-0.600000000000001[/C][/ROW]
[ROW][C]197[/C][C]42[/C][C]40[/C][C]2[/C][/ROW]
[ROW][C]198[/C][C]38[/C][C]37.1666666666667[/C][C]0.833333333333336[/C][/ROW]
[ROW][C]199[/C][C]30[/C][C]30.5384615384615[/C][C]-0.53846153846154[/C][/ROW]
[ROW][C]200[/C][C]33[/C][C]33.5217391304348[/C][C]-0.521739130434781[/C][/ROW]
[ROW][C]201[/C][C]40[/C][C]36.6470588235294[/C][C]3.35294117647059[/C][/ROW]
[ROW][C]202[/C][C]33[/C][C]32.6[/C][C]0.399999999999999[/C][/ROW]
[ROW][C]203[/C][C]38[/C][C]36[/C][C]2[/C][/ROW]
[ROW][C]204[/C][C]26[/C][C]23.9230769230769[/C][C]2.07692307692308[/C][/ROW]
[ROW][C]205[/C][C]42[/C][C]39.15[/C][C]2.85[/C][/ROW]
[ROW][C]206[/C][C]34[/C][C]36.8571428571429[/C][C]-2.85714285714285[/C][/ROW]
[ROW][C]207[/C][C]36[/C][C]35.9166666666667[/C][C]0.0833333333333357[/C][/ROW]
[ROW][C]208[/C][C]36[/C][C]35.9166666666667[/C][C]0.0833333333333357[/C][/ROW]
[ROW][C]209[/C][C]29[/C][C]32.6[/C][C]-3.6[/C][/ROW]
[ROW][C]210[/C][C]44[/C][C]43.2[/C][C]0.799999999999997[/C][/ROW]
[ROW][C]211[/C][C]33[/C][C]30.5625[/C][C]2.4375[/C][/ROW]
[ROW][C]212[/C][C]34[/C][C]35.9166666666667[/C][C]-1.91666666666666[/C][/ROW]
[ROW][C]213[/C][C]33[/C][C]30.5625[/C][C]2.4375[/C][/ROW]
[ROW][C]214[/C][C]38[/C][C]40[/C][C]-2[/C][/ROW]
[ROW][C]215[/C][C]41[/C][C]39.15[/C][C]1.85[/C][/ROW]
[ROW][C]216[/C][C]32[/C][C]30.5384615384615[/C][C]1.46153846153846[/C][/ROW]
[ROW][C]217[/C][C]31[/C][C]32.6[/C][C]-1.6[/C][/ROW]
[ROW][C]218[/C][C]30[/C][C]30.5625[/C][C]-0.5625[/C][/ROW]
[ROW][C]219[/C][C]37[/C][C]33.5217391304348[/C][C]3.47826086956522[/C][/ROW]
[ROW][C]220[/C][C]30[/C][C]23.9230769230769[/C][C]6.07692307692308[/C][/ROW]
[ROW][C]221[/C][C]18[/C][C]23.9230769230769[/C][C]-5.92307692307692[/C][/ROW]
[ROW][C]222[/C][C]31[/C][C]30.5384615384615[/C][C]0.46153846153846[/C][/ROW]
[ROW][C]223[/C][C]48[/C][C]43.2[/C][C]4.8[/C][/ROW]
[ROW][C]224[/C][C]33[/C][C]33.5217391304348[/C][C]-0.521739130434781[/C][/ROW]
[ROW][C]225[/C][C]37[/C][C]36[/C][C]1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=165752&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=165752&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Actuals, Predictions, and Residuals
#ActualsForecastsResiduals
12832.6-4.6
23632.63.4
33635.91666666666670.0833333333333357
43032.6-2.6
53636.6470588235294-0.647058823529413
63333.5217391304348-0.521739130434781
71623.9230769230769-7.92307692307692
83130.56250.4375
93939.15-0.149999999999999
103234.3846153846154-2.38461538461539
113030.5625-0.5625
123436-2
133436-2
142630.5384615384615-4.53846153846154
152123.9230769230769-2.92307692307692
163536-1
173536.6470588235294-1.64705882352941
183436.6470588235294-2.64705882352941
191923.9230769230769-4.92307692307692
203636.6470588235294-0.647058823529413
213230.56251.4375
223332.60.399999999999999
233737.1666666666667-0.166666666666664
242230.5384615384615-8.53846153846154
253333.5217391304348-0.521739130434781
263132.6-1.6
273332.60.399999999999999
283132.6-1.6
292623.92307692307692.07692307692308
302730.5625-3.5625
313837.16666666666670.833333333333336
323436-2
333236-4
343839.15-1.15
353334.3846153846154-1.38461538461539
363433.52173913043480.478260869565219
373736.85714285714290.142857142857146
383333.5217391304348-0.521739130434781
393432.61.4
403537.1666666666667-2.16666666666666
413233.5217391304348-1.52173913043478
423230.53846153846151.46153846153846
433332.60.399999999999999
443536-1
453837.16666666666670.833333333333336
463634.38461538461541.61538461538461
472423.92307692307690.0769230769230766
483436.6470588235294-2.64705882352941
494139.151.85
503436-2
513935.91666666666673.08333333333334
523230.53846153846151.46153846153846
532930.5625-1.5625
543336-3
553033.5217391304348-3.52173913043478
563937.16666666666671.83333333333334
573940-1
583234.3846153846154-2.38461538461539
593537.1666666666667-2.16666666666666
603637.1666666666667-1.16666666666666
613439.15-5.15
622932.6-3.6
633433.52173913043480.478260869565219
643134.3846153846154-3.38461538461539
6538362
663637.1666666666667-1.16666666666666
673333.5217391304348-0.521739130434781
683736.85714285714290.142857142857146
6941401
703933.52173913043485.47826086956522
712923.92307692307695.07692307692308
723730.53846153846156.46153846153846
733936.64705882352942.35294117647059
7442402
754243.2-1.2
7637361
773535.9166666666667-0.916666666666664
783332.60.399999999999999
7939363
802932.6-3.6
813032.6-2.6
823536-1
833330.53846153846152.46153846153846
843430.56253.4375
853536.6470588235294-1.64705882352941
8637361
874243.2-1.2
883937.16666666666671.83333333333334
894032.67.4
9042402
914143.2-2.2
923033.5217391304348-3.52173913043478
933434.3846153846154-0.384615384615387
943636.8571428571429-0.857142857142854
953532.62.4
964239.152.85
973939.15-0.149999999999999
983832.65.4
993736.64705882352940.352941176470587
1004343.2-0.200000000000003
1014437.16666666666676.83333333333334
10238362
1033836.85714285714291.14285714285715
1043330.56252.4375
1053737.1666666666667-0.166666666666664
1064239.152.85
1073030.5625-0.5625
1084233.52173913043488.47826086956522
1093132.6-1.6
1104039.150.850000000000001
1113030.5625-0.5625
1123233.5217391304348-1.52173913043478
11339363
1143432.61.4
11537361
11637361
1173837.16666666666670.833333333333336
1183735.91666666666671.08333333333334
1193636.6470588235294-0.647058823529413
1203537.1666666666667-2.16666666666666
12140400
1223736.85714285714290.142857142857146
1233032.6-2.6
1243333.5217391304348-0.521739130434781
1252830.5384615384615-2.53846153846154
1263130.53846153846150.46153846153846
1273335.9166666666667-2.91666666666666
1284036.64705882352943.35294117647059
1293639.15-3.15
1303640-4
1313332.60.399999999999999
13240400
1333030.5625-0.5625
1343533.52173913043481.47826086956522
1353233.5217391304348-1.52173913043478
1362523.92307692307691.07692307692308
1373839.15-1.15
13837361
1393333.5217391304348-0.521739130434781
1403032.6-2.6
1413839.15-1.15
1423839.15-1.15
1433439.15-5.15
1443633.52173913043482.47826086956522
1452830.5384615384615-2.53846153846154
1464039.150.850000000000001
1473634.38461538461541.61538461538461
1482933.5217391304348-4.52173913043478
14940400
1503637.1666666666667-1.16666666666666
1514136.64705882352944.35294117647059
1524039.150.850000000000001
1533634.38461538461541.61538461538461
1542230.5625-8.5625
1553537.1666666666667-2.16666666666666
1564043.2-3.2
1573839.15-1.15
1583530.53846153846154.46153846153846
1593336.6470588235294-3.64705882352941
1603936.64705882352942.35294117647059
1614943.25.8
1623637.1666666666667-1.16666666666666
1634139.151.85
1643535.9166666666667-0.916666666666664
1653530.56254.4375
16642402
1673734.38461538461542.61538461538461
1683636.6470588235294-0.647058823529413
1693940-1
1703233.5217391304348-1.52173913043478
1713737.1666666666667-0.166666666666664
1723535.9166666666667-0.916666666666664
1733940-1
1743935.91666666666673.08333333333334
1752523.92307692307691.07692307692308
1763532.62.4
1773836.64705882352941.35294117647059
1784239.152.85
1793434.3846153846154-0.384615384615387
1802623.92307692307692.07692307692308
1813436.6470588235294-2.64705882352941
1822623.92307692307692.07692307692308
1833333.5217391304348-0.521739130434781
1843936.85714285714292.14285714285715
1853232.6-0.600000000000001
1864243.2-1.2
1873434.3846153846154-0.384615384615387
1883834.38461538461543.61538461538461
1894143.2-2.2
1903632.63.4
1913635.91666666666670.0833333333333357
1923432.61.4
1933434.3846153846154-0.384615384615387
1943030.5625-0.5625
1953532.62.4
1963232.6-0.600000000000001
19742402
1983837.16666666666670.833333333333336
1993030.5384615384615-0.53846153846154
2003333.5217391304348-0.521739130434781
2014036.64705882352943.35294117647059
2023332.60.399999999999999
20338362
2042623.92307692307692.07692307692308
2054239.152.85
2063436.8571428571429-2.85714285714285
2073635.91666666666670.0833333333333357
2083635.91666666666670.0833333333333357
2092932.6-3.6
2104443.20.799999999999997
2113330.56252.4375
2123435.9166666666667-1.91666666666666
2133330.56252.4375
2143840-2
2154139.151.85
2163230.53846153846151.46153846153846
2173132.6-1.6
2183030.5625-0.5625
2193733.52173913043483.47826086956522
2203023.92307692307696.07692307692308
2211823.9230769230769-5.92307692307692
2223130.53846153846150.46153846153846
2234843.24.8
2243333.5217391304348-0.521739130434781
22537361



Parameters (Session):
par1 = 0 ; par2 = none ; par3 = 3 ; par4 = no ; par5 = male ; par6 = bachelor ; par7 = all ; par8 = ATTLES connected ; par9 = ATTLES connected ;
Parameters (R input):
par1 = 0 ; par2 = none ; par3 = 3 ; par4 = no ; par5 = male ; par6 = bachelor ; par7 = all ; par8 = ATTLES connected ; par9 = ATTLES connected ;
R code (references can be found in the software module):
library(party)
library(Hmisc)
par1 <- as.numeric(par1)
par3 <- as.numeric(par3)
x <- as.data.frame(read.table(file='https://automated.biganalytics.eu/download/utaut.csv',sep=',',header=T))
x$U25 <- 6-x$U25
if(par5 == 'female') x <- x[x$Gender==0,]
if(par5 == 'male') x <- x[x$Gender==1,]
if(par6 == 'prep') x <- x[x$Pop==1,]
if(par6 == 'bachelor') x <- x[x$Pop==0,]
if(par7 != 'all') {
x <- x[x$Year==as.numeric(par7),]
}
cAc <- with(x,cbind( A1, A2, A3, A4, A5, A6, A7, A8, A9,A10))
cAs <- with(x,cbind(A11,A12,A13,A14,A15,A16,A17,A18,A19,A20))
cA <- cbind(cAc,cAs)
cCa <- with(x,cbind(C1,C3,C5,C7, C9,C11,C13,C15,C17,C19,C21,C23,C25,C27,C29,C31,C33,C35,C37,C39,C41,C43,C45,C47))
cCp <- with(x,cbind(C2,C4,C6,C8,C10,C12,C14,C16,C18,C20,C22,C24,C26,C28,C30,C32,C34,C36,C38,C40,C42,C44,C46,C48))
cC <- cbind(cCa,cCp)
cU <- with(x,cbind(U1,U2,U3,U4,U5,U6,U7,U8,U9,U10,U11,U12,U13,U14,U15,U16,U17,U18,U19,U20,U21,U22,U23,U24,U25,U26,U27,U28,U29,U30,U31,U32,U33))
cE <- with(x,cbind(BC,NNZFG,MRT,AFL,LPM,LPC,W,WPA))
cX <- with(x,cbind(X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,X14,X15,X16,X17,X18))
if (par8=='ATTLES connected') x <- cAc
if (par8=='ATTLES separate') x <- cAs
if (par8=='ATTLES all') x <- cA
if (par8=='COLLES actuals') x <- cCa
if (par8=='COLLES preferred') x <- cCp
if (par8=='COLLES all') x <- cC
if (par8=='CSUQ') x <- cU
if (par8=='Learning Activities') x <- cE
if (par8=='Exam Items') x <- cX
if (par9=='ATTLES connected') y <- cAc
if (par9=='ATTLES separate') y <- cAs
if (par9=='ATTLES all') y <- cA
if (par9=='COLLES actuals') y <- cCa
if (par9=='COLLES preferred') y <- cCp
if (par9=='COLLES all') y <- cC
if (par9=='CSUQ') y <- cU
if (par9=='Learning Activities') y <- cE
if (par9=='Exam Items') y <- cX
if (par1==0) {
nr <- length(y[,1])
nc <- length(y[1,])
mysum <- array(0,dim=nr)
for(jjj in 1:nr) {
for(iii in 1:nc) {
mysum[jjj] = mysum[jjj] + y[jjj,iii]
}
}
y <- mysum
} else {
y <- y[,par1]
}
nx <- cbind(y,x)
colnames(nx) <- c('endo',colnames(x))
x <- nx
par1=1
ncol <- length(x[1,])
for (jjj in 1:ncol) {
x <- x[!is.na(x[,jjj]),]
}
x <- as.data.frame(x)
k <- length(x[1,])
n <- length(x[,1])
colnames(x)[par1]
x[,par1]
if (par2 == 'kmeans') {
cl <- kmeans(x[,par1], par3)
print(cl)
clm <- matrix(cbind(cl$centers,1:par3),ncol=2)
clm <- clm[sort.list(clm[,1]),]
for (i in 1:par3) {
cl$cluster[cl$cluster==clm[i,2]] <- paste('C',i,sep='')
}
cl$cluster <- as.factor(cl$cluster)
print(cl$cluster)
x[,par1] <- cl$cluster
}
if (par2 == 'quantiles') {
x[,par1] <- cut2(x[,par1],g=par3)
}
if (par2 == 'hclust') {
hc <- hclust(dist(x[,par1])^2, 'cen')
print(hc)
memb <- cutree(hc, k = par3)
dum <- c(mean(x[memb==1,par1]))
for (i in 2:par3) {
dum <- c(dum, mean(x[memb==i,par1]))
}
hcm <- matrix(cbind(dum,1:par3),ncol=2)
hcm <- hcm[sort.list(hcm[,1]),]
for (i in 1:par3) {
memb[memb==hcm[i,2]] <- paste('C',i,sep='')
}
memb <- as.factor(memb)
print(memb)
x[,par1] <- memb
}
if (par2=='equal') {
ed <- cut(as.numeric(x[,par1]),par3,labels=paste('C',1:par3,sep=''))
x[,par1] <- as.factor(ed)
}
table(x[,par1])
colnames(x)
colnames(x)[par1]
x[,par1]
if (par2 == 'none') {
m <- ctree(as.formula(paste(colnames(x)[par1],' ~ .',sep='')),data = x)
}
load(file='createtable')
if (par2 != 'none') {
m <- ctree(as.formula(paste('as.factor(',colnames(x)[par1],') ~ .',sep='')),data = x)
if (par4=='yes') {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'10-Fold Cross Validation',3+2*par3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'',1,TRUE)
a<-table.element(a,'Prediction (training)',par3+1,TRUE)
a<-table.element(a,'Prediction (testing)',par3+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Actual',1,TRUE)
for (jjj in 1:par3) a<-table.element(a,paste('C',jjj,sep=''),1,TRUE)
a<-table.element(a,'CV',1,TRUE)
for (jjj in 1:par3) a<-table.element(a,paste('C',jjj,sep=''),1,TRUE)
a<-table.element(a,'CV',1,TRUE)
a<-table.row.end(a)
for (i in 1:10) {
ind <- sample(2, nrow(x), replace=T, prob=c(0.9,0.1))
m.ct <- ctree(as.formula(paste('as.factor(',colnames(x)[par1],') ~ .',sep='')),data =x[ind==1,])
if (i==1) {
m.ct.i.pred <- predict(m.ct, newdata=x[ind==1,])
m.ct.i.actu <- x[ind==1,par1]
m.ct.x.pred <- predict(m.ct, newdata=x[ind==2,])
m.ct.x.actu <- x[ind==2,par1]
} else {
m.ct.i.pred <- c(m.ct.i.pred,predict(m.ct, newdata=x[ind==1,]))
m.ct.i.actu <- c(m.ct.i.actu,x[ind==1,par1])
m.ct.x.pred <- c(m.ct.x.pred,predict(m.ct, newdata=x[ind==2,]))
m.ct.x.actu <- c(m.ct.x.actu,x[ind==2,par1])
}
}
print(m.ct.i.tab <- table(m.ct.i.actu,m.ct.i.pred))
numer <- 0
for (i in 1:par3) {
print(m.ct.i.tab[i,i] / sum(m.ct.i.tab[i,]))
numer <- numer + m.ct.i.tab[i,i]
}
print(m.ct.i.cp <- numer / sum(m.ct.i.tab))
print(m.ct.x.tab <- table(m.ct.x.actu,m.ct.x.pred))
numer <- 0
for (i in 1:par3) {
print(m.ct.x.tab[i,i] / sum(m.ct.x.tab[i,]))
numer <- numer + m.ct.x.tab[i,i]
}
print(m.ct.x.cp <- numer / sum(m.ct.x.tab))
for (i in 1:par3) {
a<-table.row.start(a)
a<-table.element(a,paste('C',i,sep=''),1,TRUE)
for (jjj in 1:par3) a<-table.element(a,m.ct.i.tab[i,jjj])
a<-table.element(a,round(m.ct.i.tab[i,i]/sum(m.ct.i.tab[i,]),4))
for (jjj in 1:par3) a<-table.element(a,m.ct.x.tab[i,jjj])
a<-table.element(a,round(m.ct.x.tab[i,i]/sum(m.ct.x.tab[i,]),4))
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,'Overall',1,TRUE)
for (jjj in 1:par3) a<-table.element(a,'-')
a<-table.element(a,round(m.ct.i.cp,4))
for (jjj in 1:par3) a<-table.element(a,'-')
a<-table.element(a,round(m.ct.x.cp,4))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
}
}
m
bitmap(file='test1.png')
plot(m)
dev.off()
bitmap(file='test1a.png')
plot(x[,par1] ~ as.factor(where(m)),main='Response by Terminal Node',xlab='Terminal Node',ylab='Response')
dev.off()
if (par2 == 'none') {
forec <- predict(m)
result <- as.data.frame(cbind(x[,par1],forec,x[,par1]-forec))
colnames(result) <- c('Actuals','Forecasts','Residuals')
print(result)
}
if (par2 != 'none') {
print(cbind(as.factor(x[,par1]),predict(m)))
myt <- table(as.factor(x[,par1]),predict(m))
print(myt)
}
bitmap(file='test2.png')
if(par2=='none') {
op <- par(mfrow=c(2,2))
plot(density(result$Actuals),main='Kernel Density Plot of Actuals')
plot(density(result$Residuals),main='Kernel Density Plot of Residuals')
plot(result$Forecasts,result$Actuals,main='Actuals versus Predictions',xlab='Predictions',ylab='Actuals')
plot(density(result$Forecasts),main='Kernel Density Plot of Predictions')
par(op)
}
if(par2!='none') {
plot(myt,main='Confusion Matrix',xlab='Actual',ylab='Predicted')
}
dev.off()
if (par2 == 'none') {
detcoef <- cor(result$Forecasts,result$Actuals)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goodness of Fit',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Correlation',1,TRUE)
a<-table.element(a,round(detcoef,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'R-squared',1,TRUE)
a<-table.element(a,round(detcoef*detcoef,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'RMSE',1,TRUE)
a<-table.element(a,round(sqrt(mean((result$Residuals)^2)),4))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Actuals, Predictions, and Residuals',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'#',header=TRUE)
a<-table.element(a,'Actuals',header=TRUE)
a<-table.element(a,'Forecasts',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(result$Actuals)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,result$Actuals[i])
a<-table.element(a,result$Forecasts[i])
a<-table.element(a,result$Residuals[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
}
if (par2 != 'none') {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Confusion Matrix (predicted in columns / actuals in rows)',par3+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'',1,TRUE)
for (i in 1:par3) {
a<-table.element(a,paste('C',i,sep=''),1,TRUE)
}
a<-table.row.end(a)
for (i in 1:par3) {
a<-table.row.start(a)
a<-table.element(a,paste('C',i,sep=''),1,TRUE)
for (j in 1:par3) {
a<-table.element(a,myt[i,j])
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
}