Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_edauni.wasp
Title produced by softwareUnivariate Explorative Data Analysis
Date of computationWed, 22 Oct 2008 14:42:30 -0600
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Oct/22/t1224708257l2aeqswuik6m4em.htm/, Retrieved Sun, 10 Nov 2024 19:48:09 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=18439, Retrieved Sun, 10 Nov 2024 19:48:09 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact215
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
F       [Univariate Explorative Data Analysis] [Clothing producti...] [2008-10-22 20:42:30] [6aa66640011d9b98524a5838bcf7301d] [Current]
Feedback Forum
2008-10-29 16:08:45 [Nathalie Koulouris] [reply
De student heeft voor deze vraag gebruik gemaakt van de juiste methode namelijk de Univariate Explorative Data Analysis . De grafiek van de verhouding tussen de kledingproductie en de totale productie vertoont een dalende trend; in tegenstelling tot de grafiek van de kledingproductie die een dalende trend vertoont in de eerste 2,5 jaar , dan een dieptepunt bereikt en zich vanaf dan stabiliseert. De reeksen volgen dus niet dezelfde trend.
2008-11-02 16:02:56 [Kristof Augustyns] [reply
Er is inderdaad de juiste berekening gemaakt en de kledingproductie daalt ten opzichte van de totale productie.
Je ziet duidelijk op de grafiek (run sequence plot) dat het eerste deel daalt en daarna constant blijft.
2008-11-02 19:02:07 [Annelies Michiels] [reply
De berekening die de student maakt is volledig correct.
Het klopt inderdaad dat de kledingproductie afwijkt van de totale productie.
Dit kan men bewijzen door aan te tonen dat c niet constant is maar een dalend verloop kent.

Post a new message
Dataseries X:
0,989130435
0,919087137
0,925417076
0,925612053
1,066666667
0,851108765
1,030693069
0,989031079
0,913000978
0,792723264
0,978170478
0,987513007
0,909433962
0,883608147
0,82745098
0,8252149
1,023255814
0,815418024
1,026192703
0,914742451
0,807276303
0,739130435
0,98973306
0,972164948
0,853889943
0,856864654
0,775739042
0,789473684
0,931350114
0,73971079
0,885245902
0,842435094
0,818458418
0,72755418
0,923238696
0,922680412
0,883762201
0,818270165
0,771047228
0,825852783
0,924485126
0,755165289
0,874671341
0,815956482
0,799807507
0,712598425
0,832980973
0,910323253
0,869149952
0,779182879
0,750254842
0,75856014
0,920889988
0,743991641
0,816254417
0,769593957
0,784007353
0,683284457
0,850505051
0,900695134
0,868398268




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ 193.190.124.24 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=18439&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ 193.190.124.24[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=18439&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=18439&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24







Descriptive Statistics
# observations61
minimum0.683284457
Q10.792723264
median0.853889943
mean0.86210009042623
Q30.922680412
maximum1.066666667

\begin{tabular}{lllllllll}
\hline
Descriptive Statistics \tabularnewline
# observations & 61 \tabularnewline
minimum & 0.683284457 \tabularnewline
Q1 & 0.792723264 \tabularnewline
median & 0.853889943 \tabularnewline
mean & 0.86210009042623 \tabularnewline
Q3 & 0.922680412 \tabularnewline
maximum & 1.066666667 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=18439&T=1

[TABLE]
[ROW][C]Descriptive Statistics[/C][/ROW]
[ROW][C]# observations[/C][C]61[/C][/ROW]
[ROW][C]minimum[/C][C]0.683284457[/C][/ROW]
[ROW][C]Q1[/C][C]0.792723264[/C][/ROW]
[ROW][C]median[/C][C]0.853889943[/C][/ROW]
[ROW][C]mean[/C][C]0.86210009042623[/C][/ROW]
[ROW][C]Q3[/C][C]0.922680412[/C][/ROW]
[ROW][C]maximum[/C][C]1.066666667[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=18439&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=18439&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Descriptive Statistics
# observations61
minimum0.683284457
Q10.792723264
median0.853889943
mean0.86210009042623
Q30.922680412
maximum1.066666667



Parameters (Session):
par1 = 0 ; par2 = 0 ;
Parameters (R input):
par1 = 0 ; par2 = 0 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
x <- as.ts(x)
library(lattice)
bitmap(file='pic1.png')
plot(x,type='l',main='Run Sequence Plot',xlab='time or index',ylab='value')
grid()
dev.off()
bitmap(file='pic2.png')
hist(x)
grid()
dev.off()
bitmap(file='pic3.png')
if (par1 > 0)
{
densityplot(~x,col='black',main=paste('Density Plot bw = ',par1),bw=par1)
} else {
densityplot(~x,col='black',main='Density Plot')
}
dev.off()
bitmap(file='pic4.png')
qqnorm(x)
qqline(x)
grid()
dev.off()
if (par2 > 0)
{
bitmap(file='lagplot1.png')
dum <- cbind(lag(x,k=1),x)
dum
dum1 <- dum[2:length(x),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main='Lag plot (k=1), lowess, and regression line')
lines(lowess(z))
abline(lm(z))
dev.off()
if (par2 > 1) {
bitmap(file='lagplotpar2.png')
dum <- cbind(lag(x,k=par2),x)
dum
dum1 <- dum[(par2+1):length(x),]
dum1
z <- as.data.frame(dum1)
z
mylagtitle <- 'Lag plot (k='
mylagtitle <- paste(mylagtitle,par2,sep='')
mylagtitle <- paste(mylagtitle,'), and lowess',sep='')
plot(z,main=mylagtitle)
lines(lowess(z))
dev.off()
}
bitmap(file='pic5.png')
acf(x,lag.max=par2,main='Autocorrelation Function')
grid()
dev.off()
}
summary(x)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Descriptive Statistics',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'# observations',header=TRUE)
a<-table.element(a,length(x))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'minimum',header=TRUE)
a<-table.element(a,min(x))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Q1',header=TRUE)
a<-table.element(a,quantile(x,0.25))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'median',header=TRUE)
a<-table.element(a,median(x))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mean',header=TRUE)
a<-table.element(a,mean(x))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Q3',header=TRUE)
a<-table.element(a,quantile(x,0.75))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'maximum',header=TRUE)
a<-table.element(a,max(x))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')