Free Statistics

of Irreproducible Research!

Author's title

Paper 2012, Deel 3. ANOVA & Meervoudige Regressie; multiple regression OVER...

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 18 Dec 2012 11:39:45 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2012/Dec/18/t1355848820zvd0nlshotrh9kk.htm/, Retrieved Fri, 01 Nov 2024 01:04:37 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=201494, Retrieved Fri, 01 Nov 2024 01:04:37 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact238
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [workshop 7 - mini...] [2011-11-22 23:04:34] [6bcfceba5251b173e339435c50cbedb8]
- R  D    [Multiple Regression] [Paper 2012, Deel ...] [2012-12-18 16:39:45] [e4c351aee2a0bb2c047702ea90f356fa] [Current]
Feedback Forum

Post a new message
Dataseries X:
1966	1	41
1966	2	39
1966	3	50
1966	4	40
1966	5	43
1966	6	38
1966	7	44
1966	8	35
1966	9	39
1966	10	35
1966	11	29
1966	12	49
1967	1	50
1967	2	59
1967	3	63
1967	4	32
1967	5	39
1967	6	47
1967	7	53
1967	8	60
1967	9	57
1967	10	52
1967	11	70
1967	12	90
1968	1	74
1968	2	62
1968	3	55
1968	4	84
1968	5	94
1968	6	70
1968	7	108
1968	8	139
1968	9	120
1968	10	97
1968	11	126
1968	12	149
1969	1	158
1969	2	124
1969	3	140
1969	4	109
1969	5	114
1969	6	77
1969	7	120
1969	8	133
1969	9	110
1969	10	92
1969	11	97
1969	12	78
1970	1	99
1970	2	107
1970	3	112
1970	4	90
1970	5	98
1970	6	125
1970	7	155
1970	8	190
1970	9	236
1970	10	189
1970	11	174
1970	12	178
1971	1	136
1971	2	161
1971	3	171
1971	4	149
1971	5	184
1971	6	155
1971	7	276
1971	8	224
1971	9	213
1971	10	279
1971	11	268
1971	12	287
1972	1	238
1972	2	213
1972	3	257
1972	4	293
1972	5	212
1972	6	246
1972	7	353
1972	8	339
1972	9	308
1972	10	247
1972	11	257
1972	12	322
1973	1	298
1973	2	273
1973	3	312
1973	4	249
1973	5	286
1973	6	279
1973	7	309
1973	8	401
1973	9	309
1973	10	328
1973	11	353
1973	12	354
1974	1	327
1974	2	324
1974	3	285
1974	4	243
1974	5	241
1974	6	287
1974	7	355
1974	8	460
1974	9	364
1974	10	487
1974	11	452
1974	12	391
1975	1	500
1975	2	451
1975	3	375
1975	4	372
1975	5	302
1975	6	316
1975	7	398
1975	8	394
1975	9	431
1975	10	431




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 9 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ fisher.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=201494&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]9 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ fisher.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=201494&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=201494&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net







Multiple Linear Regression - Estimated Regression Equation
robberies[t] = -82575.7915115605 + 41.9883576729426year[t] + 5.80231945607509month[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
robberies[t] =  -82575.7915115605 +  41.9883576729426year[t] +  5.80231945607509month[t]  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=201494&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]robberies[t] =  -82575.7915115605 +  41.9883576729426year[t] +  5.80231945607509month[t]  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=201494&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=201494&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
robberies[t] = -82575.7915115605 + 41.9883576729426year[t] + 5.80231945607509month[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-82575.79151156052808.958693-29.397300
year41.98835767294261.425429.457200
month5.802319456075091.1824964.90683e-062e-06

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -82575.7915115605 & 2808.958693 & -29.3973 & 0 & 0 \tabularnewline
year & 41.9883576729426 & 1.4254 & 29.4572 & 0 & 0 \tabularnewline
month & 5.80231945607509 & 1.182496 & 4.9068 & 3e-06 & 2e-06 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=201494&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-82575.7915115605[/C][C]2808.958693[/C][C]-29.3973[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]year[/C][C]41.9883576729426[/C][C]1.4254[/C][C]29.4572[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]month[/C][C]5.80231945607509[/C][C]1.182496[/C][C]4.9068[/C][C]3e-06[/C][C]2e-06[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=201494&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=201494&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-82575.79151156052808.958693-29.397300
year41.98835767294261.425429.457200
month5.802319456075091.1824964.90683e-062e-06







Multiple Linear Regression - Regression Statistics
Multiple R0.940538975417242
R-squared0.884613564278916
Adjusted R-squared0.88260684365768
F-TEST (value)440.825471626413
F-TEST (DF numerator)2
F-TEST (DF denominator)115
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation43.8711758008778
Sum Squared Residuals221338.207607425

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.940538975417242 \tabularnewline
R-squared & 0.884613564278916 \tabularnewline
Adjusted R-squared & 0.88260684365768 \tabularnewline
F-TEST (value) & 440.825471626413 \tabularnewline
F-TEST (DF numerator) & 2 \tabularnewline
F-TEST (DF denominator) & 115 \tabularnewline
p-value & 0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 43.8711758008778 \tabularnewline
Sum Squared Residuals & 221338.207607425 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=201494&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.940538975417242[/C][/ROW]
[ROW][C]R-squared[/C][C]0.884613564278916[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.88260684365768[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]440.825471626413[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]2[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]115[/C][/ROW]
[ROW][C]p-value[/C][C]0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]43.8711758008778[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]221338.207607425[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=201494&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=201494&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.940538975417242
R-squared0.884613564278916
Adjusted R-squared0.88260684365768
F-TEST (value)440.825471626413
F-TEST (DF numerator)2
F-TEST (DF denominator)115
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation43.8711758008778
Sum Squared Residuals221338.207607425







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
141-20.878007099435461.8780070994354
239-15.075687643143754.0756876431437
350-9.2733681870685659.2733681870686
440-3.4710487309934743.4710487309935
5432.3312707250816240.6687292749184
6388.1335901811567229.8664098188433
74413.935909637231830.0640903627682
83519.738229093306915.2617709066931
93925.54054854938213.459451450618
103531.34286800545713.65713199454292
112937.1451874615322-8.14518746153217
124942.94750691760726.05249308239275
135021.110350573723928.8896494262761
145926.91267002979932.087329970201
156332.714989485874130.2850105141259
163238.5173089419492-6.51730894194917
173944.3196283980243-5.31962839802426
184750.1219478540993-3.12194785409935
195355.9242673101744-2.92426731017444
206061.7265867662495-1.72658676624954
215767.5289062223246-10.5289062223246
225273.3312256783997-21.3312256783997
237079.1335451344748-9.13354513447481
249084.93586459054995.0641354094501
257463.098708246666510.9012917533335
266268.9010277027416-6.90102770274162
275574.7033471588167-19.7033471588167
288480.50566661489183.49433338510821
299486.30798607096697.69201392903312
307092.110305527042-22.110305527042
3110897.912624983117110.0873750168829
32139103.71494443919235.2850555608079
33120109.51726389526710.4827361047328
3497115.319583351342-18.3195833513423
35126121.1219028074174.87809719258258
36149126.92422226349322.0757777365075
37158105.08706591960952.9129340803909
38124110.88938537568413.1106146243158
39140116.69170483175923.3082951682407
40109122.494024287834-13.4940242878344
41114128.296343743909-14.2963437439095
4277134.098663199985-57.0986631999846
43120139.90098265606-19.9009826560597
44133145.703302112135-12.7033021121348
45110151.50562156821-41.5056215682098
4692157.307941024285-65.3079410242849
4797163.11026048036-66.11026048036
4878168.912579936435-90.9125799364351
4999147.075423592552-48.0754235925517
50107152.877743048627-45.8777430486268
51112158.680062504702-46.6800625047019
5290164.482381960777-74.482381960777
5398170.284701416852-72.2847014168521
54125176.087020872927-51.0870208729272
55155181.889340329002-26.8893403290023
56190187.6916597850772.30834021492264
57236193.49397924115242.5060207588476
58189199.296298697228-10.2962986972275
59174205.098618153303-31.0986181533026
60178210.900937609378-32.9009376093777
61136189.063781265494-53.0637812654944
62161194.866100721569-33.8661007215694
63171200.668420177645-29.6684201776445
64149206.47073963372-57.4707396337196
65184212.273059089795-28.2730590897947
66155218.07537854587-63.0753785458698
67276223.87769800194552.1223019980551
68224229.68001745802-5.68001745801997
69213235.482336914095-22.4823369140951
70279241.2846563701737.7153436298299
71268247.08697582624520.9130241737548
72287252.8892952823234.1107047176797
73238231.0521389384376.94786106156304
74213236.854458394512-23.854458394512
75257242.65677785058714.3432221494129
76293248.45909730666244.5409026933378
77212254.261416762737-42.2614167627373
78246260.063736218812-14.0637362188124
79353265.86605567488787.1339443251125
80339271.66837513096367.3316248690374
81308277.47069458703830.5293054129623
82247283.273014043113-36.2730140431128
83257289.075333499188-32.0753334991878
84322294.87765295526327.1223470447371
85298273.0404966113824.9595033886204
86273278.842816067455-5.84281606745466
87312284.6451355235327.3548644764703
88249290.447454979605-41.4474549796048
89286296.24977443568-10.2497744356799
90279302.052093891755-23.052093891755
91309307.854413347831.1455866521699
92401313.65673280390587.3432671960948
93309319.45905225998-10.4590522599803
94328325.2613717160552.73862828394465
95353331.0636911721321.9363088278696
96354336.86601062820617.1339893717945
97327315.02885428432211.9711457156778
98324320.8311737403973.16882625960273
99285326.633493196472-41.6334931964724
100243332.435812652547-89.4358126525475
101241338.238132108623-97.2381321086225
102287344.040451564698-57.0404515646976
103355349.8427710207735.15722897922728
104460355.645090476848104.354909523152
105364361.4474099329232.55259006707711
106487367.249729388998119.750270611002
107452373.05204884507378.9479511549269
108391378.85436830114812.1456316988518
109500357.017211957265142.982788042735
110451362.8195314133488.1804685866601
111375368.6218508694156.37814913058509
112372374.42417032549-2.42417032549
113302380.226489781565-78.2264897815651
114316386.02880923764-70.0288092376402
115398391.8311286937156.16887130628473
116394397.63344814979-3.63344814979036
117431403.43576760586527.5642323941346
118431409.23808706194121.7619129380595

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 41 & -20.8780070994354 & 61.8780070994354 \tabularnewline
2 & 39 & -15.0756876431437 & 54.0756876431437 \tabularnewline
3 & 50 & -9.27336818706856 & 59.2733681870686 \tabularnewline
4 & 40 & -3.47104873099347 & 43.4710487309935 \tabularnewline
5 & 43 & 2.33127072508162 & 40.6687292749184 \tabularnewline
6 & 38 & 8.13359018115672 & 29.8664098188433 \tabularnewline
7 & 44 & 13.9359096372318 & 30.0640903627682 \tabularnewline
8 & 35 & 19.7382290933069 & 15.2617709066931 \tabularnewline
9 & 39 & 25.540548549382 & 13.459451450618 \tabularnewline
10 & 35 & 31.3428680054571 & 3.65713199454292 \tabularnewline
11 & 29 & 37.1451874615322 & -8.14518746153217 \tabularnewline
12 & 49 & 42.9475069176072 & 6.05249308239275 \tabularnewline
13 & 50 & 21.1103505737239 & 28.8896494262761 \tabularnewline
14 & 59 & 26.912670029799 & 32.087329970201 \tabularnewline
15 & 63 & 32.7149894858741 & 30.2850105141259 \tabularnewline
16 & 32 & 38.5173089419492 & -6.51730894194917 \tabularnewline
17 & 39 & 44.3196283980243 & -5.31962839802426 \tabularnewline
18 & 47 & 50.1219478540993 & -3.12194785409935 \tabularnewline
19 & 53 & 55.9242673101744 & -2.92426731017444 \tabularnewline
20 & 60 & 61.7265867662495 & -1.72658676624954 \tabularnewline
21 & 57 & 67.5289062223246 & -10.5289062223246 \tabularnewline
22 & 52 & 73.3312256783997 & -21.3312256783997 \tabularnewline
23 & 70 & 79.1335451344748 & -9.13354513447481 \tabularnewline
24 & 90 & 84.9358645905499 & 5.0641354094501 \tabularnewline
25 & 74 & 63.0987082466665 & 10.9012917533335 \tabularnewline
26 & 62 & 68.9010277027416 & -6.90102770274162 \tabularnewline
27 & 55 & 74.7033471588167 & -19.7033471588167 \tabularnewline
28 & 84 & 80.5056666148918 & 3.49433338510821 \tabularnewline
29 & 94 & 86.3079860709669 & 7.69201392903312 \tabularnewline
30 & 70 & 92.110305527042 & -22.110305527042 \tabularnewline
31 & 108 & 97.9126249831171 & 10.0873750168829 \tabularnewline
32 & 139 & 103.714944439192 & 35.2850555608079 \tabularnewline
33 & 120 & 109.517263895267 & 10.4827361047328 \tabularnewline
34 & 97 & 115.319583351342 & -18.3195833513423 \tabularnewline
35 & 126 & 121.121902807417 & 4.87809719258258 \tabularnewline
36 & 149 & 126.924222263493 & 22.0757777365075 \tabularnewline
37 & 158 & 105.087065919609 & 52.9129340803909 \tabularnewline
38 & 124 & 110.889385375684 & 13.1106146243158 \tabularnewline
39 & 140 & 116.691704831759 & 23.3082951682407 \tabularnewline
40 & 109 & 122.494024287834 & -13.4940242878344 \tabularnewline
41 & 114 & 128.296343743909 & -14.2963437439095 \tabularnewline
42 & 77 & 134.098663199985 & -57.0986631999846 \tabularnewline
43 & 120 & 139.90098265606 & -19.9009826560597 \tabularnewline
44 & 133 & 145.703302112135 & -12.7033021121348 \tabularnewline
45 & 110 & 151.50562156821 & -41.5056215682098 \tabularnewline
46 & 92 & 157.307941024285 & -65.3079410242849 \tabularnewline
47 & 97 & 163.11026048036 & -66.11026048036 \tabularnewline
48 & 78 & 168.912579936435 & -90.9125799364351 \tabularnewline
49 & 99 & 147.075423592552 & -48.0754235925517 \tabularnewline
50 & 107 & 152.877743048627 & -45.8777430486268 \tabularnewline
51 & 112 & 158.680062504702 & -46.6800625047019 \tabularnewline
52 & 90 & 164.482381960777 & -74.482381960777 \tabularnewline
53 & 98 & 170.284701416852 & -72.2847014168521 \tabularnewline
54 & 125 & 176.087020872927 & -51.0870208729272 \tabularnewline
55 & 155 & 181.889340329002 & -26.8893403290023 \tabularnewline
56 & 190 & 187.691659785077 & 2.30834021492264 \tabularnewline
57 & 236 & 193.493979241152 & 42.5060207588476 \tabularnewline
58 & 189 & 199.296298697228 & -10.2962986972275 \tabularnewline
59 & 174 & 205.098618153303 & -31.0986181533026 \tabularnewline
60 & 178 & 210.900937609378 & -32.9009376093777 \tabularnewline
61 & 136 & 189.063781265494 & -53.0637812654944 \tabularnewline
62 & 161 & 194.866100721569 & -33.8661007215694 \tabularnewline
63 & 171 & 200.668420177645 & -29.6684201776445 \tabularnewline
64 & 149 & 206.47073963372 & -57.4707396337196 \tabularnewline
65 & 184 & 212.273059089795 & -28.2730590897947 \tabularnewline
66 & 155 & 218.07537854587 & -63.0753785458698 \tabularnewline
67 & 276 & 223.877698001945 & 52.1223019980551 \tabularnewline
68 & 224 & 229.68001745802 & -5.68001745801997 \tabularnewline
69 & 213 & 235.482336914095 & -22.4823369140951 \tabularnewline
70 & 279 & 241.28465637017 & 37.7153436298299 \tabularnewline
71 & 268 & 247.086975826245 & 20.9130241737548 \tabularnewline
72 & 287 & 252.88929528232 & 34.1107047176797 \tabularnewline
73 & 238 & 231.052138938437 & 6.94786106156304 \tabularnewline
74 & 213 & 236.854458394512 & -23.854458394512 \tabularnewline
75 & 257 & 242.656777850587 & 14.3432221494129 \tabularnewline
76 & 293 & 248.459097306662 & 44.5409026933378 \tabularnewline
77 & 212 & 254.261416762737 & -42.2614167627373 \tabularnewline
78 & 246 & 260.063736218812 & -14.0637362188124 \tabularnewline
79 & 353 & 265.866055674887 & 87.1339443251125 \tabularnewline
80 & 339 & 271.668375130963 & 67.3316248690374 \tabularnewline
81 & 308 & 277.470694587038 & 30.5293054129623 \tabularnewline
82 & 247 & 283.273014043113 & -36.2730140431128 \tabularnewline
83 & 257 & 289.075333499188 & -32.0753334991878 \tabularnewline
84 & 322 & 294.877652955263 & 27.1223470447371 \tabularnewline
85 & 298 & 273.04049661138 & 24.9595033886204 \tabularnewline
86 & 273 & 278.842816067455 & -5.84281606745466 \tabularnewline
87 & 312 & 284.64513552353 & 27.3548644764703 \tabularnewline
88 & 249 & 290.447454979605 & -41.4474549796048 \tabularnewline
89 & 286 & 296.24977443568 & -10.2497744356799 \tabularnewline
90 & 279 & 302.052093891755 & -23.052093891755 \tabularnewline
91 & 309 & 307.85441334783 & 1.1455866521699 \tabularnewline
92 & 401 & 313.656732803905 & 87.3432671960948 \tabularnewline
93 & 309 & 319.45905225998 & -10.4590522599803 \tabularnewline
94 & 328 & 325.261371716055 & 2.73862828394465 \tabularnewline
95 & 353 & 331.06369117213 & 21.9363088278696 \tabularnewline
96 & 354 & 336.866010628206 & 17.1339893717945 \tabularnewline
97 & 327 & 315.028854284322 & 11.9711457156778 \tabularnewline
98 & 324 & 320.831173740397 & 3.16882625960273 \tabularnewline
99 & 285 & 326.633493196472 & -41.6334931964724 \tabularnewline
100 & 243 & 332.435812652547 & -89.4358126525475 \tabularnewline
101 & 241 & 338.238132108623 & -97.2381321086225 \tabularnewline
102 & 287 & 344.040451564698 & -57.0404515646976 \tabularnewline
103 & 355 & 349.842771020773 & 5.15722897922728 \tabularnewline
104 & 460 & 355.645090476848 & 104.354909523152 \tabularnewline
105 & 364 & 361.447409932923 & 2.55259006707711 \tabularnewline
106 & 487 & 367.249729388998 & 119.750270611002 \tabularnewline
107 & 452 & 373.052048845073 & 78.9479511549269 \tabularnewline
108 & 391 & 378.854368301148 & 12.1456316988518 \tabularnewline
109 & 500 & 357.017211957265 & 142.982788042735 \tabularnewline
110 & 451 & 362.81953141334 & 88.1804685866601 \tabularnewline
111 & 375 & 368.621850869415 & 6.37814913058509 \tabularnewline
112 & 372 & 374.42417032549 & -2.42417032549 \tabularnewline
113 & 302 & 380.226489781565 & -78.2264897815651 \tabularnewline
114 & 316 & 386.02880923764 & -70.0288092376402 \tabularnewline
115 & 398 & 391.831128693715 & 6.16887130628473 \tabularnewline
116 & 394 & 397.63344814979 & -3.63344814979036 \tabularnewline
117 & 431 & 403.435767605865 & 27.5642323941346 \tabularnewline
118 & 431 & 409.238087061941 & 21.7619129380595 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=201494&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]41[/C][C]-20.8780070994354[/C][C]61.8780070994354[/C][/ROW]
[ROW][C]2[/C][C]39[/C][C]-15.0756876431437[/C][C]54.0756876431437[/C][/ROW]
[ROW][C]3[/C][C]50[/C][C]-9.27336818706856[/C][C]59.2733681870686[/C][/ROW]
[ROW][C]4[/C][C]40[/C][C]-3.47104873099347[/C][C]43.4710487309935[/C][/ROW]
[ROW][C]5[/C][C]43[/C][C]2.33127072508162[/C][C]40.6687292749184[/C][/ROW]
[ROW][C]6[/C][C]38[/C][C]8.13359018115672[/C][C]29.8664098188433[/C][/ROW]
[ROW][C]7[/C][C]44[/C][C]13.9359096372318[/C][C]30.0640903627682[/C][/ROW]
[ROW][C]8[/C][C]35[/C][C]19.7382290933069[/C][C]15.2617709066931[/C][/ROW]
[ROW][C]9[/C][C]39[/C][C]25.540548549382[/C][C]13.459451450618[/C][/ROW]
[ROW][C]10[/C][C]35[/C][C]31.3428680054571[/C][C]3.65713199454292[/C][/ROW]
[ROW][C]11[/C][C]29[/C][C]37.1451874615322[/C][C]-8.14518746153217[/C][/ROW]
[ROW][C]12[/C][C]49[/C][C]42.9475069176072[/C][C]6.05249308239275[/C][/ROW]
[ROW][C]13[/C][C]50[/C][C]21.1103505737239[/C][C]28.8896494262761[/C][/ROW]
[ROW][C]14[/C][C]59[/C][C]26.912670029799[/C][C]32.087329970201[/C][/ROW]
[ROW][C]15[/C][C]63[/C][C]32.7149894858741[/C][C]30.2850105141259[/C][/ROW]
[ROW][C]16[/C][C]32[/C][C]38.5173089419492[/C][C]-6.51730894194917[/C][/ROW]
[ROW][C]17[/C][C]39[/C][C]44.3196283980243[/C][C]-5.31962839802426[/C][/ROW]
[ROW][C]18[/C][C]47[/C][C]50.1219478540993[/C][C]-3.12194785409935[/C][/ROW]
[ROW][C]19[/C][C]53[/C][C]55.9242673101744[/C][C]-2.92426731017444[/C][/ROW]
[ROW][C]20[/C][C]60[/C][C]61.7265867662495[/C][C]-1.72658676624954[/C][/ROW]
[ROW][C]21[/C][C]57[/C][C]67.5289062223246[/C][C]-10.5289062223246[/C][/ROW]
[ROW][C]22[/C][C]52[/C][C]73.3312256783997[/C][C]-21.3312256783997[/C][/ROW]
[ROW][C]23[/C][C]70[/C][C]79.1335451344748[/C][C]-9.13354513447481[/C][/ROW]
[ROW][C]24[/C][C]90[/C][C]84.9358645905499[/C][C]5.0641354094501[/C][/ROW]
[ROW][C]25[/C][C]74[/C][C]63.0987082466665[/C][C]10.9012917533335[/C][/ROW]
[ROW][C]26[/C][C]62[/C][C]68.9010277027416[/C][C]-6.90102770274162[/C][/ROW]
[ROW][C]27[/C][C]55[/C][C]74.7033471588167[/C][C]-19.7033471588167[/C][/ROW]
[ROW][C]28[/C][C]84[/C][C]80.5056666148918[/C][C]3.49433338510821[/C][/ROW]
[ROW][C]29[/C][C]94[/C][C]86.3079860709669[/C][C]7.69201392903312[/C][/ROW]
[ROW][C]30[/C][C]70[/C][C]92.110305527042[/C][C]-22.110305527042[/C][/ROW]
[ROW][C]31[/C][C]108[/C][C]97.9126249831171[/C][C]10.0873750168829[/C][/ROW]
[ROW][C]32[/C][C]139[/C][C]103.714944439192[/C][C]35.2850555608079[/C][/ROW]
[ROW][C]33[/C][C]120[/C][C]109.517263895267[/C][C]10.4827361047328[/C][/ROW]
[ROW][C]34[/C][C]97[/C][C]115.319583351342[/C][C]-18.3195833513423[/C][/ROW]
[ROW][C]35[/C][C]126[/C][C]121.121902807417[/C][C]4.87809719258258[/C][/ROW]
[ROW][C]36[/C][C]149[/C][C]126.924222263493[/C][C]22.0757777365075[/C][/ROW]
[ROW][C]37[/C][C]158[/C][C]105.087065919609[/C][C]52.9129340803909[/C][/ROW]
[ROW][C]38[/C][C]124[/C][C]110.889385375684[/C][C]13.1106146243158[/C][/ROW]
[ROW][C]39[/C][C]140[/C][C]116.691704831759[/C][C]23.3082951682407[/C][/ROW]
[ROW][C]40[/C][C]109[/C][C]122.494024287834[/C][C]-13.4940242878344[/C][/ROW]
[ROW][C]41[/C][C]114[/C][C]128.296343743909[/C][C]-14.2963437439095[/C][/ROW]
[ROW][C]42[/C][C]77[/C][C]134.098663199985[/C][C]-57.0986631999846[/C][/ROW]
[ROW][C]43[/C][C]120[/C][C]139.90098265606[/C][C]-19.9009826560597[/C][/ROW]
[ROW][C]44[/C][C]133[/C][C]145.703302112135[/C][C]-12.7033021121348[/C][/ROW]
[ROW][C]45[/C][C]110[/C][C]151.50562156821[/C][C]-41.5056215682098[/C][/ROW]
[ROW][C]46[/C][C]92[/C][C]157.307941024285[/C][C]-65.3079410242849[/C][/ROW]
[ROW][C]47[/C][C]97[/C][C]163.11026048036[/C][C]-66.11026048036[/C][/ROW]
[ROW][C]48[/C][C]78[/C][C]168.912579936435[/C][C]-90.9125799364351[/C][/ROW]
[ROW][C]49[/C][C]99[/C][C]147.075423592552[/C][C]-48.0754235925517[/C][/ROW]
[ROW][C]50[/C][C]107[/C][C]152.877743048627[/C][C]-45.8777430486268[/C][/ROW]
[ROW][C]51[/C][C]112[/C][C]158.680062504702[/C][C]-46.6800625047019[/C][/ROW]
[ROW][C]52[/C][C]90[/C][C]164.482381960777[/C][C]-74.482381960777[/C][/ROW]
[ROW][C]53[/C][C]98[/C][C]170.284701416852[/C][C]-72.2847014168521[/C][/ROW]
[ROW][C]54[/C][C]125[/C][C]176.087020872927[/C][C]-51.0870208729272[/C][/ROW]
[ROW][C]55[/C][C]155[/C][C]181.889340329002[/C][C]-26.8893403290023[/C][/ROW]
[ROW][C]56[/C][C]190[/C][C]187.691659785077[/C][C]2.30834021492264[/C][/ROW]
[ROW][C]57[/C][C]236[/C][C]193.493979241152[/C][C]42.5060207588476[/C][/ROW]
[ROW][C]58[/C][C]189[/C][C]199.296298697228[/C][C]-10.2962986972275[/C][/ROW]
[ROW][C]59[/C][C]174[/C][C]205.098618153303[/C][C]-31.0986181533026[/C][/ROW]
[ROW][C]60[/C][C]178[/C][C]210.900937609378[/C][C]-32.9009376093777[/C][/ROW]
[ROW][C]61[/C][C]136[/C][C]189.063781265494[/C][C]-53.0637812654944[/C][/ROW]
[ROW][C]62[/C][C]161[/C][C]194.866100721569[/C][C]-33.8661007215694[/C][/ROW]
[ROW][C]63[/C][C]171[/C][C]200.668420177645[/C][C]-29.6684201776445[/C][/ROW]
[ROW][C]64[/C][C]149[/C][C]206.47073963372[/C][C]-57.4707396337196[/C][/ROW]
[ROW][C]65[/C][C]184[/C][C]212.273059089795[/C][C]-28.2730590897947[/C][/ROW]
[ROW][C]66[/C][C]155[/C][C]218.07537854587[/C][C]-63.0753785458698[/C][/ROW]
[ROW][C]67[/C][C]276[/C][C]223.877698001945[/C][C]52.1223019980551[/C][/ROW]
[ROW][C]68[/C][C]224[/C][C]229.68001745802[/C][C]-5.68001745801997[/C][/ROW]
[ROW][C]69[/C][C]213[/C][C]235.482336914095[/C][C]-22.4823369140951[/C][/ROW]
[ROW][C]70[/C][C]279[/C][C]241.28465637017[/C][C]37.7153436298299[/C][/ROW]
[ROW][C]71[/C][C]268[/C][C]247.086975826245[/C][C]20.9130241737548[/C][/ROW]
[ROW][C]72[/C][C]287[/C][C]252.88929528232[/C][C]34.1107047176797[/C][/ROW]
[ROW][C]73[/C][C]238[/C][C]231.052138938437[/C][C]6.94786106156304[/C][/ROW]
[ROW][C]74[/C][C]213[/C][C]236.854458394512[/C][C]-23.854458394512[/C][/ROW]
[ROW][C]75[/C][C]257[/C][C]242.656777850587[/C][C]14.3432221494129[/C][/ROW]
[ROW][C]76[/C][C]293[/C][C]248.459097306662[/C][C]44.5409026933378[/C][/ROW]
[ROW][C]77[/C][C]212[/C][C]254.261416762737[/C][C]-42.2614167627373[/C][/ROW]
[ROW][C]78[/C][C]246[/C][C]260.063736218812[/C][C]-14.0637362188124[/C][/ROW]
[ROW][C]79[/C][C]353[/C][C]265.866055674887[/C][C]87.1339443251125[/C][/ROW]
[ROW][C]80[/C][C]339[/C][C]271.668375130963[/C][C]67.3316248690374[/C][/ROW]
[ROW][C]81[/C][C]308[/C][C]277.470694587038[/C][C]30.5293054129623[/C][/ROW]
[ROW][C]82[/C][C]247[/C][C]283.273014043113[/C][C]-36.2730140431128[/C][/ROW]
[ROW][C]83[/C][C]257[/C][C]289.075333499188[/C][C]-32.0753334991878[/C][/ROW]
[ROW][C]84[/C][C]322[/C][C]294.877652955263[/C][C]27.1223470447371[/C][/ROW]
[ROW][C]85[/C][C]298[/C][C]273.04049661138[/C][C]24.9595033886204[/C][/ROW]
[ROW][C]86[/C][C]273[/C][C]278.842816067455[/C][C]-5.84281606745466[/C][/ROW]
[ROW][C]87[/C][C]312[/C][C]284.64513552353[/C][C]27.3548644764703[/C][/ROW]
[ROW][C]88[/C][C]249[/C][C]290.447454979605[/C][C]-41.4474549796048[/C][/ROW]
[ROW][C]89[/C][C]286[/C][C]296.24977443568[/C][C]-10.2497744356799[/C][/ROW]
[ROW][C]90[/C][C]279[/C][C]302.052093891755[/C][C]-23.052093891755[/C][/ROW]
[ROW][C]91[/C][C]309[/C][C]307.85441334783[/C][C]1.1455866521699[/C][/ROW]
[ROW][C]92[/C][C]401[/C][C]313.656732803905[/C][C]87.3432671960948[/C][/ROW]
[ROW][C]93[/C][C]309[/C][C]319.45905225998[/C][C]-10.4590522599803[/C][/ROW]
[ROW][C]94[/C][C]328[/C][C]325.261371716055[/C][C]2.73862828394465[/C][/ROW]
[ROW][C]95[/C][C]353[/C][C]331.06369117213[/C][C]21.9363088278696[/C][/ROW]
[ROW][C]96[/C][C]354[/C][C]336.866010628206[/C][C]17.1339893717945[/C][/ROW]
[ROW][C]97[/C][C]327[/C][C]315.028854284322[/C][C]11.9711457156778[/C][/ROW]
[ROW][C]98[/C][C]324[/C][C]320.831173740397[/C][C]3.16882625960273[/C][/ROW]
[ROW][C]99[/C][C]285[/C][C]326.633493196472[/C][C]-41.6334931964724[/C][/ROW]
[ROW][C]100[/C][C]243[/C][C]332.435812652547[/C][C]-89.4358126525475[/C][/ROW]
[ROW][C]101[/C][C]241[/C][C]338.238132108623[/C][C]-97.2381321086225[/C][/ROW]
[ROW][C]102[/C][C]287[/C][C]344.040451564698[/C][C]-57.0404515646976[/C][/ROW]
[ROW][C]103[/C][C]355[/C][C]349.842771020773[/C][C]5.15722897922728[/C][/ROW]
[ROW][C]104[/C][C]460[/C][C]355.645090476848[/C][C]104.354909523152[/C][/ROW]
[ROW][C]105[/C][C]364[/C][C]361.447409932923[/C][C]2.55259006707711[/C][/ROW]
[ROW][C]106[/C][C]487[/C][C]367.249729388998[/C][C]119.750270611002[/C][/ROW]
[ROW][C]107[/C][C]452[/C][C]373.052048845073[/C][C]78.9479511549269[/C][/ROW]
[ROW][C]108[/C][C]391[/C][C]378.854368301148[/C][C]12.1456316988518[/C][/ROW]
[ROW][C]109[/C][C]500[/C][C]357.017211957265[/C][C]142.982788042735[/C][/ROW]
[ROW][C]110[/C][C]451[/C][C]362.81953141334[/C][C]88.1804685866601[/C][/ROW]
[ROW][C]111[/C][C]375[/C][C]368.621850869415[/C][C]6.37814913058509[/C][/ROW]
[ROW][C]112[/C][C]372[/C][C]374.42417032549[/C][C]-2.42417032549[/C][/ROW]
[ROW][C]113[/C][C]302[/C][C]380.226489781565[/C][C]-78.2264897815651[/C][/ROW]
[ROW][C]114[/C][C]316[/C][C]386.02880923764[/C][C]-70.0288092376402[/C][/ROW]
[ROW][C]115[/C][C]398[/C][C]391.831128693715[/C][C]6.16887130628473[/C][/ROW]
[ROW][C]116[/C][C]394[/C][C]397.63344814979[/C][C]-3.63344814979036[/C][/ROW]
[ROW][C]117[/C][C]431[/C][C]403.435767605865[/C][C]27.5642323941346[/C][/ROW]
[ROW][C]118[/C][C]431[/C][C]409.238087061941[/C][C]21.7619129380595[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=201494&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=201494&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
141-20.878007099435461.8780070994354
239-15.075687643143754.0756876431437
350-9.2733681870685659.2733681870686
440-3.4710487309934743.4710487309935
5432.3312707250816240.6687292749184
6388.1335901811567229.8664098188433
74413.935909637231830.0640903627682
83519.738229093306915.2617709066931
93925.54054854938213.459451450618
103531.34286800545713.65713199454292
112937.1451874615322-8.14518746153217
124942.94750691760726.05249308239275
135021.110350573723928.8896494262761
145926.91267002979932.087329970201
156332.714989485874130.2850105141259
163238.5173089419492-6.51730894194917
173944.3196283980243-5.31962839802426
184750.1219478540993-3.12194785409935
195355.9242673101744-2.92426731017444
206061.7265867662495-1.72658676624954
215767.5289062223246-10.5289062223246
225273.3312256783997-21.3312256783997
237079.1335451344748-9.13354513447481
249084.93586459054995.0641354094501
257463.098708246666510.9012917533335
266268.9010277027416-6.90102770274162
275574.7033471588167-19.7033471588167
288480.50566661489183.49433338510821
299486.30798607096697.69201392903312
307092.110305527042-22.110305527042
3110897.912624983117110.0873750168829
32139103.71494443919235.2850555608079
33120109.51726389526710.4827361047328
3497115.319583351342-18.3195833513423
35126121.1219028074174.87809719258258
36149126.92422226349322.0757777365075
37158105.08706591960952.9129340803909
38124110.88938537568413.1106146243158
39140116.69170483175923.3082951682407
40109122.494024287834-13.4940242878344
41114128.296343743909-14.2963437439095
4277134.098663199985-57.0986631999846
43120139.90098265606-19.9009826560597
44133145.703302112135-12.7033021121348
45110151.50562156821-41.5056215682098
4692157.307941024285-65.3079410242849
4797163.11026048036-66.11026048036
4878168.912579936435-90.9125799364351
4999147.075423592552-48.0754235925517
50107152.877743048627-45.8777430486268
51112158.680062504702-46.6800625047019
5290164.482381960777-74.482381960777
5398170.284701416852-72.2847014168521
54125176.087020872927-51.0870208729272
55155181.889340329002-26.8893403290023
56190187.6916597850772.30834021492264
57236193.49397924115242.5060207588476
58189199.296298697228-10.2962986972275
59174205.098618153303-31.0986181533026
60178210.900937609378-32.9009376093777
61136189.063781265494-53.0637812654944
62161194.866100721569-33.8661007215694
63171200.668420177645-29.6684201776445
64149206.47073963372-57.4707396337196
65184212.273059089795-28.2730590897947
66155218.07537854587-63.0753785458698
67276223.87769800194552.1223019980551
68224229.68001745802-5.68001745801997
69213235.482336914095-22.4823369140951
70279241.2846563701737.7153436298299
71268247.08697582624520.9130241737548
72287252.8892952823234.1107047176797
73238231.0521389384376.94786106156304
74213236.854458394512-23.854458394512
75257242.65677785058714.3432221494129
76293248.45909730666244.5409026933378
77212254.261416762737-42.2614167627373
78246260.063736218812-14.0637362188124
79353265.86605567488787.1339443251125
80339271.66837513096367.3316248690374
81308277.47069458703830.5293054129623
82247283.273014043113-36.2730140431128
83257289.075333499188-32.0753334991878
84322294.87765295526327.1223470447371
85298273.0404966113824.9595033886204
86273278.842816067455-5.84281606745466
87312284.6451355235327.3548644764703
88249290.447454979605-41.4474549796048
89286296.24977443568-10.2497744356799
90279302.052093891755-23.052093891755
91309307.854413347831.1455866521699
92401313.65673280390587.3432671960948
93309319.45905225998-10.4590522599803
94328325.2613717160552.73862828394465
95353331.0636911721321.9363088278696
96354336.86601062820617.1339893717945
97327315.02885428432211.9711457156778
98324320.8311737403973.16882625960273
99285326.633493196472-41.6334931964724
100243332.435812652547-89.4358126525475
101241338.238132108623-97.2381321086225
102287344.040451564698-57.0404515646976
103355349.8427710207735.15722897922728
104460355.645090476848104.354909523152
105364361.4474099329232.55259006707711
106487367.249729388998119.750270611002
107452373.05204884507378.9479511549269
108391378.85436830114812.1456316988518
109500357.017211957265142.982788042735
110451362.8195314133488.1804685866601
111375368.6218508694156.37814913058509
112372374.42417032549-2.42417032549
113302380.226489781565-78.2264897815651
114316386.02880923764-70.0288092376402
115398391.8311286937156.16887130628473
116394397.63344814979-3.63344814979036
117431403.43576760586527.5642323941346
118431409.23808706194121.7619129380595







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
60.002924770305465350.005849540610930690.997075229694535
70.0003531809992649520.0007063619985299040.999646819000735
86.65453575138491e-050.0001330907150276980.999933454642486
96.85935904881883e-061.37187180976377e-050.999993140640951
107.74425316693731e-071.54885063338746e-060.999999225574683
111.81975235458974e-073.63950470917948e-070.999999818024765
124.36709292791243e-078.73418585582485e-070.999999563290707
136.05029970213779e-081.21005994042756e-070.999999939497003
141.55353879696411e-083.10707759392822e-080.999999984464612
154.62621470543248e-099.25242941086496e-090.999999995373785
164.66606283941435e-089.33212567882869e-080.999999953339372
171.53997863350435e-083.07995726700869e-080.999999984600214
182.79402996984195e-095.58805993968389e-090.99999999720597
196.75500649600914e-101.35100129920183e-090.999999999324499
203.47717264845496e-106.95434529690993e-100.999999999652283
219.13945515912589e-111.82789103182518e-100.999999999908605
221.6330578659966e-113.26611573199319e-110.999999999983669
232.46895405766401e-114.93790811532803e-110.99999999997531
247.69362216814334e-101.53872443362867e-090.999999999230638
252.22125238822054e-104.44250477644109e-100.999999999777875
266.3721204741667e-111.27442409483334e-100.999999999936279
272.76395030400816e-115.52790060801632e-110.99999999997236
281.6862520284461e-113.37250405689221e-110.999999999983137
292.30092912721316e-114.60185825442632e-110.999999999976991
305.99800383708165e-121.19960076741633e-110.999999999994002
313.16210277649428e-116.32420555298856e-110.999999999968379
327.74245459858994e-091.54849091971799e-080.999999992257545
331.05057772261373e-082.10115544522746e-080.999999989494223
343.61291590090781e-097.22583180181561e-090.999999996387084
353.82767392080265e-097.6553478416053e-090.999999996172326
361.78675415717074e-083.57350831434148e-080.999999982132458
371.50015467516453e-073.00030935032906e-070.999999849984533
387.93902851540443e-081.58780570308089e-070.999999920609715
396.23223560891054e-081.24644712178211e-070.999999937677644
403.77825067684054e-087.55650135368108e-080.999999962217493
411.96603440043292e-083.93206880086584e-080.999999980339656
429.42109791532012e-081.88421958306402e-070.999999905789021
434.2245000763513e-088.44900015270261e-080.999999957754999
441.88611228575846e-083.77222457151693e-080.999999981138877
451.12991762771571e-082.25983525543142e-080.999999988700824
461.89464304112469e-083.78928608224938e-080.99999998105357
472.13833829042497e-084.27667658084993e-080.999999978616617
489.75624813505618e-081.95124962701124e-070.999999902437519
491.03660502387777e-072.07321004775554e-070.999999896339498
506.91136255191801e-081.3822725103836e-070.999999930886375
513.89792546829614e-087.79585093659228e-080.999999961020745
526.34998889293332e-081.26999777858666e-070.999999936500111
536.93250275476785e-081.38650055095357e-070.999999930674973
543.65981226182556e-087.31962452365112e-080.999999963401877
552.61078872389601e-085.22157744779202e-080.999999973892113
568.68638669649585e-081.73727733929917e-070.999999913136133
574.64312055725058e-069.28624111450116e-060.999995356879443
584.51918953106398e-069.03837906212797e-060.999995480810469
593.00212406421605e-066.0042481284321e-060.999996997875936
602.11041064088647e-064.22082128177293e-060.999997889589359
611.38947193166237e-062.77894386332474e-060.999998610528068
627.39561241937532e-071.47912248387506e-060.999999260438758
634.06315996269192e-078.12631992538384e-070.999999593684004
643.11484939899968e-076.22969879799936e-070.99999968851506
651.96769381757037e-073.93538763514074e-070.999999803230618
662.06846038274131e-074.13692076548262e-070.999999793153962
676.58521844810467e-061.31704368962093e-050.999993414781552
686.30915937343214e-061.26183187468643e-050.999993690840627
694.93741810155303e-069.87483620310605e-060.999995062581898
702.09886768542911e-054.19773537085821e-050.999979011323146
713.22184234991324e-056.44368469982649e-050.999967781576501
726.27547517080077e-050.0001255095034160150.999937245248292
735.05641150497002e-050.00010112823009940.99994943588495
743.10950821766762e-056.21901643533524e-050.999968904917823
752.74891201359675e-055.49782402719351e-050.999972510879864
765.77652015918534e-050.0001155304031837070.999942234798408
774.45467820765714e-058.90935641531428e-050.999955453217923
782.80927131726133e-055.61854263452266e-050.999971907286827
790.0003456202130349870.0006912404260699750.999654379786965
800.00106406488653950.0021281297730790.99893593511346
810.001029434033711080.002058868067422160.998970565966289
820.0007809154475388010.00156183089507760.999219084552461
830.000604812923022350.00120962584604470.999395187076978
840.0005033144160881710.001006628832176340.999496685583912
850.0004322185423058650.000864437084611730.999567781457694
860.000258292751644540.000516585503289080.999741707248355
870.0002282519608172690.0004565039216345370.999771748039183
880.0001659765590567210.0003319531181134430.999834023440943
899.4436683433996e-050.0001888733668679920.999905563316566
905.74711865912673e-050.0001149423731825350.999942528813409
913.25884115364219e-056.51768230728437e-050.999967411588464
920.0001835661776955660.0003671323553911310.999816433822304
930.0001040308224366220.0002080616448732440.999895969177563
945.79847818495108e-050.0001159695636990220.999942015218151
953.60260331000784e-057.20520662001567e-050.9999639739669
962.05244509134607e-054.10489018269213e-050.999979475549087
971.21374596176589e-052.42749192353177e-050.999987862540382
986.39875059926076e-061.27975011985215e-050.999993601249401
993.96762739965325e-067.93525479930651e-060.9999960323726
1001.95272394987841e-053.90544789975682e-050.999980472760501
1010.0004433698411443710.0008867396822887420.999556630158856
1020.003884526845071490.007769053690142980.996115473154929
1030.006898614822659230.01379722964531850.993101385177341
1040.009612355319975210.01922471063995040.990387644680025
1050.01598123051171180.03196246102342350.984018769488288
1060.02723853969220440.05447707938440890.972761460307796
1070.02667982821540980.05335965643081950.97332017178459
1080.01491099087726640.02982198175453290.985089009122734
1090.1173663549181650.2347327098363310.882633645081835
1100.4408230144899260.8816460289798510.559176985510074
1110.499500378070720.999000756141440.50049962192928
1120.7901001406496510.4197997187006990.20989985935035

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
6 & 0.00292477030546535 & 0.00584954061093069 & 0.997075229694535 \tabularnewline
7 & 0.000353180999264952 & 0.000706361998529904 & 0.999646819000735 \tabularnewline
8 & 6.65453575138491e-05 & 0.000133090715027698 & 0.999933454642486 \tabularnewline
9 & 6.85935904881883e-06 & 1.37187180976377e-05 & 0.999993140640951 \tabularnewline
10 & 7.74425316693731e-07 & 1.54885063338746e-06 & 0.999999225574683 \tabularnewline
11 & 1.81975235458974e-07 & 3.63950470917948e-07 & 0.999999818024765 \tabularnewline
12 & 4.36709292791243e-07 & 8.73418585582485e-07 & 0.999999563290707 \tabularnewline
13 & 6.05029970213779e-08 & 1.21005994042756e-07 & 0.999999939497003 \tabularnewline
14 & 1.55353879696411e-08 & 3.10707759392822e-08 & 0.999999984464612 \tabularnewline
15 & 4.62621470543248e-09 & 9.25242941086496e-09 & 0.999999995373785 \tabularnewline
16 & 4.66606283941435e-08 & 9.33212567882869e-08 & 0.999999953339372 \tabularnewline
17 & 1.53997863350435e-08 & 3.07995726700869e-08 & 0.999999984600214 \tabularnewline
18 & 2.79402996984195e-09 & 5.58805993968389e-09 & 0.99999999720597 \tabularnewline
19 & 6.75500649600914e-10 & 1.35100129920183e-09 & 0.999999999324499 \tabularnewline
20 & 3.47717264845496e-10 & 6.95434529690993e-10 & 0.999999999652283 \tabularnewline
21 & 9.13945515912589e-11 & 1.82789103182518e-10 & 0.999999999908605 \tabularnewline
22 & 1.6330578659966e-11 & 3.26611573199319e-11 & 0.999999999983669 \tabularnewline
23 & 2.46895405766401e-11 & 4.93790811532803e-11 & 0.99999999997531 \tabularnewline
24 & 7.69362216814334e-10 & 1.53872443362867e-09 & 0.999999999230638 \tabularnewline
25 & 2.22125238822054e-10 & 4.44250477644109e-10 & 0.999999999777875 \tabularnewline
26 & 6.3721204741667e-11 & 1.27442409483334e-10 & 0.999999999936279 \tabularnewline
27 & 2.76395030400816e-11 & 5.52790060801632e-11 & 0.99999999997236 \tabularnewline
28 & 1.6862520284461e-11 & 3.37250405689221e-11 & 0.999999999983137 \tabularnewline
29 & 2.30092912721316e-11 & 4.60185825442632e-11 & 0.999999999976991 \tabularnewline
30 & 5.99800383708165e-12 & 1.19960076741633e-11 & 0.999999999994002 \tabularnewline
31 & 3.16210277649428e-11 & 6.32420555298856e-11 & 0.999999999968379 \tabularnewline
32 & 7.74245459858994e-09 & 1.54849091971799e-08 & 0.999999992257545 \tabularnewline
33 & 1.05057772261373e-08 & 2.10115544522746e-08 & 0.999999989494223 \tabularnewline
34 & 3.61291590090781e-09 & 7.22583180181561e-09 & 0.999999996387084 \tabularnewline
35 & 3.82767392080265e-09 & 7.6553478416053e-09 & 0.999999996172326 \tabularnewline
36 & 1.78675415717074e-08 & 3.57350831434148e-08 & 0.999999982132458 \tabularnewline
37 & 1.50015467516453e-07 & 3.00030935032906e-07 & 0.999999849984533 \tabularnewline
38 & 7.93902851540443e-08 & 1.58780570308089e-07 & 0.999999920609715 \tabularnewline
39 & 6.23223560891054e-08 & 1.24644712178211e-07 & 0.999999937677644 \tabularnewline
40 & 3.77825067684054e-08 & 7.55650135368108e-08 & 0.999999962217493 \tabularnewline
41 & 1.96603440043292e-08 & 3.93206880086584e-08 & 0.999999980339656 \tabularnewline
42 & 9.42109791532012e-08 & 1.88421958306402e-07 & 0.999999905789021 \tabularnewline
43 & 4.2245000763513e-08 & 8.44900015270261e-08 & 0.999999957754999 \tabularnewline
44 & 1.88611228575846e-08 & 3.77222457151693e-08 & 0.999999981138877 \tabularnewline
45 & 1.12991762771571e-08 & 2.25983525543142e-08 & 0.999999988700824 \tabularnewline
46 & 1.89464304112469e-08 & 3.78928608224938e-08 & 0.99999998105357 \tabularnewline
47 & 2.13833829042497e-08 & 4.27667658084993e-08 & 0.999999978616617 \tabularnewline
48 & 9.75624813505618e-08 & 1.95124962701124e-07 & 0.999999902437519 \tabularnewline
49 & 1.03660502387777e-07 & 2.07321004775554e-07 & 0.999999896339498 \tabularnewline
50 & 6.91136255191801e-08 & 1.3822725103836e-07 & 0.999999930886375 \tabularnewline
51 & 3.89792546829614e-08 & 7.79585093659228e-08 & 0.999999961020745 \tabularnewline
52 & 6.34998889293332e-08 & 1.26999777858666e-07 & 0.999999936500111 \tabularnewline
53 & 6.93250275476785e-08 & 1.38650055095357e-07 & 0.999999930674973 \tabularnewline
54 & 3.65981226182556e-08 & 7.31962452365112e-08 & 0.999999963401877 \tabularnewline
55 & 2.61078872389601e-08 & 5.22157744779202e-08 & 0.999999973892113 \tabularnewline
56 & 8.68638669649585e-08 & 1.73727733929917e-07 & 0.999999913136133 \tabularnewline
57 & 4.64312055725058e-06 & 9.28624111450116e-06 & 0.999995356879443 \tabularnewline
58 & 4.51918953106398e-06 & 9.03837906212797e-06 & 0.999995480810469 \tabularnewline
59 & 3.00212406421605e-06 & 6.0042481284321e-06 & 0.999996997875936 \tabularnewline
60 & 2.11041064088647e-06 & 4.22082128177293e-06 & 0.999997889589359 \tabularnewline
61 & 1.38947193166237e-06 & 2.77894386332474e-06 & 0.999998610528068 \tabularnewline
62 & 7.39561241937532e-07 & 1.47912248387506e-06 & 0.999999260438758 \tabularnewline
63 & 4.06315996269192e-07 & 8.12631992538384e-07 & 0.999999593684004 \tabularnewline
64 & 3.11484939899968e-07 & 6.22969879799936e-07 & 0.99999968851506 \tabularnewline
65 & 1.96769381757037e-07 & 3.93538763514074e-07 & 0.999999803230618 \tabularnewline
66 & 2.06846038274131e-07 & 4.13692076548262e-07 & 0.999999793153962 \tabularnewline
67 & 6.58521844810467e-06 & 1.31704368962093e-05 & 0.999993414781552 \tabularnewline
68 & 6.30915937343214e-06 & 1.26183187468643e-05 & 0.999993690840627 \tabularnewline
69 & 4.93741810155303e-06 & 9.87483620310605e-06 & 0.999995062581898 \tabularnewline
70 & 2.09886768542911e-05 & 4.19773537085821e-05 & 0.999979011323146 \tabularnewline
71 & 3.22184234991324e-05 & 6.44368469982649e-05 & 0.999967781576501 \tabularnewline
72 & 6.27547517080077e-05 & 0.000125509503416015 & 0.999937245248292 \tabularnewline
73 & 5.05641150497002e-05 & 0.0001011282300994 & 0.99994943588495 \tabularnewline
74 & 3.10950821766762e-05 & 6.21901643533524e-05 & 0.999968904917823 \tabularnewline
75 & 2.74891201359675e-05 & 5.49782402719351e-05 & 0.999972510879864 \tabularnewline
76 & 5.77652015918534e-05 & 0.000115530403183707 & 0.999942234798408 \tabularnewline
77 & 4.45467820765714e-05 & 8.90935641531428e-05 & 0.999955453217923 \tabularnewline
78 & 2.80927131726133e-05 & 5.61854263452266e-05 & 0.999971907286827 \tabularnewline
79 & 0.000345620213034987 & 0.000691240426069975 & 0.999654379786965 \tabularnewline
80 & 0.0010640648865395 & 0.002128129773079 & 0.99893593511346 \tabularnewline
81 & 0.00102943403371108 & 0.00205886806742216 & 0.998970565966289 \tabularnewline
82 & 0.000780915447538801 & 0.0015618308950776 & 0.999219084552461 \tabularnewline
83 & 0.00060481292302235 & 0.0012096258460447 & 0.999395187076978 \tabularnewline
84 & 0.000503314416088171 & 0.00100662883217634 & 0.999496685583912 \tabularnewline
85 & 0.000432218542305865 & 0.00086443708461173 & 0.999567781457694 \tabularnewline
86 & 0.00025829275164454 & 0.00051658550328908 & 0.999741707248355 \tabularnewline
87 & 0.000228251960817269 & 0.000456503921634537 & 0.999771748039183 \tabularnewline
88 & 0.000165976559056721 & 0.000331953118113443 & 0.999834023440943 \tabularnewline
89 & 9.4436683433996e-05 & 0.000188873366867992 & 0.999905563316566 \tabularnewline
90 & 5.74711865912673e-05 & 0.000114942373182535 & 0.999942528813409 \tabularnewline
91 & 3.25884115364219e-05 & 6.51768230728437e-05 & 0.999967411588464 \tabularnewline
92 & 0.000183566177695566 & 0.000367132355391131 & 0.999816433822304 \tabularnewline
93 & 0.000104030822436622 & 0.000208061644873244 & 0.999895969177563 \tabularnewline
94 & 5.79847818495108e-05 & 0.000115969563699022 & 0.999942015218151 \tabularnewline
95 & 3.60260331000784e-05 & 7.20520662001567e-05 & 0.9999639739669 \tabularnewline
96 & 2.05244509134607e-05 & 4.10489018269213e-05 & 0.999979475549087 \tabularnewline
97 & 1.21374596176589e-05 & 2.42749192353177e-05 & 0.999987862540382 \tabularnewline
98 & 6.39875059926076e-06 & 1.27975011985215e-05 & 0.999993601249401 \tabularnewline
99 & 3.96762739965325e-06 & 7.93525479930651e-06 & 0.9999960323726 \tabularnewline
100 & 1.95272394987841e-05 & 3.90544789975682e-05 & 0.999980472760501 \tabularnewline
101 & 0.000443369841144371 & 0.000886739682288742 & 0.999556630158856 \tabularnewline
102 & 0.00388452684507149 & 0.00776905369014298 & 0.996115473154929 \tabularnewline
103 & 0.00689861482265923 & 0.0137972296453185 & 0.993101385177341 \tabularnewline
104 & 0.00961235531997521 & 0.0192247106399504 & 0.990387644680025 \tabularnewline
105 & 0.0159812305117118 & 0.0319624610234235 & 0.984018769488288 \tabularnewline
106 & 0.0272385396922044 & 0.0544770793844089 & 0.972761460307796 \tabularnewline
107 & 0.0266798282154098 & 0.0533596564308195 & 0.97332017178459 \tabularnewline
108 & 0.0149109908772664 & 0.0298219817545329 & 0.985089009122734 \tabularnewline
109 & 0.117366354918165 & 0.234732709836331 & 0.882633645081835 \tabularnewline
110 & 0.440823014489926 & 0.881646028979851 & 0.559176985510074 \tabularnewline
111 & 0.49950037807072 & 0.99900075614144 & 0.50049962192928 \tabularnewline
112 & 0.790100140649651 & 0.419799718700699 & 0.20989985935035 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=201494&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]6[/C][C]0.00292477030546535[/C][C]0.00584954061093069[/C][C]0.997075229694535[/C][/ROW]
[ROW][C]7[/C][C]0.000353180999264952[/C][C]0.000706361998529904[/C][C]0.999646819000735[/C][/ROW]
[ROW][C]8[/C][C]6.65453575138491e-05[/C][C]0.000133090715027698[/C][C]0.999933454642486[/C][/ROW]
[ROW][C]9[/C][C]6.85935904881883e-06[/C][C]1.37187180976377e-05[/C][C]0.999993140640951[/C][/ROW]
[ROW][C]10[/C][C]7.74425316693731e-07[/C][C]1.54885063338746e-06[/C][C]0.999999225574683[/C][/ROW]
[ROW][C]11[/C][C]1.81975235458974e-07[/C][C]3.63950470917948e-07[/C][C]0.999999818024765[/C][/ROW]
[ROW][C]12[/C][C]4.36709292791243e-07[/C][C]8.73418585582485e-07[/C][C]0.999999563290707[/C][/ROW]
[ROW][C]13[/C][C]6.05029970213779e-08[/C][C]1.21005994042756e-07[/C][C]0.999999939497003[/C][/ROW]
[ROW][C]14[/C][C]1.55353879696411e-08[/C][C]3.10707759392822e-08[/C][C]0.999999984464612[/C][/ROW]
[ROW][C]15[/C][C]4.62621470543248e-09[/C][C]9.25242941086496e-09[/C][C]0.999999995373785[/C][/ROW]
[ROW][C]16[/C][C]4.66606283941435e-08[/C][C]9.33212567882869e-08[/C][C]0.999999953339372[/C][/ROW]
[ROW][C]17[/C][C]1.53997863350435e-08[/C][C]3.07995726700869e-08[/C][C]0.999999984600214[/C][/ROW]
[ROW][C]18[/C][C]2.79402996984195e-09[/C][C]5.58805993968389e-09[/C][C]0.99999999720597[/C][/ROW]
[ROW][C]19[/C][C]6.75500649600914e-10[/C][C]1.35100129920183e-09[/C][C]0.999999999324499[/C][/ROW]
[ROW][C]20[/C][C]3.47717264845496e-10[/C][C]6.95434529690993e-10[/C][C]0.999999999652283[/C][/ROW]
[ROW][C]21[/C][C]9.13945515912589e-11[/C][C]1.82789103182518e-10[/C][C]0.999999999908605[/C][/ROW]
[ROW][C]22[/C][C]1.6330578659966e-11[/C][C]3.26611573199319e-11[/C][C]0.999999999983669[/C][/ROW]
[ROW][C]23[/C][C]2.46895405766401e-11[/C][C]4.93790811532803e-11[/C][C]0.99999999997531[/C][/ROW]
[ROW][C]24[/C][C]7.69362216814334e-10[/C][C]1.53872443362867e-09[/C][C]0.999999999230638[/C][/ROW]
[ROW][C]25[/C][C]2.22125238822054e-10[/C][C]4.44250477644109e-10[/C][C]0.999999999777875[/C][/ROW]
[ROW][C]26[/C][C]6.3721204741667e-11[/C][C]1.27442409483334e-10[/C][C]0.999999999936279[/C][/ROW]
[ROW][C]27[/C][C]2.76395030400816e-11[/C][C]5.52790060801632e-11[/C][C]0.99999999997236[/C][/ROW]
[ROW][C]28[/C][C]1.6862520284461e-11[/C][C]3.37250405689221e-11[/C][C]0.999999999983137[/C][/ROW]
[ROW][C]29[/C][C]2.30092912721316e-11[/C][C]4.60185825442632e-11[/C][C]0.999999999976991[/C][/ROW]
[ROW][C]30[/C][C]5.99800383708165e-12[/C][C]1.19960076741633e-11[/C][C]0.999999999994002[/C][/ROW]
[ROW][C]31[/C][C]3.16210277649428e-11[/C][C]6.32420555298856e-11[/C][C]0.999999999968379[/C][/ROW]
[ROW][C]32[/C][C]7.74245459858994e-09[/C][C]1.54849091971799e-08[/C][C]0.999999992257545[/C][/ROW]
[ROW][C]33[/C][C]1.05057772261373e-08[/C][C]2.10115544522746e-08[/C][C]0.999999989494223[/C][/ROW]
[ROW][C]34[/C][C]3.61291590090781e-09[/C][C]7.22583180181561e-09[/C][C]0.999999996387084[/C][/ROW]
[ROW][C]35[/C][C]3.82767392080265e-09[/C][C]7.6553478416053e-09[/C][C]0.999999996172326[/C][/ROW]
[ROW][C]36[/C][C]1.78675415717074e-08[/C][C]3.57350831434148e-08[/C][C]0.999999982132458[/C][/ROW]
[ROW][C]37[/C][C]1.50015467516453e-07[/C][C]3.00030935032906e-07[/C][C]0.999999849984533[/C][/ROW]
[ROW][C]38[/C][C]7.93902851540443e-08[/C][C]1.58780570308089e-07[/C][C]0.999999920609715[/C][/ROW]
[ROW][C]39[/C][C]6.23223560891054e-08[/C][C]1.24644712178211e-07[/C][C]0.999999937677644[/C][/ROW]
[ROW][C]40[/C][C]3.77825067684054e-08[/C][C]7.55650135368108e-08[/C][C]0.999999962217493[/C][/ROW]
[ROW][C]41[/C][C]1.96603440043292e-08[/C][C]3.93206880086584e-08[/C][C]0.999999980339656[/C][/ROW]
[ROW][C]42[/C][C]9.42109791532012e-08[/C][C]1.88421958306402e-07[/C][C]0.999999905789021[/C][/ROW]
[ROW][C]43[/C][C]4.2245000763513e-08[/C][C]8.44900015270261e-08[/C][C]0.999999957754999[/C][/ROW]
[ROW][C]44[/C][C]1.88611228575846e-08[/C][C]3.77222457151693e-08[/C][C]0.999999981138877[/C][/ROW]
[ROW][C]45[/C][C]1.12991762771571e-08[/C][C]2.25983525543142e-08[/C][C]0.999999988700824[/C][/ROW]
[ROW][C]46[/C][C]1.89464304112469e-08[/C][C]3.78928608224938e-08[/C][C]0.99999998105357[/C][/ROW]
[ROW][C]47[/C][C]2.13833829042497e-08[/C][C]4.27667658084993e-08[/C][C]0.999999978616617[/C][/ROW]
[ROW][C]48[/C][C]9.75624813505618e-08[/C][C]1.95124962701124e-07[/C][C]0.999999902437519[/C][/ROW]
[ROW][C]49[/C][C]1.03660502387777e-07[/C][C]2.07321004775554e-07[/C][C]0.999999896339498[/C][/ROW]
[ROW][C]50[/C][C]6.91136255191801e-08[/C][C]1.3822725103836e-07[/C][C]0.999999930886375[/C][/ROW]
[ROW][C]51[/C][C]3.89792546829614e-08[/C][C]7.79585093659228e-08[/C][C]0.999999961020745[/C][/ROW]
[ROW][C]52[/C][C]6.34998889293332e-08[/C][C]1.26999777858666e-07[/C][C]0.999999936500111[/C][/ROW]
[ROW][C]53[/C][C]6.93250275476785e-08[/C][C]1.38650055095357e-07[/C][C]0.999999930674973[/C][/ROW]
[ROW][C]54[/C][C]3.65981226182556e-08[/C][C]7.31962452365112e-08[/C][C]0.999999963401877[/C][/ROW]
[ROW][C]55[/C][C]2.61078872389601e-08[/C][C]5.22157744779202e-08[/C][C]0.999999973892113[/C][/ROW]
[ROW][C]56[/C][C]8.68638669649585e-08[/C][C]1.73727733929917e-07[/C][C]0.999999913136133[/C][/ROW]
[ROW][C]57[/C][C]4.64312055725058e-06[/C][C]9.28624111450116e-06[/C][C]0.999995356879443[/C][/ROW]
[ROW][C]58[/C][C]4.51918953106398e-06[/C][C]9.03837906212797e-06[/C][C]0.999995480810469[/C][/ROW]
[ROW][C]59[/C][C]3.00212406421605e-06[/C][C]6.0042481284321e-06[/C][C]0.999996997875936[/C][/ROW]
[ROW][C]60[/C][C]2.11041064088647e-06[/C][C]4.22082128177293e-06[/C][C]0.999997889589359[/C][/ROW]
[ROW][C]61[/C][C]1.38947193166237e-06[/C][C]2.77894386332474e-06[/C][C]0.999998610528068[/C][/ROW]
[ROW][C]62[/C][C]7.39561241937532e-07[/C][C]1.47912248387506e-06[/C][C]0.999999260438758[/C][/ROW]
[ROW][C]63[/C][C]4.06315996269192e-07[/C][C]8.12631992538384e-07[/C][C]0.999999593684004[/C][/ROW]
[ROW][C]64[/C][C]3.11484939899968e-07[/C][C]6.22969879799936e-07[/C][C]0.99999968851506[/C][/ROW]
[ROW][C]65[/C][C]1.96769381757037e-07[/C][C]3.93538763514074e-07[/C][C]0.999999803230618[/C][/ROW]
[ROW][C]66[/C][C]2.06846038274131e-07[/C][C]4.13692076548262e-07[/C][C]0.999999793153962[/C][/ROW]
[ROW][C]67[/C][C]6.58521844810467e-06[/C][C]1.31704368962093e-05[/C][C]0.999993414781552[/C][/ROW]
[ROW][C]68[/C][C]6.30915937343214e-06[/C][C]1.26183187468643e-05[/C][C]0.999993690840627[/C][/ROW]
[ROW][C]69[/C][C]4.93741810155303e-06[/C][C]9.87483620310605e-06[/C][C]0.999995062581898[/C][/ROW]
[ROW][C]70[/C][C]2.09886768542911e-05[/C][C]4.19773537085821e-05[/C][C]0.999979011323146[/C][/ROW]
[ROW][C]71[/C][C]3.22184234991324e-05[/C][C]6.44368469982649e-05[/C][C]0.999967781576501[/C][/ROW]
[ROW][C]72[/C][C]6.27547517080077e-05[/C][C]0.000125509503416015[/C][C]0.999937245248292[/C][/ROW]
[ROW][C]73[/C][C]5.05641150497002e-05[/C][C]0.0001011282300994[/C][C]0.99994943588495[/C][/ROW]
[ROW][C]74[/C][C]3.10950821766762e-05[/C][C]6.21901643533524e-05[/C][C]0.999968904917823[/C][/ROW]
[ROW][C]75[/C][C]2.74891201359675e-05[/C][C]5.49782402719351e-05[/C][C]0.999972510879864[/C][/ROW]
[ROW][C]76[/C][C]5.77652015918534e-05[/C][C]0.000115530403183707[/C][C]0.999942234798408[/C][/ROW]
[ROW][C]77[/C][C]4.45467820765714e-05[/C][C]8.90935641531428e-05[/C][C]0.999955453217923[/C][/ROW]
[ROW][C]78[/C][C]2.80927131726133e-05[/C][C]5.61854263452266e-05[/C][C]0.999971907286827[/C][/ROW]
[ROW][C]79[/C][C]0.000345620213034987[/C][C]0.000691240426069975[/C][C]0.999654379786965[/C][/ROW]
[ROW][C]80[/C][C]0.0010640648865395[/C][C]0.002128129773079[/C][C]0.99893593511346[/C][/ROW]
[ROW][C]81[/C][C]0.00102943403371108[/C][C]0.00205886806742216[/C][C]0.998970565966289[/C][/ROW]
[ROW][C]82[/C][C]0.000780915447538801[/C][C]0.0015618308950776[/C][C]0.999219084552461[/C][/ROW]
[ROW][C]83[/C][C]0.00060481292302235[/C][C]0.0012096258460447[/C][C]0.999395187076978[/C][/ROW]
[ROW][C]84[/C][C]0.000503314416088171[/C][C]0.00100662883217634[/C][C]0.999496685583912[/C][/ROW]
[ROW][C]85[/C][C]0.000432218542305865[/C][C]0.00086443708461173[/C][C]0.999567781457694[/C][/ROW]
[ROW][C]86[/C][C]0.00025829275164454[/C][C]0.00051658550328908[/C][C]0.999741707248355[/C][/ROW]
[ROW][C]87[/C][C]0.000228251960817269[/C][C]0.000456503921634537[/C][C]0.999771748039183[/C][/ROW]
[ROW][C]88[/C][C]0.000165976559056721[/C][C]0.000331953118113443[/C][C]0.999834023440943[/C][/ROW]
[ROW][C]89[/C][C]9.4436683433996e-05[/C][C]0.000188873366867992[/C][C]0.999905563316566[/C][/ROW]
[ROW][C]90[/C][C]5.74711865912673e-05[/C][C]0.000114942373182535[/C][C]0.999942528813409[/C][/ROW]
[ROW][C]91[/C][C]3.25884115364219e-05[/C][C]6.51768230728437e-05[/C][C]0.999967411588464[/C][/ROW]
[ROW][C]92[/C][C]0.000183566177695566[/C][C]0.000367132355391131[/C][C]0.999816433822304[/C][/ROW]
[ROW][C]93[/C][C]0.000104030822436622[/C][C]0.000208061644873244[/C][C]0.999895969177563[/C][/ROW]
[ROW][C]94[/C][C]5.79847818495108e-05[/C][C]0.000115969563699022[/C][C]0.999942015218151[/C][/ROW]
[ROW][C]95[/C][C]3.60260331000784e-05[/C][C]7.20520662001567e-05[/C][C]0.9999639739669[/C][/ROW]
[ROW][C]96[/C][C]2.05244509134607e-05[/C][C]4.10489018269213e-05[/C][C]0.999979475549087[/C][/ROW]
[ROW][C]97[/C][C]1.21374596176589e-05[/C][C]2.42749192353177e-05[/C][C]0.999987862540382[/C][/ROW]
[ROW][C]98[/C][C]6.39875059926076e-06[/C][C]1.27975011985215e-05[/C][C]0.999993601249401[/C][/ROW]
[ROW][C]99[/C][C]3.96762739965325e-06[/C][C]7.93525479930651e-06[/C][C]0.9999960323726[/C][/ROW]
[ROW][C]100[/C][C]1.95272394987841e-05[/C][C]3.90544789975682e-05[/C][C]0.999980472760501[/C][/ROW]
[ROW][C]101[/C][C]0.000443369841144371[/C][C]0.000886739682288742[/C][C]0.999556630158856[/C][/ROW]
[ROW][C]102[/C][C]0.00388452684507149[/C][C]0.00776905369014298[/C][C]0.996115473154929[/C][/ROW]
[ROW][C]103[/C][C]0.00689861482265923[/C][C]0.0137972296453185[/C][C]0.993101385177341[/C][/ROW]
[ROW][C]104[/C][C]0.00961235531997521[/C][C]0.0192247106399504[/C][C]0.990387644680025[/C][/ROW]
[ROW][C]105[/C][C]0.0159812305117118[/C][C]0.0319624610234235[/C][C]0.984018769488288[/C][/ROW]
[ROW][C]106[/C][C]0.0272385396922044[/C][C]0.0544770793844089[/C][C]0.972761460307796[/C][/ROW]
[ROW][C]107[/C][C]0.0266798282154098[/C][C]0.0533596564308195[/C][C]0.97332017178459[/C][/ROW]
[ROW][C]108[/C][C]0.0149109908772664[/C][C]0.0298219817545329[/C][C]0.985089009122734[/C][/ROW]
[ROW][C]109[/C][C]0.117366354918165[/C][C]0.234732709836331[/C][C]0.882633645081835[/C][/ROW]
[ROW][C]110[/C][C]0.440823014489926[/C][C]0.881646028979851[/C][C]0.559176985510074[/C][/ROW]
[ROW][C]111[/C][C]0.49950037807072[/C][C]0.99900075614144[/C][C]0.50049962192928[/C][/ROW]
[ROW][C]112[/C][C]0.790100140649651[/C][C]0.419799718700699[/C][C]0.20989985935035[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=201494&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=201494&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
60.002924770305465350.005849540610930690.997075229694535
70.0003531809992649520.0007063619985299040.999646819000735
86.65453575138491e-050.0001330907150276980.999933454642486
96.85935904881883e-061.37187180976377e-050.999993140640951
107.74425316693731e-071.54885063338746e-060.999999225574683
111.81975235458974e-073.63950470917948e-070.999999818024765
124.36709292791243e-078.73418585582485e-070.999999563290707
136.05029970213779e-081.21005994042756e-070.999999939497003
141.55353879696411e-083.10707759392822e-080.999999984464612
154.62621470543248e-099.25242941086496e-090.999999995373785
164.66606283941435e-089.33212567882869e-080.999999953339372
171.53997863350435e-083.07995726700869e-080.999999984600214
182.79402996984195e-095.58805993968389e-090.99999999720597
196.75500649600914e-101.35100129920183e-090.999999999324499
203.47717264845496e-106.95434529690993e-100.999999999652283
219.13945515912589e-111.82789103182518e-100.999999999908605
221.6330578659966e-113.26611573199319e-110.999999999983669
232.46895405766401e-114.93790811532803e-110.99999999997531
247.69362216814334e-101.53872443362867e-090.999999999230638
252.22125238822054e-104.44250477644109e-100.999999999777875
266.3721204741667e-111.27442409483334e-100.999999999936279
272.76395030400816e-115.52790060801632e-110.99999999997236
281.6862520284461e-113.37250405689221e-110.999999999983137
292.30092912721316e-114.60185825442632e-110.999999999976991
305.99800383708165e-121.19960076741633e-110.999999999994002
313.16210277649428e-116.32420555298856e-110.999999999968379
327.74245459858994e-091.54849091971799e-080.999999992257545
331.05057772261373e-082.10115544522746e-080.999999989494223
343.61291590090781e-097.22583180181561e-090.999999996387084
353.82767392080265e-097.6553478416053e-090.999999996172326
361.78675415717074e-083.57350831434148e-080.999999982132458
371.50015467516453e-073.00030935032906e-070.999999849984533
387.93902851540443e-081.58780570308089e-070.999999920609715
396.23223560891054e-081.24644712178211e-070.999999937677644
403.77825067684054e-087.55650135368108e-080.999999962217493
411.96603440043292e-083.93206880086584e-080.999999980339656
429.42109791532012e-081.88421958306402e-070.999999905789021
434.2245000763513e-088.44900015270261e-080.999999957754999
441.88611228575846e-083.77222457151693e-080.999999981138877
451.12991762771571e-082.25983525543142e-080.999999988700824
461.89464304112469e-083.78928608224938e-080.99999998105357
472.13833829042497e-084.27667658084993e-080.999999978616617
489.75624813505618e-081.95124962701124e-070.999999902437519
491.03660502387777e-072.07321004775554e-070.999999896339498
506.91136255191801e-081.3822725103836e-070.999999930886375
513.89792546829614e-087.79585093659228e-080.999999961020745
526.34998889293332e-081.26999777858666e-070.999999936500111
536.93250275476785e-081.38650055095357e-070.999999930674973
543.65981226182556e-087.31962452365112e-080.999999963401877
552.61078872389601e-085.22157744779202e-080.999999973892113
568.68638669649585e-081.73727733929917e-070.999999913136133
574.64312055725058e-069.28624111450116e-060.999995356879443
584.51918953106398e-069.03837906212797e-060.999995480810469
593.00212406421605e-066.0042481284321e-060.999996997875936
602.11041064088647e-064.22082128177293e-060.999997889589359
611.38947193166237e-062.77894386332474e-060.999998610528068
627.39561241937532e-071.47912248387506e-060.999999260438758
634.06315996269192e-078.12631992538384e-070.999999593684004
643.11484939899968e-076.22969879799936e-070.99999968851506
651.96769381757037e-073.93538763514074e-070.999999803230618
662.06846038274131e-074.13692076548262e-070.999999793153962
676.58521844810467e-061.31704368962093e-050.999993414781552
686.30915937343214e-061.26183187468643e-050.999993690840627
694.93741810155303e-069.87483620310605e-060.999995062581898
702.09886768542911e-054.19773537085821e-050.999979011323146
713.22184234991324e-056.44368469982649e-050.999967781576501
726.27547517080077e-050.0001255095034160150.999937245248292
735.05641150497002e-050.00010112823009940.99994943588495
743.10950821766762e-056.21901643533524e-050.999968904917823
752.74891201359675e-055.49782402719351e-050.999972510879864
765.77652015918534e-050.0001155304031837070.999942234798408
774.45467820765714e-058.90935641531428e-050.999955453217923
782.80927131726133e-055.61854263452266e-050.999971907286827
790.0003456202130349870.0006912404260699750.999654379786965
800.00106406488653950.0021281297730790.99893593511346
810.001029434033711080.002058868067422160.998970565966289
820.0007809154475388010.00156183089507760.999219084552461
830.000604812923022350.00120962584604470.999395187076978
840.0005033144160881710.001006628832176340.999496685583912
850.0004322185423058650.000864437084611730.999567781457694
860.000258292751644540.000516585503289080.999741707248355
870.0002282519608172690.0004565039216345370.999771748039183
880.0001659765590567210.0003319531181134430.999834023440943
899.4436683433996e-050.0001888733668679920.999905563316566
905.74711865912673e-050.0001149423731825350.999942528813409
913.25884115364219e-056.51768230728437e-050.999967411588464
920.0001835661776955660.0003671323553911310.999816433822304
930.0001040308224366220.0002080616448732440.999895969177563
945.79847818495108e-050.0001159695636990220.999942015218151
953.60260331000784e-057.20520662001567e-050.9999639739669
962.05244509134607e-054.10489018269213e-050.999979475549087
971.21374596176589e-052.42749192353177e-050.999987862540382
986.39875059926076e-061.27975011985215e-050.999993601249401
993.96762739965325e-067.93525479930651e-060.9999960323726
1001.95272394987841e-053.90544789975682e-050.999980472760501
1010.0004433698411443710.0008867396822887420.999556630158856
1020.003884526845071490.007769053690142980.996115473154929
1030.006898614822659230.01379722964531850.993101385177341
1040.009612355319975210.01922471063995040.990387644680025
1050.01598123051171180.03196246102342350.984018769488288
1060.02723853969220440.05447707938440890.972761460307796
1070.02667982821540980.05335965643081950.97332017178459
1080.01491099087726640.02982198175453290.985089009122734
1090.1173663549181650.2347327098363310.882633645081835
1100.4408230144899260.8816460289798510.559176985510074
1110.499500378070720.999000756141440.50049962192928
1120.7901001406496510.4197997187006990.20989985935035







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level970.906542056074766NOK
5% type I error level1010.94392523364486NOK
10% type I error level1030.962616822429907NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 97 & 0.906542056074766 & NOK \tabularnewline
5% type I error level & 101 & 0.94392523364486 & NOK \tabularnewline
10% type I error level & 103 & 0.962616822429907 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=201494&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]97[/C][C]0.906542056074766[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]101[/C][C]0.94392523364486[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]103[/C][C]0.962616822429907[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=201494&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=201494&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level970.906542056074766NOK
5% type I error level1010.94392523364486NOK
10% type I error level1030.962616822429907NOK



Parameters (Session):
par1 = 3 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 3 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}