Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_variability.wasp
Title produced by softwareVariability
Date of computationSun, 26 May 2013 20:30:06 -0400
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2013/May/26/t1369614612f4b46sx2uy31r85.htm/, Retrieved Thu, 31 Oct 2024 23:05:54 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=210705, Retrieved Thu, 31 Oct 2024 23:05:54 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact97
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Variability] [] [2013-05-27 00:30:06] [72493e16725cf12b5fc5a9dfdf9b34f2] [Current]
Feedback Forum

Post a new message
Dataseries X:
106,1
106,17
105,75
106,49
106,61
106,61
106,61
106,61
106,92
106,94
107,28
107,36
107,36
107,39
107,46
107,51
108,21
108,33
108,33
108,36
108,89
109,3
109,55
109,45
109,45
109,4
109,45
109,5
109,91
109,9
109,9
109,92
109,74
110,28
110,97
111,02
111,02
111
111,43
111,52
112,29
112,27
112,27
112,39
112,31
112,91
112,9
113,08
113,08
113,54
114
115,28
116,4
116,56
116,56
116,59
116,96
117,17
117,83
117,84
117,84
117,84
117,69
117,9
118,05
118,08
118,08
118,08
118,16
118,53
118,5
118,62




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=210705&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=210705&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=210705&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Variability - Ungrouped Data
Absolute range12.87
Relative range (unbiased)3.07413258031949
Relative range (biased)3.09570570520394
Variance (unbiased)17.5271743348983
Variance (biased)17.2837413580247
Standard Deviation (unbiased)4.18654682702801
Standard Deviation (biased)4.15737192923904
Coefficient of Variation (unbiased)0.0374281528193623
Coefficient of Variation (biased)0.0371673262770948
Mean Squared Error (MSE versus 0)12528.94905
Mean Squared Error (MSE versus Mean)17.2837413580247
Mean Absolute Deviation from Mean (MAD Mean)3.61728395061728
Mean Absolute Deviation from Median (MAD Median)3.54972222222222
Median Absolute Deviation from Mean3.99555555555555
Median Absolute Deviation from Median3.52499999999999
Mean Squared Deviation from Mean17.2837413580247
Mean Squared Deviation from Median17.9987055555556
Interquartile Difference (Weighted Average at Xnp)8.23
Interquartile Difference (Weighted Average at X(n+1)p)8.23
Interquartile Difference (Empirical Distribution Function)8.23
Interquartile Difference (Empirical Distribution Function - Averaging)8.23
Interquartile Difference (Empirical Distribution Function - Interpolation)8.23
Interquartile Difference (Closest Observation)8.23
Interquartile Difference (True Basic - Statistics Graphics Toolkit)8.23
Interquartile Difference (MS Excel (old versions))8.23
Semi Interquartile Difference (Weighted Average at Xnp)4.115
Semi Interquartile Difference (Weighted Average at X(n+1)p)4.115
Semi Interquartile Difference (Empirical Distribution Function)4.115
Semi Interquartile Difference (Empirical Distribution Function - Averaging)4.115
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)4.115
Semi Interquartile Difference (Closest Observation)4.115
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)4.115
Semi Interquartile Difference (MS Excel (old versions))4.115
Coefficient of Quartile Variation (Weighted Average at Xnp)0.0365956689937303
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.0365956689937303
Coefficient of Quartile Variation (Empirical Distribution Function)0.0365956689937303
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.0365956689937303
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.0365956689937303
Coefficient of Quartile Variation (Closest Observation)0.0365956689937303
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.0365956689937303
Coefficient of Quartile Variation (MS Excel (old versions))0.0365956689937303
Number of all Pairs of Observations2556
Squared Differences between all Pairs of Observations35.0543486697966
Mean Absolute Differences between all Pairs of Observations4.78330985915493
Gini Mean Difference4.78330985915493
Leik Measure of Dispersion0.507930807253374
Index of Diversity0.986091924859131
Index of Qualitative Variation0.999980543519118
Coefficient of Dispersion0.0325852080949219
Observations72

\begin{tabular}{lllllllll}
\hline
Variability - Ungrouped Data \tabularnewline
Absolute range & 12.87 \tabularnewline
Relative range (unbiased) & 3.07413258031949 \tabularnewline
Relative range (biased) & 3.09570570520394 \tabularnewline
Variance (unbiased) & 17.5271743348983 \tabularnewline
Variance (biased) & 17.2837413580247 \tabularnewline
Standard Deviation (unbiased) & 4.18654682702801 \tabularnewline
Standard Deviation (biased) & 4.15737192923904 \tabularnewline
Coefficient of Variation (unbiased) & 0.0374281528193623 \tabularnewline
Coefficient of Variation (biased) & 0.0371673262770948 \tabularnewline
Mean Squared Error (MSE versus 0) & 12528.94905 \tabularnewline
Mean Squared Error (MSE versus Mean) & 17.2837413580247 \tabularnewline
Mean Absolute Deviation from Mean (MAD Mean) & 3.61728395061728 \tabularnewline
Mean Absolute Deviation from Median (MAD Median) & 3.54972222222222 \tabularnewline
Median Absolute Deviation from Mean & 3.99555555555555 \tabularnewline
Median Absolute Deviation from Median & 3.52499999999999 \tabularnewline
Mean Squared Deviation from Mean & 17.2837413580247 \tabularnewline
Mean Squared Deviation from Median & 17.9987055555556 \tabularnewline
Interquartile Difference (Weighted Average at Xnp) & 8.23 \tabularnewline
Interquartile Difference (Weighted Average at X(n+1)p) & 8.23 \tabularnewline
Interquartile Difference (Empirical Distribution Function) & 8.23 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Averaging) & 8.23 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Interpolation) & 8.23 \tabularnewline
Interquartile Difference (Closest Observation) & 8.23 \tabularnewline
Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 8.23 \tabularnewline
Interquartile Difference (MS Excel (old versions)) & 8.23 \tabularnewline
Semi Interquartile Difference (Weighted Average at Xnp) & 4.115 \tabularnewline
Semi Interquartile Difference (Weighted Average at X(n+1)p) & 4.115 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function) & 4.115 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Averaging) & 4.115 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Interpolation) & 4.115 \tabularnewline
Semi Interquartile Difference (Closest Observation) & 4.115 \tabularnewline
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 4.115 \tabularnewline
Semi Interquartile Difference (MS Excel (old versions)) & 4.115 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at Xnp) & 0.0365956689937303 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at X(n+1)p) & 0.0365956689937303 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function) & 0.0365956689937303 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging) & 0.0365956689937303 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation) & 0.0365956689937303 \tabularnewline
Coefficient of Quartile Variation (Closest Observation) & 0.0365956689937303 \tabularnewline
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit) & 0.0365956689937303 \tabularnewline
Coefficient of Quartile Variation (MS Excel (old versions)) & 0.0365956689937303 \tabularnewline
Number of all Pairs of Observations & 2556 \tabularnewline
Squared Differences between all Pairs of Observations & 35.0543486697966 \tabularnewline
Mean Absolute Differences between all Pairs of Observations & 4.78330985915493 \tabularnewline
Gini Mean Difference & 4.78330985915493 \tabularnewline
Leik Measure of Dispersion & 0.507930807253374 \tabularnewline
Index of Diversity & 0.986091924859131 \tabularnewline
Index of Qualitative Variation & 0.999980543519118 \tabularnewline
Coefficient of Dispersion & 0.0325852080949219 \tabularnewline
Observations & 72 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=210705&T=1

[TABLE]
[ROW][C]Variability - Ungrouped Data[/C][/ROW]
[ROW][C]Absolute range[/C][C]12.87[/C][/ROW]
[ROW][C]Relative range (unbiased)[/C][C]3.07413258031949[/C][/ROW]
[ROW][C]Relative range (biased)[/C][C]3.09570570520394[/C][/ROW]
[ROW][C]Variance (unbiased)[/C][C]17.5271743348983[/C][/ROW]
[ROW][C]Variance (biased)[/C][C]17.2837413580247[/C][/ROW]
[ROW][C]Standard Deviation (unbiased)[/C][C]4.18654682702801[/C][/ROW]
[ROW][C]Standard Deviation (biased)[/C][C]4.15737192923904[/C][/ROW]
[ROW][C]Coefficient of Variation (unbiased)[/C][C]0.0374281528193623[/C][/ROW]
[ROW][C]Coefficient of Variation (biased)[/C][C]0.0371673262770948[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus 0)[/C][C]12528.94905[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus Mean)[/C][C]17.2837413580247[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Mean (MAD Mean)[/C][C]3.61728395061728[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Median (MAD Median)[/C][C]3.54972222222222[/C][/ROW]
[ROW][C]Median Absolute Deviation from Mean[/C][C]3.99555555555555[/C][/ROW]
[ROW][C]Median Absolute Deviation from Median[/C][C]3.52499999999999[/C][/ROW]
[ROW][C]Mean Squared Deviation from Mean[/C][C]17.2837413580247[/C][/ROW]
[ROW][C]Mean Squared Deviation from Median[/C][C]17.9987055555556[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at Xnp)[/C][C]8.23[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]8.23[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function)[/C][C]8.23[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]8.23[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]8.23[/C][/ROW]
[ROW][C]Interquartile Difference (Closest Observation)[/C][C]8.23[/C][/ROW]
[ROW][C]Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]8.23[/C][/ROW]
[ROW][C]Interquartile Difference (MS Excel (old versions))[/C][C]8.23[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at Xnp)[/C][C]4.115[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]4.115[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function)[/C][C]4.115[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]4.115[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]4.115[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Closest Observation)[/C][C]4.115[/C][/ROW]
[ROW][C]Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]4.115[/C][/ROW]
[ROW][C]Semi Interquartile Difference (MS Excel (old versions))[/C][C]4.115[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at Xnp)[/C][C]0.0365956689937303[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at X(n+1)p)[/C][C]0.0365956689937303[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function)[/C][C]0.0365956689937303[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)[/C][C]0.0365956689937303[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)[/C][C]0.0365956689937303[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Closest Observation)[/C][C]0.0365956689937303[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)[/C][C]0.0365956689937303[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (MS Excel (old versions))[/C][C]0.0365956689937303[/C][/ROW]
[ROW][C]Number of all Pairs of Observations[/C][C]2556[/C][/ROW]
[ROW][C]Squared Differences between all Pairs of Observations[/C][C]35.0543486697966[/C][/ROW]
[ROW][C]Mean Absolute Differences between all Pairs of Observations[/C][C]4.78330985915493[/C][/ROW]
[ROW][C]Gini Mean Difference[/C][C]4.78330985915493[/C][/ROW]
[ROW][C]Leik Measure of Dispersion[/C][C]0.507930807253374[/C][/ROW]
[ROW][C]Index of Diversity[/C][C]0.986091924859131[/C][/ROW]
[ROW][C]Index of Qualitative Variation[/C][C]0.999980543519118[/C][/ROW]
[ROW][C]Coefficient of Dispersion[/C][C]0.0325852080949219[/C][/ROW]
[ROW][C]Observations[/C][C]72[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=210705&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=210705&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variability - Ungrouped Data
Absolute range12.87
Relative range (unbiased)3.07413258031949
Relative range (biased)3.09570570520394
Variance (unbiased)17.5271743348983
Variance (biased)17.2837413580247
Standard Deviation (unbiased)4.18654682702801
Standard Deviation (biased)4.15737192923904
Coefficient of Variation (unbiased)0.0374281528193623
Coefficient of Variation (biased)0.0371673262770948
Mean Squared Error (MSE versus 0)12528.94905
Mean Squared Error (MSE versus Mean)17.2837413580247
Mean Absolute Deviation from Mean (MAD Mean)3.61728395061728
Mean Absolute Deviation from Median (MAD Median)3.54972222222222
Median Absolute Deviation from Mean3.99555555555555
Median Absolute Deviation from Median3.52499999999999
Mean Squared Deviation from Mean17.2837413580247
Mean Squared Deviation from Median17.9987055555556
Interquartile Difference (Weighted Average at Xnp)8.23
Interquartile Difference (Weighted Average at X(n+1)p)8.23
Interquartile Difference (Empirical Distribution Function)8.23
Interquartile Difference (Empirical Distribution Function - Averaging)8.23
Interquartile Difference (Empirical Distribution Function - Interpolation)8.23
Interquartile Difference (Closest Observation)8.23
Interquartile Difference (True Basic - Statistics Graphics Toolkit)8.23
Interquartile Difference (MS Excel (old versions))8.23
Semi Interquartile Difference (Weighted Average at Xnp)4.115
Semi Interquartile Difference (Weighted Average at X(n+1)p)4.115
Semi Interquartile Difference (Empirical Distribution Function)4.115
Semi Interquartile Difference (Empirical Distribution Function - Averaging)4.115
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)4.115
Semi Interquartile Difference (Closest Observation)4.115
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)4.115
Semi Interquartile Difference (MS Excel (old versions))4.115
Coefficient of Quartile Variation (Weighted Average at Xnp)0.0365956689937303
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.0365956689937303
Coefficient of Quartile Variation (Empirical Distribution Function)0.0365956689937303
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.0365956689937303
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.0365956689937303
Coefficient of Quartile Variation (Closest Observation)0.0365956689937303
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.0365956689937303
Coefficient of Quartile Variation (MS Excel (old versions))0.0365956689937303
Number of all Pairs of Observations2556
Squared Differences between all Pairs of Observations35.0543486697966
Mean Absolute Differences between all Pairs of Observations4.78330985915493
Gini Mean Difference4.78330985915493
Leik Measure of Dispersion0.507930807253374
Index of Diversity0.986091924859131
Index of Qualitative Variation0.999980543519118
Coefficient of Dispersion0.0325852080949219
Observations72



Parameters (Session):
Parameters (R input):
R code (references can be found in the software module):
num <- 50
res <- array(NA,dim=c(num,3))
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
iqd <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
iqdiff <- qvalue3 - qvalue1
return(c(iqdiff,iqdiff/2,iqdiff/(qvalue3 + qvalue1)))
}
range <- max(x) - min(x)
lx <- length(x)
biasf <- (lx-1)/lx
varx <- var(x)
bvarx <- varx*biasf
sdx <- sqrt(varx)
mx <- mean(x)
bsdx <- sqrt(bvarx)
x2 <- x*x
mse0 <- sum(x2)/lx
xmm <- x-mx
xmm2 <- xmm*xmm
msem <- sum(xmm2)/lx
axmm <- abs(x - mx)
medx <- median(x)
axmmed <- abs(x - medx)
xmmed <- x - medx
xmmed2 <- xmmed*xmmed
msemed <- sum(xmmed2)/lx
qarr <- array(NA,dim=c(8,3))
for (j in 1:8) {
qarr[j,] <- iqd(x,j)
}
sdpo <- 0
adpo <- 0
for (i in 1:(lx-1)) {
for (j in (i+1):lx) {
ldi <- x[i]-x[j]
aldi <- abs(ldi)
sdpo = sdpo + ldi * ldi
adpo = adpo + aldi
}
}
denom <- (lx*(lx-1)/2)
sdpo = sdpo / denom
adpo = adpo / denom
gmd <- 0
for (i in 1:lx) {
for (j in 1:lx) {
ldi <- abs(x[i]-x[j])
gmd = gmd + ldi
}
}
gmd <- gmd / (lx*(lx-1))
sumx <- sum(x)
pk <- x / sumx
ck <- cumsum(pk)
dk <- array(NA,dim=lx)
for (i in 1:lx) {
if (ck[i] <= 0.5) dk[i] <- ck[i] else dk[i] <- 1 - ck[i]
}
bigd <- sum(dk) * 2 / (lx-1)
iod <- 1 - sum(pk*pk)
res[1,] <- c('Absolute range','absolute.htm', range)
res[2,] <- c('Relative range (unbiased)','relative.htm', range/sd(x))
res[3,] <- c('Relative range (biased)','relative.htm', range/sqrt(varx*biasf))
res[4,] <- c('Variance (unbiased)','unbiased.htm', varx)
res[5,] <- c('Variance (biased)','biased.htm', bvarx)
res[6,] <- c('Standard Deviation (unbiased)','unbiased1.htm', sdx)
res[7,] <- c('Standard Deviation (biased)','biased1.htm', bsdx)
res[8,] <- c('Coefficient of Variation (unbiased)','variation.htm', sdx/mx)
res[9,] <- c('Coefficient of Variation (biased)','variation.htm', bsdx/mx)
res[10,] <- c('Mean Squared Error (MSE versus 0)','mse.htm', mse0)
res[11,] <- c('Mean Squared Error (MSE versus Mean)','mse.htm', msem)
res[12,] <- c('Mean Absolute Deviation from Mean (MAD Mean)', 'mean2.htm', sum(axmm)/lx)
res[13,] <- c('Mean Absolute Deviation from Median (MAD Median)', 'median1.htm', sum(axmmed)/lx)
res[14,] <- c('Median Absolute Deviation from Mean', 'mean3.htm', median(axmm))
res[15,] <- c('Median Absolute Deviation from Median', 'median2.htm', median(axmmed))
res[16,] <- c('Mean Squared Deviation from Mean', 'mean1.htm', msem)
res[17,] <- c('Mean Squared Deviation from Median', 'median.htm', msemed)
load(file='createtable')
mylink1 <- hyperlink('difference.htm','Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[18,] <- c('', mylink2, qarr[1,1])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[19,] <- c('', mylink2, qarr[2,1])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[20,] <- c('', mylink2, qarr[3,1])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[21,] <- c('', mylink2, qarr[4,1])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[22,] <- c('', mylink2, qarr[5,1])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[23,] <- c('', mylink2, qarr[6,1])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[24,] <- c('', mylink2, qarr[7,1])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[25,] <- c('', mylink2, qarr[8,1])
mylink1 <- hyperlink('deviation.htm','Semi Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[26,] <- c('', mylink2, qarr[1,2])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[27,] <- c('', mylink2, qarr[2,2])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[28,] <- c('', mylink2, qarr[3,2])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[29,] <- c('', mylink2, qarr[4,2])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[30,] <- c('', mylink2, qarr[5,2])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[31,] <- c('', mylink2, qarr[6,2])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[32,] <- c('', mylink2, qarr[7,2])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[33,] <- c('', mylink2, qarr[8,2])
mylink1 <- hyperlink('variation1.htm','Coefficient of Quartile Variation','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[34,] <- c('', mylink2, qarr[1,3])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[35,] <- c('', mylink2, qarr[2,3])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[36,] <- c('', mylink2, qarr[3,3])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[37,] <- c('', mylink2, qarr[4,3])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[38,] <- c('', mylink2, qarr[5,3])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[39,] <- c('', mylink2, qarr[6,3])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[40,] <- c('', mylink2, qarr[7,3])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[41,] <- c('', mylink2, qarr[8,3])
res[42,] <- c('Number of all Pairs of Observations', 'pair_numbers.htm', lx*(lx-1)/2)
res[43,] <- c('Squared Differences between all Pairs of Observations', 'squared_differences.htm', sdpo)
res[44,] <- c('Mean Absolute Differences between all Pairs of Observations', 'mean_abs_differences.htm', adpo)
res[45,] <- c('Gini Mean Difference', 'gini_mean_difference.htm', gmd)
res[46,] <- c('Leik Measure of Dispersion', 'leiks_d.htm', bigd)
res[47,] <- c('Index of Diversity', 'diversity.htm', iod)
res[48,] <- c('Index of Qualitative Variation', 'qualitative_variation.htm', iod*lx/(lx-1))
res[49,] <- c('Coefficient of Dispersion', 'dispersion.htm', sum(axmm)/lx/medx)
res[50,] <- c('Observations', '', lx)
res
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variability - Ungrouped Data',2,TRUE)
a<-table.row.end(a)
for (i in 1:num) {
a<-table.row.start(a)
if (res[i,1] != '') {
a<-table.element(a,hyperlink(res[i,2],res[i,1],''),header=TRUE)
} else {
a<-table.element(a,res[i,2],header=TRUE)
}
a<-table.element(a,res[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')