Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationFri, 12 Dec 2014 07:28:14 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/Dec/12/t1418369324fipaa1uuem4pyds.htm/, Retrieved Thu, 31 Oct 2024 23:03:56 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=266434, Retrieved Thu, 31 Oct 2024 23:03:56 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact151
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [] [2014-12-12 07:28:14] [87ffe52de5233e682ab4fb5464e8d38a] [Current]
Feedback Forum

Post a new message
Dataseries X:
21
22
22
18
23
12
20
22
21
19
22
15
20
19
18
15
20
21
21
15
16
23
21
18
25
9
30
20
23
16
16
19
25
18
23
21
10
14
22
26
23
23
24
24
18
23
15
19
16
25
23
17
19
21
18
27
21
13
8
29
28
23
21
19
19
20
18
19
17
19
25
19
22
23
14
16
24
20
12
24
22
12
22
20
10
23
17
22
24
18
21
20
20
22
19
20
26
23
24
21
21
19
8
17
20
11
8
15
18
18
19
19
23
22
21
25
30
17
27
23
23
18
18
23
19
15
20
16
24
25
25
19
19
16
19
19
23
21
22
19
20
20
3
23
23
20
15
16
7
24
17
24
24
19
25
20
28
23
27
18
28
21
19
23
27
22
28
25
21
22
28
20
29
25
25
20
20
16
20
20
23
18
25
18
19
25
25
25
24
19
26
10
17
13
17
30
25
4
16
21
23
22
17
20
20
22
16
23
0
18
25
23
12
18
24
11
18
23
24
29
18
15
29
16
19
22
16
23
23
19
4
20
24
20
4
24
22
16
3
15
24
17
20
27
26
23
17
20
22
19
24
19
23
15
27
26
22
22
18
15
22
27
10
20
17
23
19
13
27
23
16
25
2
26
20
23
22
24




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'George Udny Yule' @ yule.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'George Udny Yule' @ yule.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=266434&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ yule.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=266434&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=266434&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'George Udny Yule' @ yule.wessa.net







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[266])
25415-------
25527-------
25626-------
25722-------
25822-------
25918-------
26015-------
26122-------
26227-------
26310-------
26420-------
26517-------
26623-------
2671916.1524.70227.6020.31290.12060.03170.1206
2681323.613612.139135.0880.03490.78470.34180.5417
2692724.123512.644135.60290.31170.97120.64150.5761
2702321.530410.049733.01120.4010.17520.46810.401
2711612.03790.557123.51870.24940.03060.15440.0306
2722520.18398.703131.66470.20550.76250.81190.3153
273222.000710.519933.48153e-040.30430.50.4323
2742620.07688.59631.55760.1560.9990.11860.3089
2752011.53120.050423.0120.07410.00680.60310.0251
2762317.6736.192229.15380.18160.34560.34560.1816
2772221.688310.207533.16910.47880.41140.78830.4114
2782418.0936.612229.57380.15660.25240.20110.2011

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[266]) \tabularnewline
254 & 15 & - & - & - & - & - & - & - \tabularnewline
255 & 27 & - & - & - & - & - & - & - \tabularnewline
256 & 26 & - & - & - & - & - & - & - \tabularnewline
257 & 22 & - & - & - & - & - & - & - \tabularnewline
258 & 22 & - & - & - & - & - & - & - \tabularnewline
259 & 18 & - & - & - & - & - & - & - \tabularnewline
260 & 15 & - & - & - & - & - & - & - \tabularnewline
261 & 22 & - & - & - & - & - & - & - \tabularnewline
262 & 27 & - & - & - & - & - & - & - \tabularnewline
263 & 10 & - & - & - & - & - & - & - \tabularnewline
264 & 20 & - & - & - & - & - & - & - \tabularnewline
265 & 17 & - & - & - & - & - & - & - \tabularnewline
266 & 23 & - & - & - & - & - & - & - \tabularnewline
267 & 19 & 16.152 & 4.702 & 27.602 & 0.3129 & 0.1206 & 0.0317 & 0.1206 \tabularnewline
268 & 13 & 23.6136 & 12.1391 & 35.088 & 0.0349 & 0.7847 & 0.3418 & 0.5417 \tabularnewline
269 & 27 & 24.1235 & 12.6441 & 35.6029 & 0.3117 & 0.9712 & 0.6415 & 0.5761 \tabularnewline
270 & 23 & 21.5304 & 10.0497 & 33.0112 & 0.401 & 0.1752 & 0.4681 & 0.401 \tabularnewline
271 & 16 & 12.0379 & 0.5571 & 23.5187 & 0.2494 & 0.0306 & 0.1544 & 0.0306 \tabularnewline
272 & 25 & 20.1839 & 8.7031 & 31.6647 & 0.2055 & 0.7625 & 0.8119 & 0.3153 \tabularnewline
273 & 2 & 22.0007 & 10.5199 & 33.4815 & 3e-04 & 0.3043 & 0.5 & 0.4323 \tabularnewline
274 & 26 & 20.0768 & 8.596 & 31.5576 & 0.156 & 0.999 & 0.1186 & 0.3089 \tabularnewline
275 & 20 & 11.5312 & 0.0504 & 23.012 & 0.0741 & 0.0068 & 0.6031 & 0.0251 \tabularnewline
276 & 23 & 17.673 & 6.1922 & 29.1538 & 0.1816 & 0.3456 & 0.3456 & 0.1816 \tabularnewline
277 & 22 & 21.6883 & 10.2075 & 33.1691 & 0.4788 & 0.4114 & 0.7883 & 0.4114 \tabularnewline
278 & 24 & 18.093 & 6.6122 & 29.5738 & 0.1566 & 0.2524 & 0.2011 & 0.2011 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=266434&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[266])[/C][/ROW]
[ROW][C]254[/C][C]15[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]255[/C][C]27[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]256[/C][C]26[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]257[/C][C]22[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]258[/C][C]22[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]259[/C][C]18[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]260[/C][C]15[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]261[/C][C]22[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]262[/C][C]27[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]263[/C][C]10[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]264[/C][C]20[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]265[/C][C]17[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]266[/C][C]23[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]267[/C][C]19[/C][C]16.152[/C][C]4.702[/C][C]27.602[/C][C]0.3129[/C][C]0.1206[/C][C]0.0317[/C][C]0.1206[/C][/ROW]
[ROW][C]268[/C][C]13[/C][C]23.6136[/C][C]12.1391[/C][C]35.088[/C][C]0.0349[/C][C]0.7847[/C][C]0.3418[/C][C]0.5417[/C][/ROW]
[ROW][C]269[/C][C]27[/C][C]24.1235[/C][C]12.6441[/C][C]35.6029[/C][C]0.3117[/C][C]0.9712[/C][C]0.6415[/C][C]0.5761[/C][/ROW]
[ROW][C]270[/C][C]23[/C][C]21.5304[/C][C]10.0497[/C][C]33.0112[/C][C]0.401[/C][C]0.1752[/C][C]0.4681[/C][C]0.401[/C][/ROW]
[ROW][C]271[/C][C]16[/C][C]12.0379[/C][C]0.5571[/C][C]23.5187[/C][C]0.2494[/C][C]0.0306[/C][C]0.1544[/C][C]0.0306[/C][/ROW]
[ROW][C]272[/C][C]25[/C][C]20.1839[/C][C]8.7031[/C][C]31.6647[/C][C]0.2055[/C][C]0.7625[/C][C]0.8119[/C][C]0.3153[/C][/ROW]
[ROW][C]273[/C][C]2[/C][C]22.0007[/C][C]10.5199[/C][C]33.4815[/C][C]3e-04[/C][C]0.3043[/C][C]0.5[/C][C]0.4323[/C][/ROW]
[ROW][C]274[/C][C]26[/C][C]20.0768[/C][C]8.596[/C][C]31.5576[/C][C]0.156[/C][C]0.999[/C][C]0.1186[/C][C]0.3089[/C][/ROW]
[ROW][C]275[/C][C]20[/C][C]11.5312[/C][C]0.0504[/C][C]23.012[/C][C]0.0741[/C][C]0.0068[/C][C]0.6031[/C][C]0.0251[/C][/ROW]
[ROW][C]276[/C][C]23[/C][C]17.673[/C][C]6.1922[/C][C]29.1538[/C][C]0.1816[/C][C]0.3456[/C][C]0.3456[/C][C]0.1816[/C][/ROW]
[ROW][C]277[/C][C]22[/C][C]21.6883[/C][C]10.2075[/C][C]33.1691[/C][C]0.4788[/C][C]0.4114[/C][C]0.7883[/C][C]0.4114[/C][/ROW]
[ROW][C]278[/C][C]24[/C][C]18.093[/C][C]6.6122[/C][C]29.5738[/C][C]0.1566[/C][C]0.2524[/C][C]0.2011[/C][C]0.2011[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=266434&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=266434&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[266])
25415-------
25527-------
25626-------
25722-------
25822-------
25918-------
26015-------
26122-------
26227-------
26310-------
26420-------
26517-------
26623-------
2671916.1524.70227.6020.31290.12060.03170.1206
2681323.613612.139135.0880.03490.78470.34180.5417
2692724.123512.644135.60290.31170.97120.64150.5761
2702321.530410.049733.01120.4010.17520.46810.401
2711612.03790.557123.51870.24940.03060.15440.0306
2722520.18398.703131.66470.20550.76250.81190.3153
273222.000710.519933.48153e-040.30430.50.4323
2742620.07688.59631.55760.1560.9990.11860.3089
2752011.53120.050423.0120.07410.00680.60310.0251
2762317.6736.192229.15380.18160.34560.34560.1816
2772221.688310.207533.16910.47880.41140.78830.4114
2782418.0936.612229.57380.15660.25240.20110.2011







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
2670.36170.14990.14990.1628.1113000.31640.3164
2680.2479-0.81640.48320.3709112.647660.37957.7704-1.17930.7479
2690.24280.10650.35760.28488.274443.01116.55830.31960.6051
2700.27210.06390.28420.23012.159632.79825.7270.16330.4947
2710.48660.24760.27690.240615.697929.37825.42020.44020.4838
2720.29020.19260.26280.23623.19528.34765.32430.53510.4923
2730.2662-10.00041.65390.4404400.028881.4459.0247-2.22230.7395
2740.29180.22781.47570.417535.083875.64988.69770.65810.7293
2750.5080.42341.35870.430871.721175.21338.67260.9410.7528
2760.33140.23161.2460.413928.376970.52978.39820.59190.7367
2770.27010.01421.1340.37760.097264.12678.00790.03460.6729
2780.32370.24611.060.369534.893261.69067.85430.65630.6715

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
267 & 0.3617 & 0.1499 & 0.1499 & 0.162 & 8.1113 & 0 & 0 & 0.3164 & 0.3164 \tabularnewline
268 & 0.2479 & -0.8164 & 0.4832 & 0.3709 & 112.6476 & 60.3795 & 7.7704 & -1.1793 & 0.7479 \tabularnewline
269 & 0.2428 & 0.1065 & 0.3576 & 0.2848 & 8.2744 & 43.0111 & 6.5583 & 0.3196 & 0.6051 \tabularnewline
270 & 0.2721 & 0.0639 & 0.2842 & 0.2301 & 2.1596 & 32.7982 & 5.727 & 0.1633 & 0.4947 \tabularnewline
271 & 0.4866 & 0.2476 & 0.2769 & 0.2406 & 15.6979 & 29.3782 & 5.4202 & 0.4402 & 0.4838 \tabularnewline
272 & 0.2902 & 0.1926 & 0.2628 & 0.236 & 23.195 & 28.3476 & 5.3243 & 0.5351 & 0.4923 \tabularnewline
273 & 0.2662 & -10.0004 & 1.6539 & 0.4404 & 400.0288 & 81.445 & 9.0247 & -2.2223 & 0.7395 \tabularnewline
274 & 0.2918 & 0.2278 & 1.4757 & 0.4175 & 35.0838 & 75.6498 & 8.6977 & 0.6581 & 0.7293 \tabularnewline
275 & 0.508 & 0.4234 & 1.3587 & 0.4308 & 71.7211 & 75.2133 & 8.6726 & 0.941 & 0.7528 \tabularnewline
276 & 0.3314 & 0.2316 & 1.246 & 0.4139 & 28.3769 & 70.5297 & 8.3982 & 0.5919 & 0.7367 \tabularnewline
277 & 0.2701 & 0.0142 & 1.134 & 0.3776 & 0.0972 & 64.1267 & 8.0079 & 0.0346 & 0.6729 \tabularnewline
278 & 0.3237 & 0.2461 & 1.06 & 0.3695 & 34.8932 & 61.6906 & 7.8543 & 0.6563 & 0.6715 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=266434&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]267[/C][C]0.3617[/C][C]0.1499[/C][C]0.1499[/C][C]0.162[/C][C]8.1113[/C][C]0[/C][C]0[/C][C]0.3164[/C][C]0.3164[/C][/ROW]
[ROW][C]268[/C][C]0.2479[/C][C]-0.8164[/C][C]0.4832[/C][C]0.3709[/C][C]112.6476[/C][C]60.3795[/C][C]7.7704[/C][C]-1.1793[/C][C]0.7479[/C][/ROW]
[ROW][C]269[/C][C]0.2428[/C][C]0.1065[/C][C]0.3576[/C][C]0.2848[/C][C]8.2744[/C][C]43.0111[/C][C]6.5583[/C][C]0.3196[/C][C]0.6051[/C][/ROW]
[ROW][C]270[/C][C]0.2721[/C][C]0.0639[/C][C]0.2842[/C][C]0.2301[/C][C]2.1596[/C][C]32.7982[/C][C]5.727[/C][C]0.1633[/C][C]0.4947[/C][/ROW]
[ROW][C]271[/C][C]0.4866[/C][C]0.2476[/C][C]0.2769[/C][C]0.2406[/C][C]15.6979[/C][C]29.3782[/C][C]5.4202[/C][C]0.4402[/C][C]0.4838[/C][/ROW]
[ROW][C]272[/C][C]0.2902[/C][C]0.1926[/C][C]0.2628[/C][C]0.236[/C][C]23.195[/C][C]28.3476[/C][C]5.3243[/C][C]0.5351[/C][C]0.4923[/C][/ROW]
[ROW][C]273[/C][C]0.2662[/C][C]-10.0004[/C][C]1.6539[/C][C]0.4404[/C][C]400.0288[/C][C]81.445[/C][C]9.0247[/C][C]-2.2223[/C][C]0.7395[/C][/ROW]
[ROW][C]274[/C][C]0.2918[/C][C]0.2278[/C][C]1.4757[/C][C]0.4175[/C][C]35.0838[/C][C]75.6498[/C][C]8.6977[/C][C]0.6581[/C][C]0.7293[/C][/ROW]
[ROW][C]275[/C][C]0.508[/C][C]0.4234[/C][C]1.3587[/C][C]0.4308[/C][C]71.7211[/C][C]75.2133[/C][C]8.6726[/C][C]0.941[/C][C]0.7528[/C][/ROW]
[ROW][C]276[/C][C]0.3314[/C][C]0.2316[/C][C]1.246[/C][C]0.4139[/C][C]28.3769[/C][C]70.5297[/C][C]8.3982[/C][C]0.5919[/C][C]0.7367[/C][/ROW]
[ROW][C]277[/C][C]0.2701[/C][C]0.0142[/C][C]1.134[/C][C]0.3776[/C][C]0.0972[/C][C]64.1267[/C][C]8.0079[/C][C]0.0346[/C][C]0.6729[/C][/ROW]
[ROW][C]278[/C][C]0.3237[/C][C]0.2461[/C][C]1.06[/C][C]0.3695[/C][C]34.8932[/C][C]61.6906[/C][C]7.8543[/C][C]0.6563[/C][C]0.6715[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=266434&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=266434&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
2670.36170.14990.14990.1628.1113000.31640.3164
2680.2479-0.81640.48320.3709112.647660.37957.7704-1.17930.7479
2690.24280.10650.35760.28488.274443.01116.55830.31960.6051
2700.27210.06390.28420.23012.159632.79825.7270.16330.4947
2710.48660.24760.27690.240615.697929.37825.42020.44020.4838
2720.29020.19260.26280.23623.19528.34765.32430.53510.4923
2730.2662-10.00041.65390.4404400.028881.4459.0247-2.22230.7395
2740.29180.22781.47570.417535.083875.64988.69770.65810.7293
2750.5080.42341.35870.430871.721175.21338.67260.9410.7528
2760.33140.23161.2460.413928.376970.52978.39820.59190.7367
2770.27010.01421.1340.37760.097264.12678.00790.03460.6729
2780.32370.24611.060.369534.893261.69067.85430.65630.6715



Parameters (Session):
par1 = 12 ; par2 = 1 ; par3 = 0 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 0 ; par8 = 2 ; par9 = 0 ; par10 = FALSE ;
Parameters (R input):
par1 = 12 ; par2 = 1 ; par3 = 0 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 0 ; par8 = 2 ; par9 = 0 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,par1))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')