Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_pairs.wasp
Title produced by softwareKendall tau Correlation Matrix
Date of computationTue, 16 Dec 2014 14:37:48 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/Dec/16/t1418741509nox4bg1doe67b5l.htm/, Retrieved Fri, 01 Nov 2024 00:12:08 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=269662, Retrieved Fri, 01 Nov 2024 00:12:08 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact118
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Kendall tau Correlation Matrix] [] [2014-12-16 14:37:48] [37e054ac358b2aa7c2a1d0b751dfa890] [Current]
Feedback Forum

Post a new message
Dataseries X:
23 26 17 27 13 12 13 13
22 20 31 30 NA NA NA NA
26 19 33 24 8 8 13 16
41 25 33 16 14 11 11 11
23 19 28 27 16 13 14 10
33 22 26 18 14 11 15 9
31 21 28 24 13 10 14 8
35 28 37 24 15 7 11 26
28 20 22 18 13 10 13 10
31 24 27 22 20 15 16 10
23 26 32 25 17 12 14 8
25 20 16 16 15 12 14 13
30 26 27 18 16 10 15 11
30 19 20 24 12 10 15 8
19 25 30 24 17 14 13 12
32 28 31 29 11 6 14 24
50 27 32 22 16 12 11 21
27 21 27 21 16 14 12 5
36 23 24 23 15 11 14 14
31 21 31 24 13 8 13 11
26 29 33 23 14 12 12 9
32 29 27 19 16 13 15 17
35 21 29 24 17 11 14 18
30 30 37 20 15 7 12 23
38 28 34 24 14 11 12 9
41 27 34 30 14 7 12 14
27 22 25 17 16 12 15 13
28 23 30 22 15 12 14 10
24 21 21 24 17 13 16 8
21 15 14 20 14 9 12 10
39 16 26 23 16 11 12 19
33 31 24 19 NA NA NA NA
28 18 24 22 15 12 14 11
47 25 25 24 16 15 16 16
26 25 33 20 16 12 15 12
25 15 26 24 10 6 12 11
34 24 23 26 8 5 14 11
30 20 27 24 17 13 13 10
30 24 31 24 14 11 14 13
25 28 31 24 10 6 16 14
19 15 15 21 14 12 12 8
28 20 26 22 12 10 14 11
39 33 27 29 16 6 15 11
20 13 13 23 16 12 13 13
30 21 32 22 16 11 16 15
31 24 27 25 8 6 16 15
19 23 23 23 16 12 12 16
25 21 24 24 15 12 12 12
52 33 41 30 8 8 16 12
33 24 37 24 13 10 12 17
22 23 23 24 14 11 15 14
32 20 30 20 13 7 12 15
17 14 17 16 16 12 13 12
31 25 26 27 19 13 12 13
20 34 19 13 19 14 14 7
29 22 35 29 14 12 14 8
37 25 22 27 15 6 11 16
21 21 27 24 13 14 10 20
23 21 21 24 10 10 12 14
30 21 28 23 16 12 11 10
21 24 24 22 15 11 16 16
24 22 32 26 11 10 14 11
40 28 39 26 9 7 14 26
20 18 18 21 16 12 15 9
33 23 31 23 12 7 15 15
20 16 19 20 12 12 14 12
26 24 30 28 14 12 13 21
22 27 37 29 14 10 11 20
32 18 20 16 13 10 16 20
13 11 15 25 15 12 12 10
28 26 34 28 17 12 15 15
32 26 25 24 14 12 14 10
27 23 22 24 9 10 14 9
32 20 34 24 NA NA NA NA
23 20 29 12 7 5 13 17
28 25 24 22 13 10 6 10
23 22 33 22 15 10 12 19
29 29 29 24 12 12 12 13
26 22 23 26 15 11 14 8
15 19 25 24 14 9 14 11
14 21 17 26 16 12 15 9
19 25 28 22 14 11 11 12
19 17 20 23 13 10 13 10
26 27 23 29 16 12 14 9
33 21 18 16 13 10 16 14
35 23 35 18 16 9 13 14
28 22 23 22 16 11 14 10
25 21 16 23 16 12 16 8
41 29 32 30 10 7 11 13
28 15 22 24 12 11 13 9
25 23 34 21 12 12 13 14
26 18 23 23 12 6 15 8
41 26 36 14 12 9 12 16
28 23 24 25 19 15 13 14
26 18 21 17 14 10 12 14
24 21 21 24 13 11 14 8
32 16 21 23 16 12 14 11
25 21 28 22 15 12 16 11
22 23 25 16 12 12 15 13
29 21 29 22 8 11 14 12
36 27 34 30 10 9 13 13
40 23 25 25 16 11 14 9
27 15 23 21 16 12 15 10
35 19 33 22 18 14 12 11
18 24 26 23 12 8 7 13
36 24 27 24 16 10 12 17
27 22 33 22 10 9 15 15
31 24 30 21 12 9 13 14
16 17 22 26 11 10 11 10
26 28 28 24 15 12 14 15
20 25 32 27 7 11 13 14




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Gertrude Mary Cox' @ cox.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=269662&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gertrude Mary Cox' @ cox.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=269662&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=269662&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net







Correlations for all pairs of data series (method=kendall)
anderenpositiefnegatieforganisatieCONFSTATTOTCONFSOFTTOTSTRESSTOTCESDTOT
anderen10.2740.2990.0450.004-0.1990.0240.181
positief0.27410.3770.194-0.003-0.076-0.0190.204
negatief0.2990.37710.148-0.108-0.166-0.1220.298
organisatie0.0450.1940.1481-0.082-0.082-0.05-0.009
CONFSTATTOT0.004-0.003-0.108-0.08210.5360.066-0.109
CONFSOFTTOT-0.199-0.076-0.166-0.0820.53610.076-0.211
STRESSTOT0.024-0.019-0.122-0.050.0660.0761-0.126
CESDTOT0.1810.2040.298-0.009-0.109-0.211-0.1261

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series (method=kendall) \tabularnewline
  & anderen & positief & negatief & organisatie & CONFSTATTOT & CONFSOFTTOT & STRESSTOT & CESDTOT \tabularnewline
anderen & 1 & 0.274 & 0.299 & 0.045 & 0.004 & -0.199 & 0.024 & 0.181 \tabularnewline
positief & 0.274 & 1 & 0.377 & 0.194 & -0.003 & -0.076 & -0.019 & 0.204 \tabularnewline
negatief & 0.299 & 0.377 & 1 & 0.148 & -0.108 & -0.166 & -0.122 & 0.298 \tabularnewline
organisatie & 0.045 & 0.194 & 0.148 & 1 & -0.082 & -0.082 & -0.05 & -0.009 \tabularnewline
CONFSTATTOT & 0.004 & -0.003 & -0.108 & -0.082 & 1 & 0.536 & 0.066 & -0.109 \tabularnewline
CONFSOFTTOT & -0.199 & -0.076 & -0.166 & -0.082 & 0.536 & 1 & 0.076 & -0.211 \tabularnewline
STRESSTOT & 0.024 & -0.019 & -0.122 & -0.05 & 0.066 & 0.076 & 1 & -0.126 \tabularnewline
CESDTOT & 0.181 & 0.204 & 0.298 & -0.009 & -0.109 & -0.211 & -0.126 & 1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=269662&T=1

[TABLE]
[ROW][C]Correlations for all pairs of data series (method=kendall)[/C][/ROW]
[ROW][C] [/C][C]anderen[/C][C]positief[/C][C]negatief[/C][C]organisatie[/C][C]CONFSTATTOT[/C][C]CONFSOFTTOT[/C][C]STRESSTOT[/C][C]CESDTOT[/C][/ROW]
[ROW][C]anderen[/C][C]1[/C][C]0.274[/C][C]0.299[/C][C]0.045[/C][C]0.004[/C][C]-0.199[/C][C]0.024[/C][C]0.181[/C][/ROW]
[ROW][C]positief[/C][C]0.274[/C][C]1[/C][C]0.377[/C][C]0.194[/C][C]-0.003[/C][C]-0.076[/C][C]-0.019[/C][C]0.204[/C][/ROW]
[ROW][C]negatief[/C][C]0.299[/C][C]0.377[/C][C]1[/C][C]0.148[/C][C]-0.108[/C][C]-0.166[/C][C]-0.122[/C][C]0.298[/C][/ROW]
[ROW][C]organisatie[/C][C]0.045[/C][C]0.194[/C][C]0.148[/C][C]1[/C][C]-0.082[/C][C]-0.082[/C][C]-0.05[/C][C]-0.009[/C][/ROW]
[ROW][C]CONFSTATTOT[/C][C]0.004[/C][C]-0.003[/C][C]-0.108[/C][C]-0.082[/C][C]1[/C][C]0.536[/C][C]0.066[/C][C]-0.109[/C][/ROW]
[ROW][C]CONFSOFTTOT[/C][C]-0.199[/C][C]-0.076[/C][C]-0.166[/C][C]-0.082[/C][C]0.536[/C][C]1[/C][C]0.076[/C][C]-0.211[/C][/ROW]
[ROW][C]STRESSTOT[/C][C]0.024[/C][C]-0.019[/C][C]-0.122[/C][C]-0.05[/C][C]0.066[/C][C]0.076[/C][C]1[/C][C]-0.126[/C][/ROW]
[ROW][C]CESDTOT[/C][C]0.181[/C][C]0.204[/C][C]0.298[/C][C]-0.009[/C][C]-0.109[/C][C]-0.211[/C][C]-0.126[/C][C]1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=269662&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=269662&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series (method=kendall)
anderenpositiefnegatieforganisatieCONFSTATTOTCONFSOFTTOTSTRESSTOTCESDTOT
anderen10.2740.2990.0450.004-0.1990.0240.181
positief0.27410.3770.194-0.003-0.076-0.0190.204
negatief0.2990.37710.148-0.108-0.166-0.1220.298
organisatie0.0450.1940.1481-0.082-0.082-0.05-0.009
CONFSTATTOT0.004-0.003-0.108-0.08210.5360.066-0.109
CONFSOFTTOT-0.199-0.076-0.166-0.0820.53610.076-0.211
STRESSTOT0.024-0.019-0.122-0.050.0660.0761-0.126
CESDTOT0.1810.2040.298-0.009-0.109-0.211-0.1261







Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
anderen;positief0.43450.37430.2736
p-value(0)(1e-04)(0)
anderen;negatief0.47130.41720.2994
p-value(0)(0)(0)
anderen;organisatie0.10660.06640.0454
p-value(0.2656)(0.4889)(0.5072)
anderen;CONFSTATTOT-0.03820.00340.0041
p-value(0.695)(0.9721)(0.9528)
anderen;CONFSOFTTOT-0.2316-0.2731-0.1986
p-value(0.0159)(0.0042)(0.0051)
anderen;STRESSTOT0.05560.03290.0244
p-value(0.5673)(0.7357)(0.7328)
anderen;CESDTOT0.27880.24750.1814
p-value(0.0035)(0.0098)(0.0084)
positief;negatief0.53150.50350.3773
p-value(0)(0)(0)
positief;organisatie0.19880.2530.1935
p-value(0.0365)(0.0074)(0.0052)
positief;CONFSTATTOT-0.0206-0.0039-0.0029
p-value(0.8322)(0.9676)(0.9678)
positief;CONFSOFTTOT-0.1442-0.1007-0.0764
p-value(0.1364)(0.2997)(0.2869)
positief;STRESSTOT-0.001-0.0291-0.0191
p-value(0.9915)(0.765)(0.7922)
positief;CESDTOT0.26970.28620.2039
p-value(0.0048)(0.0027)(0.0034)
negatief;organisatie0.25070.20480.148
p-value(0.008)(0.0311)(0.031)
negatief;CONFSTATTOT-0.2061-0.1498-0.1075
p-value(0.0323)(0.1217)(0.1247)
negatief;CONFSOFTTOT-0.2603-0.2378-0.1664
p-value(0.0065)(0.0132)(0.0189)
negatief;STRESSTOT-0.114-0.1683-0.1224
p-value(0.2401)(0.0817)(0.0873)
negatief;CESDTOT0.42440.40080.298
p-value(0)(0)(0)
organisatie;CONFSTATTOT-0.1103-0.1108-0.0818
p-value(0.2559)(0.2535)(0.2554)
organisatie;CONFSOFTTOT-0.1232-0.11-0.0819
p-value(0.204)(0.257)(0.2608)
organisatie;STRESSTOT-0.0601-0.0684-0.0499
p-value(0.5364)(0.4818)(0.4976)
organisatie;CESDTOT0.0335-0.0076-0.0086
p-value(0.7309)(0.9378)(0.9034)
CONFSTATTOT;CONFSOFTTOT0.63580.64860.5363
p-value(0)(0)(0)
CONFSTATTOT;STRESSTOT0.05170.08760.066
p-value(0.595)(0.3672)(0.3724)
CONFSTATTOT;CESDTOT-0.1512-0.1479-0.1093
p-value(0.1182)(0.1266)(0.1248)
CONFSOFTTOT;STRESSTOT0.09070.09590.0765
p-value(0.3505)(0.3235)(0.3075)
CONFSOFTTOT;CESDTOT-0.3038-0.2773-0.2111
p-value(0.0014)(0.0037)(0.0034)
STRESSTOT;CESDTOT-0.147-0.1632-0.1258
p-value(0.129)(0.0916)(0.0838)

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series with p-values \tabularnewline
pair & Pearson r & Spearman rho & Kendall tau \tabularnewline
anderen;positief & 0.4345 & 0.3743 & 0.2736 \tabularnewline
p-value & (0) & (1e-04) & (0) \tabularnewline
anderen;negatief & 0.4713 & 0.4172 & 0.2994 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
anderen;organisatie & 0.1066 & 0.0664 & 0.0454 \tabularnewline
p-value & (0.2656) & (0.4889) & (0.5072) \tabularnewline
anderen;CONFSTATTOT & -0.0382 & 0.0034 & 0.0041 \tabularnewline
p-value & (0.695) & (0.9721) & (0.9528) \tabularnewline
anderen;CONFSOFTTOT & -0.2316 & -0.2731 & -0.1986 \tabularnewline
p-value & (0.0159) & (0.0042) & (0.0051) \tabularnewline
anderen;STRESSTOT & 0.0556 & 0.0329 & 0.0244 \tabularnewline
p-value & (0.5673) & (0.7357) & (0.7328) \tabularnewline
anderen;CESDTOT & 0.2788 & 0.2475 & 0.1814 \tabularnewline
p-value & (0.0035) & (0.0098) & (0.0084) \tabularnewline
positief;negatief & 0.5315 & 0.5035 & 0.3773 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
positief;organisatie & 0.1988 & 0.253 & 0.1935 \tabularnewline
p-value & (0.0365) & (0.0074) & (0.0052) \tabularnewline
positief;CONFSTATTOT & -0.0206 & -0.0039 & -0.0029 \tabularnewline
p-value & (0.8322) & (0.9676) & (0.9678) \tabularnewline
positief;CONFSOFTTOT & -0.1442 & -0.1007 & -0.0764 \tabularnewline
p-value & (0.1364) & (0.2997) & (0.2869) \tabularnewline
positief;STRESSTOT & -0.001 & -0.0291 & -0.0191 \tabularnewline
p-value & (0.9915) & (0.765) & (0.7922) \tabularnewline
positief;CESDTOT & 0.2697 & 0.2862 & 0.2039 \tabularnewline
p-value & (0.0048) & (0.0027) & (0.0034) \tabularnewline
negatief;organisatie & 0.2507 & 0.2048 & 0.148 \tabularnewline
p-value & (0.008) & (0.0311) & (0.031) \tabularnewline
negatief;CONFSTATTOT & -0.2061 & -0.1498 & -0.1075 \tabularnewline
p-value & (0.0323) & (0.1217) & (0.1247) \tabularnewline
negatief;CONFSOFTTOT & -0.2603 & -0.2378 & -0.1664 \tabularnewline
p-value & (0.0065) & (0.0132) & (0.0189) \tabularnewline
negatief;STRESSTOT & -0.114 & -0.1683 & -0.1224 \tabularnewline
p-value & (0.2401) & (0.0817) & (0.0873) \tabularnewline
negatief;CESDTOT & 0.4244 & 0.4008 & 0.298 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
organisatie;CONFSTATTOT & -0.1103 & -0.1108 & -0.0818 \tabularnewline
p-value & (0.2559) & (0.2535) & (0.2554) \tabularnewline
organisatie;CONFSOFTTOT & -0.1232 & -0.11 & -0.0819 \tabularnewline
p-value & (0.204) & (0.257) & (0.2608) \tabularnewline
organisatie;STRESSTOT & -0.0601 & -0.0684 & -0.0499 \tabularnewline
p-value & (0.5364) & (0.4818) & (0.4976) \tabularnewline
organisatie;CESDTOT & 0.0335 & -0.0076 & -0.0086 \tabularnewline
p-value & (0.7309) & (0.9378) & (0.9034) \tabularnewline
CONFSTATTOT;CONFSOFTTOT & 0.6358 & 0.6486 & 0.5363 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
CONFSTATTOT;STRESSTOT & 0.0517 & 0.0876 & 0.066 \tabularnewline
p-value & (0.595) & (0.3672) & (0.3724) \tabularnewline
CONFSTATTOT;CESDTOT & -0.1512 & -0.1479 & -0.1093 \tabularnewline
p-value & (0.1182) & (0.1266) & (0.1248) \tabularnewline
CONFSOFTTOT;STRESSTOT & 0.0907 & 0.0959 & 0.0765 \tabularnewline
p-value & (0.3505) & (0.3235) & (0.3075) \tabularnewline
CONFSOFTTOT;CESDTOT & -0.3038 & -0.2773 & -0.2111 \tabularnewline
p-value & (0.0014) & (0.0037) & (0.0034) \tabularnewline
STRESSTOT;CESDTOT & -0.147 & -0.1632 & -0.1258 \tabularnewline
p-value & (0.129) & (0.0916) & (0.0838) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=269662&T=2

[TABLE]
[ROW][C]Correlations for all pairs of data series with p-values[/C][/ROW]
[ROW][C]pair[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]anderen;positief[/C][C]0.4345[/C][C]0.3743[/C][C]0.2736[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](1e-04)[/C][C](0)[/C][/ROW]
[ROW][C]anderen;negatief[/C][C]0.4713[/C][C]0.4172[/C][C]0.2994[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]anderen;organisatie[/C][C]0.1066[/C][C]0.0664[/C][C]0.0454[/C][/ROW]
[ROW][C]p-value[/C][C](0.2656)[/C][C](0.4889)[/C][C](0.5072)[/C][/ROW]
[ROW][C]anderen;CONFSTATTOT[/C][C]-0.0382[/C][C]0.0034[/C][C]0.0041[/C][/ROW]
[ROW][C]p-value[/C][C](0.695)[/C][C](0.9721)[/C][C](0.9528)[/C][/ROW]
[ROW][C]anderen;CONFSOFTTOT[/C][C]-0.2316[/C][C]-0.2731[/C][C]-0.1986[/C][/ROW]
[ROW][C]p-value[/C][C](0.0159)[/C][C](0.0042)[/C][C](0.0051)[/C][/ROW]
[ROW][C]anderen;STRESSTOT[/C][C]0.0556[/C][C]0.0329[/C][C]0.0244[/C][/ROW]
[ROW][C]p-value[/C][C](0.5673)[/C][C](0.7357)[/C][C](0.7328)[/C][/ROW]
[ROW][C]anderen;CESDTOT[/C][C]0.2788[/C][C]0.2475[/C][C]0.1814[/C][/ROW]
[ROW][C]p-value[/C][C](0.0035)[/C][C](0.0098)[/C][C](0.0084)[/C][/ROW]
[ROW][C]positief;negatief[/C][C]0.5315[/C][C]0.5035[/C][C]0.3773[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]positief;organisatie[/C][C]0.1988[/C][C]0.253[/C][C]0.1935[/C][/ROW]
[ROW][C]p-value[/C][C](0.0365)[/C][C](0.0074)[/C][C](0.0052)[/C][/ROW]
[ROW][C]positief;CONFSTATTOT[/C][C]-0.0206[/C][C]-0.0039[/C][C]-0.0029[/C][/ROW]
[ROW][C]p-value[/C][C](0.8322)[/C][C](0.9676)[/C][C](0.9678)[/C][/ROW]
[ROW][C]positief;CONFSOFTTOT[/C][C]-0.1442[/C][C]-0.1007[/C][C]-0.0764[/C][/ROW]
[ROW][C]p-value[/C][C](0.1364)[/C][C](0.2997)[/C][C](0.2869)[/C][/ROW]
[ROW][C]positief;STRESSTOT[/C][C]-0.001[/C][C]-0.0291[/C][C]-0.0191[/C][/ROW]
[ROW][C]p-value[/C][C](0.9915)[/C][C](0.765)[/C][C](0.7922)[/C][/ROW]
[ROW][C]positief;CESDTOT[/C][C]0.2697[/C][C]0.2862[/C][C]0.2039[/C][/ROW]
[ROW][C]p-value[/C][C](0.0048)[/C][C](0.0027)[/C][C](0.0034)[/C][/ROW]
[ROW][C]negatief;organisatie[/C][C]0.2507[/C][C]0.2048[/C][C]0.148[/C][/ROW]
[ROW][C]p-value[/C][C](0.008)[/C][C](0.0311)[/C][C](0.031)[/C][/ROW]
[ROW][C]negatief;CONFSTATTOT[/C][C]-0.2061[/C][C]-0.1498[/C][C]-0.1075[/C][/ROW]
[ROW][C]p-value[/C][C](0.0323)[/C][C](0.1217)[/C][C](0.1247)[/C][/ROW]
[ROW][C]negatief;CONFSOFTTOT[/C][C]-0.2603[/C][C]-0.2378[/C][C]-0.1664[/C][/ROW]
[ROW][C]p-value[/C][C](0.0065)[/C][C](0.0132)[/C][C](0.0189)[/C][/ROW]
[ROW][C]negatief;STRESSTOT[/C][C]-0.114[/C][C]-0.1683[/C][C]-0.1224[/C][/ROW]
[ROW][C]p-value[/C][C](0.2401)[/C][C](0.0817)[/C][C](0.0873)[/C][/ROW]
[ROW][C]negatief;CESDTOT[/C][C]0.4244[/C][C]0.4008[/C][C]0.298[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]organisatie;CONFSTATTOT[/C][C]-0.1103[/C][C]-0.1108[/C][C]-0.0818[/C][/ROW]
[ROW][C]p-value[/C][C](0.2559)[/C][C](0.2535)[/C][C](0.2554)[/C][/ROW]
[ROW][C]organisatie;CONFSOFTTOT[/C][C]-0.1232[/C][C]-0.11[/C][C]-0.0819[/C][/ROW]
[ROW][C]p-value[/C][C](0.204)[/C][C](0.257)[/C][C](0.2608)[/C][/ROW]
[ROW][C]organisatie;STRESSTOT[/C][C]-0.0601[/C][C]-0.0684[/C][C]-0.0499[/C][/ROW]
[ROW][C]p-value[/C][C](0.5364)[/C][C](0.4818)[/C][C](0.4976)[/C][/ROW]
[ROW][C]organisatie;CESDTOT[/C][C]0.0335[/C][C]-0.0076[/C][C]-0.0086[/C][/ROW]
[ROW][C]p-value[/C][C](0.7309)[/C][C](0.9378)[/C][C](0.9034)[/C][/ROW]
[ROW][C]CONFSTATTOT;CONFSOFTTOT[/C][C]0.6358[/C][C]0.6486[/C][C]0.5363[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]CONFSTATTOT;STRESSTOT[/C][C]0.0517[/C][C]0.0876[/C][C]0.066[/C][/ROW]
[ROW][C]p-value[/C][C](0.595)[/C][C](0.3672)[/C][C](0.3724)[/C][/ROW]
[ROW][C]CONFSTATTOT;CESDTOT[/C][C]-0.1512[/C][C]-0.1479[/C][C]-0.1093[/C][/ROW]
[ROW][C]p-value[/C][C](0.1182)[/C][C](0.1266)[/C][C](0.1248)[/C][/ROW]
[ROW][C]CONFSOFTTOT;STRESSTOT[/C][C]0.0907[/C][C]0.0959[/C][C]0.0765[/C][/ROW]
[ROW][C]p-value[/C][C](0.3505)[/C][C](0.3235)[/C][C](0.3075)[/C][/ROW]
[ROW][C]CONFSOFTTOT;CESDTOT[/C][C]-0.3038[/C][C]-0.2773[/C][C]-0.2111[/C][/ROW]
[ROW][C]p-value[/C][C](0.0014)[/C][C](0.0037)[/C][C](0.0034)[/C][/ROW]
[ROW][C]STRESSTOT;CESDTOT[/C][C]-0.147[/C][C]-0.1632[/C][C]-0.1258[/C][/ROW]
[ROW][C]p-value[/C][C](0.129)[/C][C](0.0916)[/C][C](0.0838)[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=269662&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=269662&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
anderen;positief0.43450.37430.2736
p-value(0)(1e-04)(0)
anderen;negatief0.47130.41720.2994
p-value(0)(0)(0)
anderen;organisatie0.10660.06640.0454
p-value(0.2656)(0.4889)(0.5072)
anderen;CONFSTATTOT-0.03820.00340.0041
p-value(0.695)(0.9721)(0.9528)
anderen;CONFSOFTTOT-0.2316-0.2731-0.1986
p-value(0.0159)(0.0042)(0.0051)
anderen;STRESSTOT0.05560.03290.0244
p-value(0.5673)(0.7357)(0.7328)
anderen;CESDTOT0.27880.24750.1814
p-value(0.0035)(0.0098)(0.0084)
positief;negatief0.53150.50350.3773
p-value(0)(0)(0)
positief;organisatie0.19880.2530.1935
p-value(0.0365)(0.0074)(0.0052)
positief;CONFSTATTOT-0.0206-0.0039-0.0029
p-value(0.8322)(0.9676)(0.9678)
positief;CONFSOFTTOT-0.1442-0.1007-0.0764
p-value(0.1364)(0.2997)(0.2869)
positief;STRESSTOT-0.001-0.0291-0.0191
p-value(0.9915)(0.765)(0.7922)
positief;CESDTOT0.26970.28620.2039
p-value(0.0048)(0.0027)(0.0034)
negatief;organisatie0.25070.20480.148
p-value(0.008)(0.0311)(0.031)
negatief;CONFSTATTOT-0.2061-0.1498-0.1075
p-value(0.0323)(0.1217)(0.1247)
negatief;CONFSOFTTOT-0.2603-0.2378-0.1664
p-value(0.0065)(0.0132)(0.0189)
negatief;STRESSTOT-0.114-0.1683-0.1224
p-value(0.2401)(0.0817)(0.0873)
negatief;CESDTOT0.42440.40080.298
p-value(0)(0)(0)
organisatie;CONFSTATTOT-0.1103-0.1108-0.0818
p-value(0.2559)(0.2535)(0.2554)
organisatie;CONFSOFTTOT-0.1232-0.11-0.0819
p-value(0.204)(0.257)(0.2608)
organisatie;STRESSTOT-0.0601-0.0684-0.0499
p-value(0.5364)(0.4818)(0.4976)
organisatie;CESDTOT0.0335-0.0076-0.0086
p-value(0.7309)(0.9378)(0.9034)
CONFSTATTOT;CONFSOFTTOT0.63580.64860.5363
p-value(0)(0)(0)
CONFSTATTOT;STRESSTOT0.05170.08760.066
p-value(0.595)(0.3672)(0.3724)
CONFSTATTOT;CESDTOT-0.1512-0.1479-0.1093
p-value(0.1182)(0.1266)(0.1248)
CONFSOFTTOT;STRESSTOT0.09070.09590.0765
p-value(0.3505)(0.3235)(0.3075)
CONFSOFTTOT;CESDTOT-0.3038-0.2773-0.2111
p-value(0.0014)(0.0037)(0.0034)
STRESSTOT;CESDTOT-0.147-0.1632-0.1258
p-value(0.129)(0.0916)(0.0838)







Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.360.360.36
0.020.390.390.39
0.030.390.390.39
0.040.460.430.43
0.050.460.430.43
0.060.460.430.43
0.070.460.430.43
0.080.460.430.43
0.090.460.460.5
0.10.460.50.5

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Correlation Tests \tabularnewline
Number of significant by total number of Correlations \tabularnewline
Type I error & Pearson r & Spearman rho & Kendall tau \tabularnewline
0.01 & 0.36 & 0.36 & 0.36 \tabularnewline
0.02 & 0.39 & 0.39 & 0.39 \tabularnewline
0.03 & 0.39 & 0.39 & 0.39 \tabularnewline
0.04 & 0.46 & 0.43 & 0.43 \tabularnewline
0.05 & 0.46 & 0.43 & 0.43 \tabularnewline
0.06 & 0.46 & 0.43 & 0.43 \tabularnewline
0.07 & 0.46 & 0.43 & 0.43 \tabularnewline
0.08 & 0.46 & 0.43 & 0.43 \tabularnewline
0.09 & 0.46 & 0.46 & 0.5 \tabularnewline
0.1 & 0.46 & 0.5 & 0.5 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=269662&T=3

[TABLE]
[ROW][C]Meta Analysis of Correlation Tests[/C][/ROW]
[ROW][C]Number of significant by total number of Correlations[/C][/ROW]
[ROW][C]Type I error[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]0.01[/C][C]0.36[/C][C]0.36[/C][C]0.36[/C][/ROW]
[ROW][C]0.02[/C][C]0.39[/C][C]0.39[/C][C]0.39[/C][/ROW]
[ROW][C]0.03[/C][C]0.39[/C][C]0.39[/C][C]0.39[/C][/ROW]
[ROW][C]0.04[/C][C]0.46[/C][C]0.43[/C][C]0.43[/C][/ROW]
[ROW][C]0.05[/C][C]0.46[/C][C]0.43[/C][C]0.43[/C][/ROW]
[ROW][C]0.06[/C][C]0.46[/C][C]0.43[/C][C]0.43[/C][/ROW]
[ROW][C]0.07[/C][C]0.46[/C][C]0.43[/C][C]0.43[/C][/ROW]
[ROW][C]0.08[/C][C]0.46[/C][C]0.43[/C][C]0.43[/C][/ROW]
[ROW][C]0.09[/C][C]0.46[/C][C]0.46[/C][C]0.5[/C][/ROW]
[ROW][C]0.1[/C][C]0.46[/C][C]0.5[/C][C]0.5[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=269662&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=269662&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.360.360.36
0.020.390.390.39
0.030.390.390.39
0.040.460.430.43
0.050.460.430.43
0.060.460.430.43
0.070.460.430.43
0.080.460.430.43
0.090.460.460.5
0.10.460.50.5



Parameters (Session):
par1 = kendall ;
Parameters (R input):
par1 = kendall ;
R code (references can be found in the software module):
panel.tau <- function(x, y, digits=2, prefix='', cex.cor)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
rr <- cor.test(x, y, method=par1)
r <- round(rr$p.value,2)
txt <- format(c(r, 0.123456789), digits=digits)[1]
txt <- paste(prefix, txt, sep='')
if(missing(cex.cor)) cex <- 0.5/strwidth(txt)
text(0.5, 0.5, txt, cex = cex)
}
panel.hist <- function(x, ...)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col='grey', ...)
}
bitmap(file='test1.png')
pairs(t(y),diag.panel=panel.hist, upper.panel=panel.smooth, lower.panel=panel.tau, main=main)
dev.off()
load(file='createtable')
n <- length(y[,1])
n
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Correlations for all pairs of data series (method=',par1,')',sep=''),n+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ',header=TRUE)
for (i in 1:n) {
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
}
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
for (j in 1:n) {
r <- cor.test(y[i,],y[j,],method=par1)
a<-table.element(a,round(r$estimate,3))
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
ncorrs <- (n*n -n)/2
mycorrs <- array(0, dim=c(10,3))
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Correlations for all pairs of data series with p-values',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'pair',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
cor.test(y[1,],y[2,],method=par1)
for (i in 1:(n-1))
{
for (j in (i+1):n)
{
a<-table.row.start(a)
dum <- paste(dimnames(t(x))[[2]][i],';',dimnames(t(x))[[2]][j],sep='')
a<-table.element(a,dum,header=TRUE)
rp <- cor.test(y[i,],y[j,],method='pearson')
a<-table.element(a,round(rp$estimate,4))
rs <- cor.test(y[i,],y[j,],method='spearman')
a<-table.element(a,round(rs$estimate,4))
rk <- cor.test(y[i,],y[j,],method='kendall')
a<-table.element(a,round(rk$estimate,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=T)
a<-table.element(a,paste('(',round(rp$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rs$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rk$p.value,4),')',sep=''))
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
if (rp$p.value < iiid100) mycorrs[iii, 1] = mycorrs[iii, 1] + 1
if (rs$p.value < iiid100) mycorrs[iii, 2] = mycorrs[iii, 2] + 1
if (rk$p.value < iiid100) mycorrs[iii, 3] = mycorrs[iii, 3] + 1
}
}
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Correlation Tests',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of significant by total number of Correlations',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Type I error',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
a<-table.row.start(a)
a<-table.element(a,round(iiid100,2),header=T)
a<-table.element(a,round(mycorrs[iii,1]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,2]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,3]/ncorrs,2))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')