Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_twosampletests_mean.wasp
Title produced by softwarePaired and Unpaired Two Samples Tests about the Mean
Date of computationWed, 17 Dec 2014 14:15:22 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2014/Dec/17/t1418825766moco00s820444bt.htm/, Retrieved Fri, 01 Nov 2024 00:01:30 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=270303, Retrieved Fri, 01 Nov 2024 00:01:30 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact103
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Paired and Unpaired Two Samples Tests about the Mean] [] [2014-12-17 14:01:29] [8e3afc5508de37bed770d90d46857754]
-    D    [Paired and Unpaired Two Samples Tests about the Mean] [] [2014-12-17 14:15:22] [ce2f801bda31f4b58163e4bbe4fada83] [Current]
Feedback Forum

Post a new message
Dataseries X:
72	50
61	62
68	54
61	71
64	54
65	65
69	73
63	52
75	84
63	42
73	66
75	65
63	78
63	73
62	75
64	66
60	70
56	81
59	71
68	69
66	71
73	72
72	68
71	70
59	67
64	76
66	70
78	60
68	72
73	69
62	71
65	62
68	70
65	58
60	76
71	52
65	59
68	68
64	76
74	67
69	59
76	76
68	60
72	63
67	70
63	66
59	64
73	70
66	75
62	61
69	60
66	73
57	61
56	66
71	59
56	64
62	78
59	53
57	67
66	66
63	71
69	51
48	56
66	67
73	69
67	55
61	63
68	67
75	65
62	47
69	76
74	64
63	68
58	64
58	65
72	63
62	60
62	68
65	72
69	70
66	61
72	61
62	62
75	71
58	71
66	51
55	70
47	73
62	76
64	59
64	68
50	48
70	52
69	59
48	60
66	59
73	57
74	79
66	60
78	60
60	59
69	61
65	71
78	58
63	59
71	58
80	60
73	55
69	62
84	69
64	68
58	72
59	19
78	68
67	79
60	71
66	71
74	74
72	75
55	53
49	50
74	70
53	78
64	59
65	72
57	70
51	63
80	74
67	67
70	66
74	62
75	73
70	67
69	61
65	74
71	32
65	69
68	60
67	57
59	60
72	68
52	68
65	73
68	69
67	65
73	81
65	55
75	69
57	48
62	69
59	68
63	74
73	67
55	65
64	63
78	74
60	39
66	68
68	69
78	63
60	70
64	68
72	70
71	78
80	59
74	62
69	75
75	74
73	73
60	62
76	69
53	67
78	73
67	52
59	61
73	53
70	63
59	78
76	65
66	77
64	69
72	68
57	76
74	63
66	41
74	76
71	67
65	69
70	73
66	63
77	78
72	56
65	56
67	64
72	68
58	75
84	55
63	66
58	75
69	77
80	61
67	71
75	72
71	66
72	66
75	63
79	60
76	64
81	74
60	71
67	69
72	77
79	70
40	77
70	68
66	65
66	69
73	50
74	72
70	64
50	76
64	79
77	55
NA	62
NA	69
NA	68
NA	75
NA	64
NA	63
NA	67
NA	58
NA	71
NA	79
NA	53
NA	57
NA	67
NA	58
NA	74
NA	62
NA	54
NA	62
NA	64
NA	66
NA	66
NA	63
NA	66
NA	78
NA	84
NA	67
NA	58
NA	75
NA	72
NA	54
NA	58
NA	67
NA	77
NA	72
NA	52
NA	76
NA	72
NA	77
NA	64
NA	71
NA	73
NA	75
NA	58
NA	51
NA	75
NA	71




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=270303&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=270303&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=270303&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Two Sample t-test (unpaired)
Mean of Sample 166.7264573991031
Mean of Sample 265.7732342007435
t-stat1.28770396322155
df490
p-value0.198456861512583
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-0.501233201502313,2.40767959822162]
F-test to compare two variances
F-stat0.720344896510085
df222
p-value0.0113843975447079
H0 value1
Alternativetwo.sided
CI Level0.95
CI[0.560652050110111,0.928325899811113]

\begin{tabular}{lllllllll}
\hline
Two Sample t-test (unpaired) \tabularnewline
Mean of Sample 1 & 66.7264573991031 \tabularnewline
Mean of Sample 2 & 65.7732342007435 \tabularnewline
t-stat & 1.28770396322155 \tabularnewline
df & 490 \tabularnewline
p-value & 0.198456861512583 \tabularnewline
H0 value & 0 \tabularnewline
Alternative & two.sided \tabularnewline
CI Level & 0.95 \tabularnewline
CI & [-0.501233201502313,2.40767959822162] \tabularnewline
F-test to compare two variances \tabularnewline
F-stat & 0.720344896510085 \tabularnewline
df & 222 \tabularnewline
p-value & 0.0113843975447079 \tabularnewline
H0 value & 1 \tabularnewline
Alternative & two.sided \tabularnewline
CI Level & 0.95 \tabularnewline
CI & [0.560652050110111,0.928325899811113] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=270303&T=1

[TABLE]
[ROW][C]Two Sample t-test (unpaired)[/C][/ROW]
[ROW][C]Mean of Sample 1[/C][C]66.7264573991031[/C][/ROW]
[ROW][C]Mean of Sample 2[/C][C]65.7732342007435[/C][/ROW]
[ROW][C]t-stat[/C][C]1.28770396322155[/C][/ROW]
[ROW][C]df[/C][C]490[/C][/ROW]
[ROW][C]p-value[/C][C]0.198456861512583[/C][/ROW]
[ROW][C]H0 value[/C][C]0[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]CI Level[/C][C]0.95[/C][/ROW]
[ROW][C]CI[/C][C][-0.501233201502313,2.40767959822162][/C][/ROW]
[ROW][C]F-test to compare two variances[/C][/ROW]
[ROW][C]F-stat[/C][C]0.720344896510085[/C][/ROW]
[ROW][C]df[/C][C]222[/C][/ROW]
[ROW][C]p-value[/C][C]0.0113843975447079[/C][/ROW]
[ROW][C]H0 value[/C][C]1[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]CI Level[/C][C]0.95[/C][/ROW]
[ROW][C]CI[/C][C][0.560652050110111,0.928325899811113][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=270303&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=270303&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Two Sample t-test (unpaired)
Mean of Sample 166.7264573991031
Mean of Sample 265.7732342007435
t-stat1.28770396322155
df490
p-value0.198456861512583
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-0.501233201502313,2.40767959822162]
F-test to compare two variances
F-stat0.720344896510085
df222
p-value0.0113843975447079
H0 value1
Alternativetwo.sided
CI Level0.95
CI[0.560652050110111,0.928325899811113]







Welch Two Sample t-test (unpaired)
Mean of Sample 166.7264573991031
Mean of Sample 265.7732342007435
t-stat1.30746605440176
df489.721308719475
p-value0.191667965794652
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-0.479251398728215,2.38569779544752]

\begin{tabular}{lllllllll}
\hline
Welch Two Sample t-test (unpaired) \tabularnewline
Mean of Sample 1 & 66.7264573991031 \tabularnewline
Mean of Sample 2 & 65.7732342007435 \tabularnewline
t-stat & 1.30746605440176 \tabularnewline
df & 489.721308719475 \tabularnewline
p-value & 0.191667965794652 \tabularnewline
H0 value & 0 \tabularnewline
Alternative & two.sided \tabularnewline
CI Level & 0.95 \tabularnewline
CI & [-0.479251398728215,2.38569779544752] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=270303&T=2

[TABLE]
[ROW][C]Welch Two Sample t-test (unpaired)[/C][/ROW]
[ROW][C]Mean of Sample 1[/C][C]66.7264573991031[/C][/ROW]
[ROW][C]Mean of Sample 2[/C][C]65.7732342007435[/C][/ROW]
[ROW][C]t-stat[/C][C]1.30746605440176[/C][/ROW]
[ROW][C]df[/C][C]489.721308719475[/C][/ROW]
[ROW][C]p-value[/C][C]0.191667965794652[/C][/ROW]
[ROW][C]H0 value[/C][C]0[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]CI Level[/C][C]0.95[/C][/ROW]
[ROW][C]CI[/C][C][-0.479251398728215,2.38569779544752][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=270303&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=270303&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Welch Two Sample t-test (unpaired)
Mean of Sample 166.7264573991031
Mean of Sample 265.7732342007435
t-stat1.30746605440176
df489.721308719475
p-value0.191667965794652
H0 value0
Alternativetwo.sided
CI Level0.95
CI[-0.479251398728215,2.38569779544752]







Wicoxon rank sum test with continuity correction (unpaired)
W31182
p-value0.448824608525902
H0 value0
Alternativetwo.sided
Kolmogorov-Smirnov Test to compare Distributions of two Samples
KS Statistic0.0635637721506326
p-value0.708122627401279
Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples
KS Statistic0.0659976328204444
p-value0.663006066217722

\begin{tabular}{lllllllll}
\hline
Wicoxon rank sum test with continuity correction (unpaired) \tabularnewline
W & 31182 \tabularnewline
p-value & 0.448824608525902 \tabularnewline
H0 value & 0 \tabularnewline
Alternative & two.sided \tabularnewline
Kolmogorov-Smirnov Test to compare Distributions of two Samples \tabularnewline
KS Statistic & 0.0635637721506326 \tabularnewline
p-value & 0.708122627401279 \tabularnewline
Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples \tabularnewline
KS Statistic & 0.0659976328204444 \tabularnewline
p-value & 0.663006066217722 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=270303&T=3

[TABLE]
[ROW][C]Wicoxon rank sum test with continuity correction (unpaired)[/C][/ROW]
[ROW][C]W[/C][C]31182[/C][/ROW]
[ROW][C]p-value[/C][C]0.448824608525902[/C][/ROW]
[ROW][C]H0 value[/C][C]0[/C][/ROW]
[ROW][C]Alternative[/C][C]two.sided[/C][/ROW]
[ROW][C]Kolmogorov-Smirnov Test to compare Distributions of two Samples[/C][/ROW]
[ROW][C]KS Statistic[/C][C]0.0635637721506326[/C][/ROW]
[ROW][C]p-value[/C][C]0.708122627401279[/C][/ROW]
[ROW][C]Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples[/C][/ROW]
[ROW][C]KS Statistic[/C][C]0.0659976328204444[/C][/ROW]
[ROW][C]p-value[/C][C]0.663006066217722[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=270303&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=270303&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Wicoxon rank sum test with continuity correction (unpaired)
W31182
p-value0.448824608525902
H0 value0
Alternativetwo.sided
Kolmogorov-Smirnov Test to compare Distributions of two Samples
KS Statistic0.0635637721506326
p-value0.708122627401279
Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples
KS Statistic0.0659976328204444
p-value0.663006066217722



Parameters (Session):
par1 = 1 ; par2 = 2 ; par3 = 0.95 ; par4 = two.sided ; par5 = unpaired ; par6 = 0.0 ;
Parameters (R input):
par1 = 1 ; par2 = 2 ; par3 = 0.95 ; par4 = two.sided ; par5 = unpaired ; par6 = 0.0 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #column number of first sample
par2 <- as.numeric(par2) #column number of second sample
par3 <- as.numeric(par3) #confidence (= 1 - alpha)
if (par5 == 'unpaired') paired <- FALSE else paired <- TRUE
par6 <- as.numeric(par6) #H0
z <- t(y)
if (par1 == par2) stop('Please, select two different column numbers')
if (par1 < 1) stop('Please, select a column number greater than zero for the first sample')
if (par2 < 1) stop('Please, select a column number greater than zero for the second sample')
if (par1 > length(z[1,])) stop('The column number for the first sample should be smaller')
if (par2 > length(z[1,])) stop('The column number for the second sample should be smaller')
if (par3 <= 0) stop('The confidence level should be larger than zero')
if (par3 >= 1) stop('The confidence level should be smaller than zero')
(r.t <- t.test(z[,par1],z[,par2],var.equal=TRUE,alternative=par4,paired=paired,mu=par6,conf.level=par3))
(v.t <- var.test(z[,par1],z[,par2],conf.level=par3))
(r.w <- t.test(z[,par1],z[,par2],var.equal=FALSE,alternative=par4,paired=paired,mu=par6,conf.level=par3))
(w.t <- wilcox.test(z[,par1],z[,par2],alternative=par4,paired=paired,mu=par6,conf.level=par3))
(ks.t <- ks.test(z[,par1],z[,par2],alternative=par4))
m1 <- mean(z[,par1],na.rm=T)
m2 <- mean(z[,par2],na.rm=T)
mdiff <- m1 - m2
newsam1 <- z[!is.na(z[,par1]),par1]
newsam2 <- z[,par2]+mdiff
newsam2 <- newsam2[!is.na(newsam2)]
(ks1.t <- ks.test(newsam1,newsam2,alternative=par4))
mydf <- data.frame(cbind(z[,par1],z[,par2]))
colnames(mydf) <- c('Variable 1','Variable 2')
bitmap(file='test1.png')
boxplot(mydf, notch=TRUE, ylab='value',main=main)
dev.off()
bitmap(file='test2.png')
qqnorm(z[,par1],main='Normal QQplot - Variable 1')
qqline(z[,par1])
dev.off()
bitmap(file='test3.png')
qqnorm(z[,par2],main='Normal QQplot - Variable 2')
qqline(z[,par2])
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Two Sample t-test (',par5,')',sep=''),2,TRUE)
a<-table.row.end(a)
if(!paired){
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 1',header=TRUE)
a<-table.element(a,r.t$estimate[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 2',header=TRUE)
a<-table.element(a,r.t$estimate[[2]])
a<-table.row.end(a)
} else {
a<-table.row.start(a)
a<-table.element(a,'Difference: Mean1 - Mean2',header=TRUE)
a<-table.element(a,r.t$estimate)
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,'t-stat',header=TRUE)
a<-table.element(a,r.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'df',header=TRUE)
a<-table.element(a,r.t$parameter[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,r.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,r.t$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,r.t$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI Level',header=TRUE)
a<-table.element(a,attr(r.t$conf.int,'conf.level'))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI',header=TRUE)
a<-table.element(a,paste('[',r.t$conf.int[1],',',r.t$conf.int[2],']',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'F-test to compare two variances',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'F-stat',header=TRUE)
a<-table.element(a,v.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'df',header=TRUE)
a<-table.element(a,v.t$parameter[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,v.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,v.t$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,v.t$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI Level',header=TRUE)
a<-table.element(a,attr(v.t$conf.int,'conf.level'))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI',header=TRUE)
a<-table.element(a,paste('[',v.t$conf.int[1],',',v.t$conf.int[2],']',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Welch Two Sample t-test (',par5,')',sep=''),2,TRUE)
a<-table.row.end(a)
if(!paired){
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 1',header=TRUE)
a<-table.element(a,r.w$estimate[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Mean of Sample 2',header=TRUE)
a<-table.element(a,r.w$estimate[[2]])
a<-table.row.end(a)
} else {
a<-table.row.start(a)
a<-table.element(a,'Difference: Mean1 - Mean2',header=TRUE)
a<-table.element(a,r.w$estimate)
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,'t-stat',header=TRUE)
a<-table.element(a,r.w$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'df',header=TRUE)
a<-table.element(a,r.w$parameter[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,r.w$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,r.w$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,r.w$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI Level',header=TRUE)
a<-table.element(a,attr(r.w$conf.int,'conf.level'))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'CI',header=TRUE)
a<-table.element(a,paste('[',r.w$conf.int[1],',',r.w$conf.int[2],']',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Wicoxon rank sum test with continuity correction (',par5,')',sep=''),2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'W',header=TRUE)
a<-table.element(a,w.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,w.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'H0 value',header=TRUE)
a<-table.element(a,w.t$null.value[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Alternative',header=TRUE)
a<-table.element(a,w.t$alternative)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Kolmogorov-Smirnov Test to compare Distributions of two Samples',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'KS Statistic',header=TRUE)
a<-table.element(a,ks.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,ks.t$p.value)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Kolmogorov-Smirnov Test to compare Distributional Shape of two Samples',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'KS Statistic',header=TRUE)
a<-table.element(a,ks1.t$statistic[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,ks1.t$p.value)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')