Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_Simple Regression Y ~ X.wasp
Title produced by softwareSimple Linear Regression
Date of computationSun, 19 Apr 2015 15:27:40 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2015/Apr/19/t14294536843r4g7hdjac0ytnm.htm/, Retrieved Thu, 31 Oct 2024 22:49:22 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=278733, Retrieved Thu, 31 Oct 2024 22:49:22 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact212
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Simple Linear Regression] [Regression Example] [2012-01-24 12:40:19] [98fd0e87c3eb04e0cc2efde01dbafab6]
- RM    [Simple Linear Regression] [Print] [2014-12-04 13:21:05] [2a42404c3b0fbfc7622e3301a77a3a9b]
-  MP     [Simple Linear Regression] [IQ (IV ) and Grad...] [2014-12-04 13:48:23] [2a42404c3b0fbfc7622e3301a77a3a9b]
-   PD      [Simple Linear Regression] [SA v GN] [2015-04-19 14:10:57] [2a42404c3b0fbfc7622e3301a77a3a9b]
- R P         [Simple Linear Regression] [SAS vs SN500] [2015-04-19 14:18:53] [2a42404c3b0fbfc7622e3301a77a3a9b]
- R PD          [Simple Linear Regression] [SAS vs GN1250] [2015-04-19 14:24:04] [2a42404c3b0fbfc7622e3301a77a3a9b]
-   P               [Simple Linear Regression] [SAS vs SG1250] [2015-04-19 14:27:40] [81dd4e4e1a53547628b5dda76e98ea83] [Current]
Feedback Forum

Post a new message
Dataseries X:
35	-37	-77	-23
37	-86	-47	11
9	30	17	-2
100	18	45	14
21	69	32	30
34	20	-54	-30
59	-9	38	6
41	42	-8	-2
69	-160	-111	-203
20	-107	-23	-5
57	-274	-94	190
50	-19	0	-42
35	-5	10	-61
19	99	77	47
4	103	55	11
76	-482	-324	-577
40	4	5	-9
25	56	29	104
66	-13	14	20
56	4	-9	15
37	-167	-166	-102
70	-39	21	-63
37	66	3	35
37	-35	-44	35
41	27	72	62
42	22	-43	5
26	17	-26	28
47	27	-17	21
38	109	81	54
18	64	17	30
50	30	31	-14




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Sir Maurice George Kendall' @ kendall.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Sir Maurice George Kendall' @ kendall.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=278733&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Maurice George Kendall' @ kendall.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=278733&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=278733&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Sir Maurice George Kendall' @ kendall.wessa.net







Linear Regression Model
Y ~ X
coefficients:
EstimateStd. Errort valuePr(>|t|)
(Intercept)31.45931.7620.990.33
X-1.1350.683-1.6620.107
- - -
Residual Std. Err. 77.459 on 29 df
Multiple R-sq. 0.087
Adjusted R-sq. 0.055

\begin{tabular}{lllllllll}
\hline
Linear Regression Model \tabularnewline
Y ~ X \tabularnewline
coefficients: &   \tabularnewline
  & Estimate & Std. Error & t value & Pr(>|t|) \tabularnewline
(Intercept) & 31.459 & 31.762 & 0.99 & 0.33 \tabularnewline
X & -1.135 & 0.683 & -1.662 & 0.107 \tabularnewline
- - -  &   \tabularnewline
Residual Std. Err.  & 77.459  on  29 df \tabularnewline
Multiple R-sq.  & 0.087 \tabularnewline
Adjusted R-sq.  & 0.055 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=278733&T=1

[TABLE]
[ROW][C]Linear Regression Model[/C][/ROW]
[ROW][C]Y ~ X[/C][/ROW]
[ROW][C]coefficients:[/C][C] [/C][/ROW]
[ROW][C] [/C][C]Estimate[/C][C]Std. Error[/C][C]t value[/C][C]Pr(>|t|)[/C][/ROW]
[C](Intercept)[/C][C]31.459[/C][C]31.762[/C][C]0.99[/C][C]0.33[/C][/ROW]
[C]X[/C][C]-1.135[/C][C]0.683[/C][C]-1.662[/C][C]0.107[/C][/ROW]
[ROW][C]- - - [/C][C] [/C][/ROW]
[ROW][C]Residual Std. Err. [/C][C]77.459  on  29 df[/C][/ROW]
[ROW][C]Multiple R-sq. [/C][C]0.087[/C][/ROW]
[ROW][C]Adjusted R-sq. [/C][C]0.055[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=278733&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=278733&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Linear Regression Model
Y ~ X
coefficients:
EstimateStd. Errort valuePr(>|t|)
(Intercept)31.45931.7620.990.33
X-1.1350.683-1.6620.107
- - -
Residual Std. Err. 77.459 on 29 df
Multiple R-sq. 0.087
Adjusted R-sq. 0.055







ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
SAS116576.3116576.312.7630.107
Residuals29173997.695999.92

\begin{tabular}{lllllllll}
\hline
ANOVA Statistics \tabularnewline
  & Df & Sum Sq & Mean Sq & F value & Pr(>F) \tabularnewline
SAS & 1 & 16576.31 & 16576.31 & 2.763 & 0.107 \tabularnewline
Residuals & 29 & 173997.69 & 5999.92 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=278733&T=2

[TABLE]
[ROW][C]ANOVA Statistics[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]Sum Sq[/C][C]Mean Sq[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]SAS[/C][C]1[/C][C]16576.31[/C][C]16576.31[/C][C]2.763[/C][C]0.107[/C][/ROW]
[ROW][C]Residuals[/C][C]29[/C][C]173997.69[/C][C]5999.92[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=278733&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=278733&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
SAS116576.3116576.312.7630.107
Residuals29173997.695999.92



Parameters (Session):
par1 = 3 ; par2 = 1 ; par3 = TRUE ;
Parameters (R input):
par1 = 3 ; par2 = 1 ; par3 = TRUE ;
R code (references can be found in the software module):
cat1 <- as.numeric(par1)
cat2<- as.numeric(par2)
intercept<-as.logical(par3)
x <- t(x)
xdf<-data.frame(t(y))
(V1<-dimnames(y)[[1]][cat1])
(V2<-dimnames(y)[[1]][cat2])
xdf <- data.frame(xdf[[cat1]], xdf[[cat2]])
names(xdf)<-c('Y', 'X')
if(intercept == FALSE) (lmxdf<-lm(Y~ X - 1, data = xdf) ) else (lmxdf<-lm(Y~ X, data = xdf) )
sumlmxdf<-summary(lmxdf)
(aov.xdf<-aov(lmxdf) )
(anova.xdf<-anova(lmxdf) )
load(file='createtable')
a<-table.start()
nc <- ncol(sumlmxdf$'coefficients')
nr <- nrow(sumlmxdf$'coefficients')
a<-table.row.start(a)
a<-table.element(a,'Linear Regression Model', nc+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, lmxdf$call['formula'],nc+1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'coefficients:',1,TRUE)
a<-table.element(a, ' ',nc,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ',1,TRUE)
for(i in 1 : nc){
a<-table.element(a, dimnames(sumlmxdf$'coefficients')[[2]][i],1,TRUE)
}#end header
a<-table.row.end(a)
for(i in 1: nr){
a<-table.element(a,dimnames(sumlmxdf$'coefficients')[[1]][i] ,1,TRUE)
for(j in 1 : nc){
a<-table.element(a, round(sumlmxdf$coefficients[i, j], digits=3), 1 ,FALSE)
}
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a, '- - - ',1,TRUE)
a<-table.element(a, ' ',nc,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Std. Err. ',1,TRUE)
a<-table.element(a, paste(round(sumlmxdf$'sigma', digits=3), ' on ', sumlmxdf$'df'[2], 'df') ,nc, FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R-sq. ',1,TRUE)
a<-table.element(a, round(sumlmxdf$'r.squared', digits=3) ,nc, FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-sq. ',1,TRUE)
a<-table.element(a, round(sumlmxdf$'adj.r.squared', digits=3) ,nc, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Statistics', 5+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ',1,TRUE)
a<-table.element(a, 'Df',1,TRUE)
a<-table.element(a, 'Sum Sq',1,TRUE)
a<-table.element(a, 'Mean Sq',1,TRUE)
a<-table.element(a, 'F value',1,TRUE)
a<-table.element(a, 'Pr(>F)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, V2,1,TRUE)
a<-table.element(a, anova.xdf$Df[1])
a<-table.element(a, round(anova.xdf$'Sum Sq'[1], digits=3))
a<-table.element(a, round(anova.xdf$'Mean Sq'[1], digits=3))
a<-table.element(a, round(anova.xdf$'F value'[1], digits=3))
a<-table.element(a, round(anova.xdf$'Pr(>F)'[1], digits=3))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residuals',1,TRUE)
a<-table.element(a, anova.xdf$Df[2])
a<-table.element(a, round(anova.xdf$'Sum Sq'[2], digits=3))
a<-table.element(a, round(anova.xdf$'Mean Sq'[2], digits=3))
a<-table.element(a, ' ')
a<-table.element(a, ' ')
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
bitmap(file='regressionplot.png')
plot(Y~ X, data=xdf, xlab=V2, ylab=V1, main='Regression Solution')
if(intercept == TRUE) abline(coef(lmxdf), col='red')
if(intercept == FALSE) abline(0.0, coef(lmxdf), col='red')
dev.off()
library(car)
bitmap(file='residualsQQplot.png')
qq.plot(resid(lmxdf), main='QQplot of Residuals of Fit')
dev.off()
bitmap(file='residualsplot.png')
plot(xdf$X, resid(lmxdf), main='Scatterplot of Residuals of Model Fit')
dev.off()
bitmap(file='cooksDistanceLmplot.png')
plot.lm(lmxdf, which=4)
dev.off()