Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_variability.wasp
Title produced by softwareVariability
Date of computationTue, 14 Jul 2015 13:47:52 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2015/Jul/14/t1436878384yyqpmb2v08wsaz3.htm/, Retrieved Fri, 01 Nov 2024 00:00:13 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=279564, Retrieved Fri, 01 Nov 2024 00:00:13 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact175
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Mean Plot] [meanplot consumpt...] [2015-02-25 21:22:56] [6b666be92a2717ec998be34b30849c21]
- R PD  [Mean Plot] [REEKS A: oefening 7] [2015-07-10 22:53:58] [6b666be92a2717ec998be34b30849c21]
- RM D    [(Partial) Autocorrelation Function] [REEKS B: oefening 9] [2015-07-13 19:34:17] [6b666be92a2717ec998be34b30849c21]
- RM          [Variability] [REEKS B: oefening 10] [2015-07-14 12:47:52] [b81b5adcb18a6dd731e9cb79a54989dd] [Current]
- RMP           [Standard Deviation-Mean Plot] [REEKS B: oefening 11] [2015-07-14 12:54:19] [6b666be92a2717ec998be34b30849c21]
Feedback Forum

Post a new message
Dataseries X:
1263600
1216800
1287000
1029600
1333800
1310400
1404000
1450800
1614600
1404000
1333800
1661400
1404000
1053000
1240200
936000
1310400
1076400
1427400
1287000
1357200
1521000
1497600
1778400
1287000
1076400
1193400
865800
1240200
959400
1357200
1287000
1146600
1638000
1474200
1684800
1263600
1170000
1053000
865800
1146600
1029600
1404000
1357200
1170000
1567800
1450800
1872000
1497600
912600
912600
912600
1076400
1076400
1450800
1333800
1193400
1497600
1380600
1989000
1567800
912600
959400
795600
1099800
1263600
1591200
1567800
1263600
1474200
1310400
1872000
1427400
1146600
1029600
772200
1146600
1380600
1614600
1521000
1123200
1614600
1263600
1942200
1614600
1170000
1076400
725400
1146600
1099800
1661400
1661400
1263600
1638000
1216800
1895400
1614600
1193400
912600
631800
1240200
1193400
1567800
1801800
1333800
1497600
1123200
1942200




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time0 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 0 seconds \tabularnewline
R Server & 'Gertrude Mary Cox' @ cox.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=279564&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]0 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gertrude Mary Cox' @ cox.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=279564&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=279564&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time0 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net







Variability - Ungrouped Data
Absolute range1357200
Relative range (unbiased)4.76713164808994
Relative range (biased)4.78935615853602
Variance (unbiased)81053805700.9346
Variance (biased)80303307500
Standard Deviation (unbiased)284699.500703697
Standard Deviation (biased)283378.382203018
Coefficient of Variation (unbiased)0.216724013781218
Coefficient of Variation (biased)0.215718328476397
Mean Squared Error (MSE versus 0)1805979630000
Mean Squared Error (MSE versus Mean)80303307500
Mean Absolute Deviation from Mean (MAD Mean)227090.740740741
Mean Absolute Deviation from Median (MAD Median)226416.666666667
Median Absolute Deviation from Mean187200
Median Absolute Deviation from Median198900
Mean Squared Deviation from Mean80303307500
Mean Squared Deviation from Median81013530000
Interquartile Difference (Weighted Average at Xnp)374400
Interquartile Difference (Weighted Average at X(n+1)p)374400
Interquartile Difference (Empirical Distribution Function)374400
Interquartile Difference (Empirical Distribution Function - Averaging)374400
Interquartile Difference (Empirical Distribution Function - Interpolation)374400
Interquartile Difference (Closest Observation)374400
Interquartile Difference (True Basic - Statistics Graphics Toolkit)374400
Interquartile Difference (MS Excel (old versions))374400
Semi Interquartile Difference (Weighted Average at Xnp)187200
Semi Interquartile Difference (Weighted Average at X(n+1)p)187200
Semi Interquartile Difference (Empirical Distribution Function)187200
Semi Interquartile Difference (Empirical Distribution Function - Averaging)187200
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)187200
Semi Interquartile Difference (Closest Observation)187200
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)187200
Semi Interquartile Difference (MS Excel (old versions))187200
Coefficient of Quartile Variation (Weighted Average at Xnp)0.142857142857143
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.142857142857143
Coefficient of Quartile Variation (Empirical Distribution Function)0.142857142857143
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.142857142857143
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.142857142857143
Coefficient of Quartile Variation (Closest Observation)0.142857142857143
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.142857142857143
Coefficient of Quartile Variation (MS Excel (old versions))0.142857142857143
Number of all Pairs of Observations5778
Squared Differences between all Pairs of Observations162107611401.869
Mean Absolute Differences between all Pairs of Observations323473.208722741
Gini Mean Difference323473.208722741
Leik Measure of Dispersion0.510588971561841
Index of Diversity0.990309866692216
Index of Qualitative Variation0.999565099091209
Coefficient of Dispersion0.176449682005238
Observations108

\begin{tabular}{lllllllll}
\hline
Variability - Ungrouped Data \tabularnewline
Absolute range & 1357200 \tabularnewline
Relative range (unbiased) & 4.76713164808994 \tabularnewline
Relative range (biased) & 4.78935615853602 \tabularnewline
Variance (unbiased) & 81053805700.9346 \tabularnewline
Variance (biased) & 80303307500 \tabularnewline
Standard Deviation (unbiased) & 284699.500703697 \tabularnewline
Standard Deviation (biased) & 283378.382203018 \tabularnewline
Coefficient of Variation (unbiased) & 0.216724013781218 \tabularnewline
Coefficient of Variation (biased) & 0.215718328476397 \tabularnewline
Mean Squared Error (MSE versus 0) & 1805979630000 \tabularnewline
Mean Squared Error (MSE versus Mean) & 80303307500 \tabularnewline
Mean Absolute Deviation from Mean (MAD Mean) & 227090.740740741 \tabularnewline
Mean Absolute Deviation from Median (MAD Median) & 226416.666666667 \tabularnewline
Median Absolute Deviation from Mean & 187200 \tabularnewline
Median Absolute Deviation from Median & 198900 \tabularnewline
Mean Squared Deviation from Mean & 80303307500 \tabularnewline
Mean Squared Deviation from Median & 81013530000 \tabularnewline
Interquartile Difference (Weighted Average at Xnp) & 374400 \tabularnewline
Interquartile Difference (Weighted Average at X(n+1)p) & 374400 \tabularnewline
Interquartile Difference (Empirical Distribution Function) & 374400 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Averaging) & 374400 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Interpolation) & 374400 \tabularnewline
Interquartile Difference (Closest Observation) & 374400 \tabularnewline
Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 374400 \tabularnewline
Interquartile Difference (MS Excel (old versions)) & 374400 \tabularnewline
Semi Interquartile Difference (Weighted Average at Xnp) & 187200 \tabularnewline
Semi Interquartile Difference (Weighted Average at X(n+1)p) & 187200 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function) & 187200 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Averaging) & 187200 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Interpolation) & 187200 \tabularnewline
Semi Interquartile Difference (Closest Observation) & 187200 \tabularnewline
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 187200 \tabularnewline
Semi Interquartile Difference (MS Excel (old versions)) & 187200 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at Xnp) & 0.142857142857143 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at X(n+1)p) & 0.142857142857143 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function) & 0.142857142857143 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging) & 0.142857142857143 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation) & 0.142857142857143 \tabularnewline
Coefficient of Quartile Variation (Closest Observation) & 0.142857142857143 \tabularnewline
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit) & 0.142857142857143 \tabularnewline
Coefficient of Quartile Variation (MS Excel (old versions)) & 0.142857142857143 \tabularnewline
Number of all Pairs of Observations & 5778 \tabularnewline
Squared Differences between all Pairs of Observations & 162107611401.869 \tabularnewline
Mean Absolute Differences between all Pairs of Observations & 323473.208722741 \tabularnewline
Gini Mean Difference & 323473.208722741 \tabularnewline
Leik Measure of Dispersion & 0.510588971561841 \tabularnewline
Index of Diversity & 0.990309866692216 \tabularnewline
Index of Qualitative Variation & 0.999565099091209 \tabularnewline
Coefficient of Dispersion & 0.176449682005238 \tabularnewline
Observations & 108 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=279564&T=1

[TABLE]
[ROW][C]Variability - Ungrouped Data[/C][/ROW]
[ROW][C]Absolute range[/C][C]1357200[/C][/ROW]
[ROW][C]Relative range (unbiased)[/C][C]4.76713164808994[/C][/ROW]
[ROW][C]Relative range (biased)[/C][C]4.78935615853602[/C][/ROW]
[ROW][C]Variance (unbiased)[/C][C]81053805700.9346[/C][/ROW]
[ROW][C]Variance (biased)[/C][C]80303307500[/C][/ROW]
[ROW][C]Standard Deviation (unbiased)[/C][C]284699.500703697[/C][/ROW]
[ROW][C]Standard Deviation (biased)[/C][C]283378.382203018[/C][/ROW]
[ROW][C]Coefficient of Variation (unbiased)[/C][C]0.216724013781218[/C][/ROW]
[ROW][C]Coefficient of Variation (biased)[/C][C]0.215718328476397[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus 0)[/C][C]1805979630000[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus Mean)[/C][C]80303307500[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Mean (MAD Mean)[/C][C]227090.740740741[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Median (MAD Median)[/C][C]226416.666666667[/C][/ROW]
[ROW][C]Median Absolute Deviation from Mean[/C][C]187200[/C][/ROW]
[ROW][C]Median Absolute Deviation from Median[/C][C]198900[/C][/ROW]
[ROW][C]Mean Squared Deviation from Mean[/C][C]80303307500[/C][/ROW]
[ROW][C]Mean Squared Deviation from Median[/C][C]81013530000[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at Xnp)[/C][C]374400[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]374400[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function)[/C][C]374400[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]374400[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]374400[/C][/ROW]
[ROW][C]Interquartile Difference (Closest Observation)[/C][C]374400[/C][/ROW]
[ROW][C]Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]374400[/C][/ROW]
[ROW][C]Interquartile Difference (MS Excel (old versions))[/C][C]374400[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at Xnp)[/C][C]187200[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]187200[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function)[/C][C]187200[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]187200[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]187200[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Closest Observation)[/C][C]187200[/C][/ROW]
[ROW][C]Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]187200[/C][/ROW]
[ROW][C]Semi Interquartile Difference (MS Excel (old versions))[/C][C]187200[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at Xnp)[/C][C]0.142857142857143[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at X(n+1)p)[/C][C]0.142857142857143[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function)[/C][C]0.142857142857143[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)[/C][C]0.142857142857143[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)[/C][C]0.142857142857143[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Closest Observation)[/C][C]0.142857142857143[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)[/C][C]0.142857142857143[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (MS Excel (old versions))[/C][C]0.142857142857143[/C][/ROW]
[ROW][C]Number of all Pairs of Observations[/C][C]5778[/C][/ROW]
[ROW][C]Squared Differences between all Pairs of Observations[/C][C]162107611401.869[/C][/ROW]
[ROW][C]Mean Absolute Differences between all Pairs of Observations[/C][C]323473.208722741[/C][/ROW]
[ROW][C]Gini Mean Difference[/C][C]323473.208722741[/C][/ROW]
[ROW][C]Leik Measure of Dispersion[/C][C]0.510588971561841[/C][/ROW]
[ROW][C]Index of Diversity[/C][C]0.990309866692216[/C][/ROW]
[ROW][C]Index of Qualitative Variation[/C][C]0.999565099091209[/C][/ROW]
[ROW][C]Coefficient of Dispersion[/C][C]0.176449682005238[/C][/ROW]
[ROW][C]Observations[/C][C]108[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=279564&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=279564&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variability - Ungrouped Data
Absolute range1357200
Relative range (unbiased)4.76713164808994
Relative range (biased)4.78935615853602
Variance (unbiased)81053805700.9346
Variance (biased)80303307500
Standard Deviation (unbiased)284699.500703697
Standard Deviation (biased)283378.382203018
Coefficient of Variation (unbiased)0.216724013781218
Coefficient of Variation (biased)0.215718328476397
Mean Squared Error (MSE versus 0)1805979630000
Mean Squared Error (MSE versus Mean)80303307500
Mean Absolute Deviation from Mean (MAD Mean)227090.740740741
Mean Absolute Deviation from Median (MAD Median)226416.666666667
Median Absolute Deviation from Mean187200
Median Absolute Deviation from Median198900
Mean Squared Deviation from Mean80303307500
Mean Squared Deviation from Median81013530000
Interquartile Difference (Weighted Average at Xnp)374400
Interquartile Difference (Weighted Average at X(n+1)p)374400
Interquartile Difference (Empirical Distribution Function)374400
Interquartile Difference (Empirical Distribution Function - Averaging)374400
Interquartile Difference (Empirical Distribution Function - Interpolation)374400
Interquartile Difference (Closest Observation)374400
Interquartile Difference (True Basic - Statistics Graphics Toolkit)374400
Interquartile Difference (MS Excel (old versions))374400
Semi Interquartile Difference (Weighted Average at Xnp)187200
Semi Interquartile Difference (Weighted Average at X(n+1)p)187200
Semi Interquartile Difference (Empirical Distribution Function)187200
Semi Interquartile Difference (Empirical Distribution Function - Averaging)187200
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)187200
Semi Interquartile Difference (Closest Observation)187200
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)187200
Semi Interquartile Difference (MS Excel (old versions))187200
Coefficient of Quartile Variation (Weighted Average at Xnp)0.142857142857143
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.142857142857143
Coefficient of Quartile Variation (Empirical Distribution Function)0.142857142857143
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.142857142857143
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.142857142857143
Coefficient of Quartile Variation (Closest Observation)0.142857142857143
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.142857142857143
Coefficient of Quartile Variation (MS Excel (old versions))0.142857142857143
Number of all Pairs of Observations5778
Squared Differences between all Pairs of Observations162107611401.869
Mean Absolute Differences between all Pairs of Observations323473.208722741
Gini Mean Difference323473.208722741
Leik Measure of Dispersion0.510588971561841
Index of Diversity0.990309866692216
Index of Qualitative Variation0.999565099091209
Coefficient of Dispersion0.176449682005238
Observations108



Parameters (Session):
Parameters (R input):
R code (references can be found in the software module):
num <- 50
res <- array(NA,dim=c(num,3))
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
iqd <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
iqdiff <- qvalue3 - qvalue1
return(c(iqdiff,iqdiff/2,iqdiff/(qvalue3 + qvalue1)))
}
range <- max(x) - min(x)
lx <- length(x)
biasf <- (lx-1)/lx
varx <- var(x)
bvarx <- varx*biasf
sdx <- sqrt(varx)
mx <- mean(x)
bsdx <- sqrt(bvarx)
x2 <- x*x
mse0 <- sum(x2)/lx
xmm <- x-mx
xmm2 <- xmm*xmm
msem <- sum(xmm2)/lx
axmm <- abs(x - mx)
medx <- median(x)
axmmed <- abs(x - medx)
xmmed <- x - medx
xmmed2 <- xmmed*xmmed
msemed <- sum(xmmed2)/lx
qarr <- array(NA,dim=c(8,3))
for (j in 1:8) {
qarr[j,] <- iqd(x,j)
}
sdpo <- 0
adpo <- 0
for (i in 1:(lx-1)) {
for (j in (i+1):lx) {
ldi <- x[i]-x[j]
aldi <- abs(ldi)
sdpo = sdpo + ldi * ldi
adpo = adpo + aldi
}
}
denom <- (lx*(lx-1)/2)
sdpo = sdpo / denom
adpo = adpo / denom
gmd <- 0
for (i in 1:lx) {
for (j in 1:lx) {
ldi <- abs(x[i]-x[j])
gmd = gmd + ldi
}
}
gmd <- gmd / (lx*(lx-1))
sumx <- sum(x)
pk <- x / sumx
ck <- cumsum(pk)
dk <- array(NA,dim=lx)
for (i in 1:lx) {
if (ck[i] <= 0.5) dk[i] <- ck[i] else dk[i] <- 1 - ck[i]
}
bigd <- sum(dk) * 2 / (lx-1)
iod <- 1 - sum(pk*pk)
res[1,] <- c('Absolute range','absolute.htm', range)
res[2,] <- c('Relative range (unbiased)','relative.htm', range/sd(x))
res[3,] <- c('Relative range (biased)','relative.htm', range/sqrt(varx*biasf))
res[4,] <- c('Variance (unbiased)','unbiased.htm', varx)
res[5,] <- c('Variance (biased)','biased.htm', bvarx)
res[6,] <- c('Standard Deviation (unbiased)','unbiased1.htm', sdx)
res[7,] <- c('Standard Deviation (biased)','biased1.htm', bsdx)
res[8,] <- c('Coefficient of Variation (unbiased)','variation.htm', sdx/mx)
res[9,] <- c('Coefficient of Variation (biased)','variation.htm', bsdx/mx)
res[10,] <- c('Mean Squared Error (MSE versus 0)','mse.htm', mse0)
res[11,] <- c('Mean Squared Error (MSE versus Mean)','mse.htm', msem)
res[12,] <- c('Mean Absolute Deviation from Mean (MAD Mean)', 'mean2.htm', sum(axmm)/lx)
res[13,] <- c('Mean Absolute Deviation from Median (MAD Median)', 'median1.htm', sum(axmmed)/lx)
res[14,] <- c('Median Absolute Deviation from Mean', 'mean3.htm', median(axmm))
res[15,] <- c('Median Absolute Deviation from Median', 'median2.htm', median(axmmed))
res[16,] <- c('Mean Squared Deviation from Mean', 'mean1.htm', msem)
res[17,] <- c('Mean Squared Deviation from Median', 'median.htm', msemed)
load(file='createtable')
mylink1 <- hyperlink('difference.htm','Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[18,] <- c('', mylink2, qarr[1,1])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[19,] <- c('', mylink2, qarr[2,1])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[20,] <- c('', mylink2, qarr[3,1])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[21,] <- c('', mylink2, qarr[4,1])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[22,] <- c('', mylink2, qarr[5,1])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[23,] <- c('', mylink2, qarr[6,1])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[24,] <- c('', mylink2, qarr[7,1])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[25,] <- c('', mylink2, qarr[8,1])
mylink1 <- hyperlink('deviation.htm','Semi Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[26,] <- c('', mylink2, qarr[1,2])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[27,] <- c('', mylink2, qarr[2,2])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[28,] <- c('', mylink2, qarr[3,2])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[29,] <- c('', mylink2, qarr[4,2])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[30,] <- c('', mylink2, qarr[5,2])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[31,] <- c('', mylink2, qarr[6,2])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[32,] <- c('', mylink2, qarr[7,2])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[33,] <- c('', mylink2, qarr[8,2])
mylink1 <- hyperlink('variation1.htm','Coefficient of Quartile Variation','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[34,] <- c('', mylink2, qarr[1,3])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[35,] <- c('', mylink2, qarr[2,3])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[36,] <- c('', mylink2, qarr[3,3])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[37,] <- c('', mylink2, qarr[4,3])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[38,] <- c('', mylink2, qarr[5,3])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[39,] <- c('', mylink2, qarr[6,3])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[40,] <- c('', mylink2, qarr[7,3])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[41,] <- c('', mylink2, qarr[8,3])
res[42,] <- c('Number of all Pairs of Observations', 'pair_numbers.htm', lx*(lx-1)/2)
res[43,] <- c('Squared Differences between all Pairs of Observations', 'squared_differences.htm', sdpo)
res[44,] <- c('Mean Absolute Differences between all Pairs of Observations', 'mean_abs_differences.htm', adpo)
res[45,] <- c('Gini Mean Difference', 'gini_mean_difference.htm', gmd)
res[46,] <- c('Leik Measure of Dispersion', 'leiks_d.htm', bigd)
res[47,] <- c('Index of Diversity', 'diversity.htm', iod)
res[48,] <- c('Index of Qualitative Variation', 'qualitative_variation.htm', iod*lx/(lx-1))
res[49,] <- c('Coefficient of Dispersion', 'dispersion.htm', sum(axmm)/lx/medx)
res[50,] <- c('Observations', '', lx)
res
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variability - Ungrouped Data',2,TRUE)
a<-table.row.end(a)
for (i in 1:num) {
a<-table.row.start(a)
if (res[i,1] != '') {
a<-table.element(a,hyperlink(res[i,2],res[i,1],''),header=TRUE)
} else {
a<-table.element(a,res[i,2],header=TRUE)
}
a<-table.element(a,res[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')