Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationMon, 17 Aug 2015 00:02:29 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2015/Aug/17/t14397661756me62zswzy3x7cu.htm/, Retrieved Thu, 31 Oct 2024 23:58:31 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=280225, Retrieved Thu, 31 Oct 2024 23:58:31 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact205
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Data Series] [] [2014-09-20 19:01:39] [46d78fa4bef23992fc20db72a2a0da97]
- R PD  [Univariate Data Series] [] [2015-08-16 14:59:07] [46d78fa4bef23992fc20db72a2a0da97]
- RMPD    [Harrell-Davis Quantiles] [] [2015-08-16 22:28:46] [46d78fa4bef23992fc20db72a2a0da97]
- RMP         [(Partial) Autocorrelation Function] [] [2015-08-16 23:02:29] [fced41568b3cc41e6659ad201d611503] [Current]
Feedback Forum

Post a new message
Dataseries X:
193590
193745
193885
194040
194190
194345
194495
194650
194805
194955
195110
195260
195415
195570
195710
195865
196015
196170
196320
196475
196630
196780
196935
197085
197240
197395
197540
197695
197845
198000
198150
198305
198460
198610
198765
198915
199070
199225
199365
199520
199670
199825
199975
200130
200285
200435
200590
200740
200895
201050
201190
201345
201495
201650
201800
201955
202110
202260
202415
202565
202720
202875
203015
203170
203320
203475
203625
203780
203935
204085
204240
204390
204545
204700
204845
205000
205150
205305
205455
205610
205765
205915
206070
206220
206375
206530
206670
206825
206975
207130
207280
207435
207590
207740
207895
208045
208200
208355
208495
208650
208800
208955
209105
209260
209415
209565
209720
209870




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ fisher.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=280225&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ fisher.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=280225&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=280225&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.97223810.10380
20.9444899.81540
30.9167269.52690
40.8889949.23870
50.8613038.95090
60.8336778.66380
70.8060958.37720
80.7785988.09140
90.7511797.80650
100.7238497.52250
110.6965827.23910
120.6694226.95680
130.6423956.6760
140.6154946.39640
150.5886946.11790
160.562045.84090
170.5355395.56550
180.5092195.2920
190.4830565.02011e-06
200.4570924.75023e-06
210.4313214.48249e-06
220.4057534.21672.6e-05
230.3803623.95286.9e-05
240.3551933.69130.000176
250.330273.43230.000425
260.3055873.17580.000974
270.2811382.92170.00212
280.2569472.67030.004375
290.2330252.42170.008558
300.2093982.17610.015862
310.1860421.93340.027902
320.1630011.6940.046578
330.1402671.45770.073913
340.1178491.22470.111672
350.0957410.9950.160987
360.0739690.76870.221873
370.0525580.54620.293029
380.0315020.32740.372007
390.0107770.1120.455516
40-0.009574-0.09950.460463
41-0.029543-0.3070.37971
42-0.049102-0.51030.305448
43-0.068275-0.70950.239761
44-0.087019-0.90430.183916
45-0.105342-1.09470.138031
46-0.123234-1.28070.101524
47-0.140719-1.46240.073269
48-0.157754-1.63940.052017

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.972238 & 10.1038 & 0 \tabularnewline
2 & 0.944489 & 9.8154 & 0 \tabularnewline
3 & 0.916726 & 9.5269 & 0 \tabularnewline
4 & 0.888994 & 9.2387 & 0 \tabularnewline
5 & 0.861303 & 8.9509 & 0 \tabularnewline
6 & 0.833677 & 8.6638 & 0 \tabularnewline
7 & 0.806095 & 8.3772 & 0 \tabularnewline
8 & 0.778598 & 8.0914 & 0 \tabularnewline
9 & 0.751179 & 7.8065 & 0 \tabularnewline
10 & 0.723849 & 7.5225 & 0 \tabularnewline
11 & 0.696582 & 7.2391 & 0 \tabularnewline
12 & 0.669422 & 6.9568 & 0 \tabularnewline
13 & 0.642395 & 6.676 & 0 \tabularnewline
14 & 0.615494 & 6.3964 & 0 \tabularnewline
15 & 0.588694 & 6.1179 & 0 \tabularnewline
16 & 0.56204 & 5.8409 & 0 \tabularnewline
17 & 0.535539 & 5.5655 & 0 \tabularnewline
18 & 0.509219 & 5.292 & 0 \tabularnewline
19 & 0.483056 & 5.0201 & 1e-06 \tabularnewline
20 & 0.457092 & 4.7502 & 3e-06 \tabularnewline
21 & 0.431321 & 4.4824 & 9e-06 \tabularnewline
22 & 0.405753 & 4.2167 & 2.6e-05 \tabularnewline
23 & 0.380362 & 3.9528 & 6.9e-05 \tabularnewline
24 & 0.355193 & 3.6913 & 0.000176 \tabularnewline
25 & 0.33027 & 3.4323 & 0.000425 \tabularnewline
26 & 0.305587 & 3.1758 & 0.000974 \tabularnewline
27 & 0.281138 & 2.9217 & 0.00212 \tabularnewline
28 & 0.256947 & 2.6703 & 0.004375 \tabularnewline
29 & 0.233025 & 2.4217 & 0.008558 \tabularnewline
30 & 0.209398 & 2.1761 & 0.015862 \tabularnewline
31 & 0.186042 & 1.9334 & 0.027902 \tabularnewline
32 & 0.163001 & 1.694 & 0.046578 \tabularnewline
33 & 0.140267 & 1.4577 & 0.073913 \tabularnewline
34 & 0.117849 & 1.2247 & 0.111672 \tabularnewline
35 & 0.095741 & 0.995 & 0.160987 \tabularnewline
36 & 0.073969 & 0.7687 & 0.221873 \tabularnewline
37 & 0.052558 & 0.5462 & 0.293029 \tabularnewline
38 & 0.031502 & 0.3274 & 0.372007 \tabularnewline
39 & 0.010777 & 0.112 & 0.455516 \tabularnewline
40 & -0.009574 & -0.0995 & 0.460463 \tabularnewline
41 & -0.029543 & -0.307 & 0.37971 \tabularnewline
42 & -0.049102 & -0.5103 & 0.305448 \tabularnewline
43 & -0.068275 & -0.7095 & 0.239761 \tabularnewline
44 & -0.087019 & -0.9043 & 0.183916 \tabularnewline
45 & -0.105342 & -1.0947 & 0.138031 \tabularnewline
46 & -0.123234 & -1.2807 & 0.101524 \tabularnewline
47 & -0.140719 & -1.4624 & 0.073269 \tabularnewline
48 & -0.157754 & -1.6394 & 0.052017 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=280225&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.972238[/C][C]10.1038[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.944489[/C][C]9.8154[/C][C]0[/C][/ROW]
[ROW][C]3[/C][C]0.916726[/C][C]9.5269[/C][C]0[/C][/ROW]
[ROW][C]4[/C][C]0.888994[/C][C]9.2387[/C][C]0[/C][/ROW]
[ROW][C]5[/C][C]0.861303[/C][C]8.9509[/C][C]0[/C][/ROW]
[ROW][C]6[/C][C]0.833677[/C][C]8.6638[/C][C]0[/C][/ROW]
[ROW][C]7[/C][C]0.806095[/C][C]8.3772[/C][C]0[/C][/ROW]
[ROW][C]8[/C][C]0.778598[/C][C]8.0914[/C][C]0[/C][/ROW]
[ROW][C]9[/C][C]0.751179[/C][C]7.8065[/C][C]0[/C][/ROW]
[ROW][C]10[/C][C]0.723849[/C][C]7.5225[/C][C]0[/C][/ROW]
[ROW][C]11[/C][C]0.696582[/C][C]7.2391[/C][C]0[/C][/ROW]
[ROW][C]12[/C][C]0.669422[/C][C]6.9568[/C][C]0[/C][/ROW]
[ROW][C]13[/C][C]0.642395[/C][C]6.676[/C][C]0[/C][/ROW]
[ROW][C]14[/C][C]0.615494[/C][C]6.3964[/C][C]0[/C][/ROW]
[ROW][C]15[/C][C]0.588694[/C][C]6.1179[/C][C]0[/C][/ROW]
[ROW][C]16[/C][C]0.56204[/C][C]5.8409[/C][C]0[/C][/ROW]
[ROW][C]17[/C][C]0.535539[/C][C]5.5655[/C][C]0[/C][/ROW]
[ROW][C]18[/C][C]0.509219[/C][C]5.292[/C][C]0[/C][/ROW]
[ROW][C]19[/C][C]0.483056[/C][C]5.0201[/C][C]1e-06[/C][/ROW]
[ROW][C]20[/C][C]0.457092[/C][C]4.7502[/C][C]3e-06[/C][/ROW]
[ROW][C]21[/C][C]0.431321[/C][C]4.4824[/C][C]9e-06[/C][/ROW]
[ROW][C]22[/C][C]0.405753[/C][C]4.2167[/C][C]2.6e-05[/C][/ROW]
[ROW][C]23[/C][C]0.380362[/C][C]3.9528[/C][C]6.9e-05[/C][/ROW]
[ROW][C]24[/C][C]0.355193[/C][C]3.6913[/C][C]0.000176[/C][/ROW]
[ROW][C]25[/C][C]0.33027[/C][C]3.4323[/C][C]0.000425[/C][/ROW]
[ROW][C]26[/C][C]0.305587[/C][C]3.1758[/C][C]0.000974[/C][/ROW]
[ROW][C]27[/C][C]0.281138[/C][C]2.9217[/C][C]0.00212[/C][/ROW]
[ROW][C]28[/C][C]0.256947[/C][C]2.6703[/C][C]0.004375[/C][/ROW]
[ROW][C]29[/C][C]0.233025[/C][C]2.4217[/C][C]0.008558[/C][/ROW]
[ROW][C]30[/C][C]0.209398[/C][C]2.1761[/C][C]0.015862[/C][/ROW]
[ROW][C]31[/C][C]0.186042[/C][C]1.9334[/C][C]0.027902[/C][/ROW]
[ROW][C]32[/C][C]0.163001[/C][C]1.694[/C][C]0.046578[/C][/ROW]
[ROW][C]33[/C][C]0.140267[/C][C]1.4577[/C][C]0.073913[/C][/ROW]
[ROW][C]34[/C][C]0.117849[/C][C]1.2247[/C][C]0.111672[/C][/ROW]
[ROW][C]35[/C][C]0.095741[/C][C]0.995[/C][C]0.160987[/C][/ROW]
[ROW][C]36[/C][C]0.073969[/C][C]0.7687[/C][C]0.221873[/C][/ROW]
[ROW][C]37[/C][C]0.052558[/C][C]0.5462[/C][C]0.293029[/C][/ROW]
[ROW][C]38[/C][C]0.031502[/C][C]0.3274[/C][C]0.372007[/C][/ROW]
[ROW][C]39[/C][C]0.010777[/C][C]0.112[/C][C]0.455516[/C][/ROW]
[ROW][C]40[/C][C]-0.009574[/C][C]-0.0995[/C][C]0.460463[/C][/ROW]
[ROW][C]41[/C][C]-0.029543[/C][C]-0.307[/C][C]0.37971[/C][/ROW]
[ROW][C]42[/C][C]-0.049102[/C][C]-0.5103[/C][C]0.305448[/C][/ROW]
[ROW][C]43[/C][C]-0.068275[/C][C]-0.7095[/C][C]0.239761[/C][/ROW]
[ROW][C]44[/C][C]-0.087019[/C][C]-0.9043[/C][C]0.183916[/C][/ROW]
[ROW][C]45[/C][C]-0.105342[/C][C]-1.0947[/C][C]0.138031[/C][/ROW]
[ROW][C]46[/C][C]-0.123234[/C][C]-1.2807[/C][C]0.101524[/C][/ROW]
[ROW][C]47[/C][C]-0.140719[/C][C]-1.4624[/C][C]0.073269[/C][/ROW]
[ROW][C]48[/C][C]-0.157754[/C][C]-1.6394[/C][C]0.052017[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=280225&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=280225&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.97223810.10380
20.9444899.81540
30.9167269.52690
40.8889949.23870
50.8613038.95090
60.8336778.66380
70.8060958.37720
80.7785988.09140
90.7511797.80650
100.7238497.52250
110.6965827.23910
120.6694226.95680
130.6423956.6760
140.6154946.39640
150.5886946.11790
160.562045.84090
170.5355395.56550
180.5092195.2920
190.4830565.02011e-06
200.4570924.75023e-06
210.4313214.48249e-06
220.4057534.21672.6e-05
230.3803623.95286.9e-05
240.3551933.69130.000176
250.330273.43230.000425
260.3055873.17580.000974
270.2811382.92170.00212
280.2569472.67030.004375
290.2330252.42170.008558
300.2093982.17610.015862
310.1860421.93340.027902
320.1630011.6940.046578
330.1402671.45770.073913
340.1178491.22470.111672
350.0957410.9950.160987
360.0739690.76870.221873
370.0525580.54620.293029
380.0315020.32740.372007
390.0107770.1120.455516
40-0.009574-0.09950.460463
41-0.029543-0.3070.37971
42-0.049102-0.51030.305448
43-0.068275-0.70950.239761
44-0.087019-0.90430.183916
45-0.105342-1.09470.138031
46-0.123234-1.28070.101524
47-0.140719-1.46240.073269
48-0.157754-1.63940.052017







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.97223810.10380
2-0.013852-0.1440.442901
3-0.014503-0.15070.440239
4-0.013928-0.14470.44259
5-0.013948-0.1450.442508
6-0.013663-0.1420.443676
7-0.014285-0.14840.441133
8-0.013707-0.14250.443494
9-0.01402-0.14570.442215
10-0.014044-0.14590.442117
11-0.01469-0.15270.439474
12-0.014111-0.14670.441841
13-0.013837-0.14380.442965
14-0.014138-0.14690.441732
15-0.014789-0.15370.439069
16-0.014215-0.14770.441417
17-0.014232-0.14790.441349
18-0.013943-0.14490.442532
19-0.01456-0.15130.440005
20-0.013976-0.14520.442396
21-0.01428-0.14840.441152
22-0.014296-0.14860.441087
23-0.014933-0.15520.438483
24-0.014345-0.14910.440887
25-0.014052-0.1460.442084
26-0.014341-0.1490.440902
27-0.014663-0.15240.439585
28-0.014367-0.14930.440796
29-0.014362-0.14930.440817
30-0.014049-0.1460.442098
31-0.014642-0.15220.439672
32-0.014028-0.14580.44218
33-0.014302-0.14860.441062
34-0.014285-0.14850.441129
35-0.014575-0.15150.439944
36-0.014246-0.14810.441289
37-0.01391-0.14460.442666
38-0.014156-0.14710.44166
39-0.014744-0.15320.439254
40-0.014104-0.14660.441871
41-0.014045-0.1460.442111
42-0.013675-0.14210.443628
43-0.014209-0.14770.441443
44-0.01353-0.14060.44422
45-0.013734-0.14270.443385
46-0.013646-0.14180.443746
47-0.014173-0.14730.441588
48-0.013471-0.140.444464

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.972238 & 10.1038 & 0 \tabularnewline
2 & -0.013852 & -0.144 & 0.442901 \tabularnewline
3 & -0.014503 & -0.1507 & 0.440239 \tabularnewline
4 & -0.013928 & -0.1447 & 0.44259 \tabularnewline
5 & -0.013948 & -0.145 & 0.442508 \tabularnewline
6 & -0.013663 & -0.142 & 0.443676 \tabularnewline
7 & -0.014285 & -0.1484 & 0.441133 \tabularnewline
8 & -0.013707 & -0.1425 & 0.443494 \tabularnewline
9 & -0.01402 & -0.1457 & 0.442215 \tabularnewline
10 & -0.014044 & -0.1459 & 0.442117 \tabularnewline
11 & -0.01469 & -0.1527 & 0.439474 \tabularnewline
12 & -0.014111 & -0.1467 & 0.441841 \tabularnewline
13 & -0.013837 & -0.1438 & 0.442965 \tabularnewline
14 & -0.014138 & -0.1469 & 0.441732 \tabularnewline
15 & -0.014789 & -0.1537 & 0.439069 \tabularnewline
16 & -0.014215 & -0.1477 & 0.441417 \tabularnewline
17 & -0.014232 & -0.1479 & 0.441349 \tabularnewline
18 & -0.013943 & -0.1449 & 0.442532 \tabularnewline
19 & -0.01456 & -0.1513 & 0.440005 \tabularnewline
20 & -0.013976 & -0.1452 & 0.442396 \tabularnewline
21 & -0.01428 & -0.1484 & 0.441152 \tabularnewline
22 & -0.014296 & -0.1486 & 0.441087 \tabularnewline
23 & -0.014933 & -0.1552 & 0.438483 \tabularnewline
24 & -0.014345 & -0.1491 & 0.440887 \tabularnewline
25 & -0.014052 & -0.146 & 0.442084 \tabularnewline
26 & -0.014341 & -0.149 & 0.440902 \tabularnewline
27 & -0.014663 & -0.1524 & 0.439585 \tabularnewline
28 & -0.014367 & -0.1493 & 0.440796 \tabularnewline
29 & -0.014362 & -0.1493 & 0.440817 \tabularnewline
30 & -0.014049 & -0.146 & 0.442098 \tabularnewline
31 & -0.014642 & -0.1522 & 0.439672 \tabularnewline
32 & -0.014028 & -0.1458 & 0.44218 \tabularnewline
33 & -0.014302 & -0.1486 & 0.441062 \tabularnewline
34 & -0.014285 & -0.1485 & 0.441129 \tabularnewline
35 & -0.014575 & -0.1515 & 0.439944 \tabularnewline
36 & -0.014246 & -0.1481 & 0.441289 \tabularnewline
37 & -0.01391 & -0.1446 & 0.442666 \tabularnewline
38 & -0.014156 & -0.1471 & 0.44166 \tabularnewline
39 & -0.014744 & -0.1532 & 0.439254 \tabularnewline
40 & -0.014104 & -0.1466 & 0.441871 \tabularnewline
41 & -0.014045 & -0.146 & 0.442111 \tabularnewline
42 & -0.013675 & -0.1421 & 0.443628 \tabularnewline
43 & -0.014209 & -0.1477 & 0.441443 \tabularnewline
44 & -0.01353 & -0.1406 & 0.44422 \tabularnewline
45 & -0.013734 & -0.1427 & 0.443385 \tabularnewline
46 & -0.013646 & -0.1418 & 0.443746 \tabularnewline
47 & -0.014173 & -0.1473 & 0.441588 \tabularnewline
48 & -0.013471 & -0.14 & 0.444464 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=280225&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.972238[/C][C]10.1038[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]-0.013852[/C][C]-0.144[/C][C]0.442901[/C][/ROW]
[ROW][C]3[/C][C]-0.014503[/C][C]-0.1507[/C][C]0.440239[/C][/ROW]
[ROW][C]4[/C][C]-0.013928[/C][C]-0.1447[/C][C]0.44259[/C][/ROW]
[ROW][C]5[/C][C]-0.013948[/C][C]-0.145[/C][C]0.442508[/C][/ROW]
[ROW][C]6[/C][C]-0.013663[/C][C]-0.142[/C][C]0.443676[/C][/ROW]
[ROW][C]7[/C][C]-0.014285[/C][C]-0.1484[/C][C]0.441133[/C][/ROW]
[ROW][C]8[/C][C]-0.013707[/C][C]-0.1425[/C][C]0.443494[/C][/ROW]
[ROW][C]9[/C][C]-0.01402[/C][C]-0.1457[/C][C]0.442215[/C][/ROW]
[ROW][C]10[/C][C]-0.014044[/C][C]-0.1459[/C][C]0.442117[/C][/ROW]
[ROW][C]11[/C][C]-0.01469[/C][C]-0.1527[/C][C]0.439474[/C][/ROW]
[ROW][C]12[/C][C]-0.014111[/C][C]-0.1467[/C][C]0.441841[/C][/ROW]
[ROW][C]13[/C][C]-0.013837[/C][C]-0.1438[/C][C]0.442965[/C][/ROW]
[ROW][C]14[/C][C]-0.014138[/C][C]-0.1469[/C][C]0.441732[/C][/ROW]
[ROW][C]15[/C][C]-0.014789[/C][C]-0.1537[/C][C]0.439069[/C][/ROW]
[ROW][C]16[/C][C]-0.014215[/C][C]-0.1477[/C][C]0.441417[/C][/ROW]
[ROW][C]17[/C][C]-0.014232[/C][C]-0.1479[/C][C]0.441349[/C][/ROW]
[ROW][C]18[/C][C]-0.013943[/C][C]-0.1449[/C][C]0.442532[/C][/ROW]
[ROW][C]19[/C][C]-0.01456[/C][C]-0.1513[/C][C]0.440005[/C][/ROW]
[ROW][C]20[/C][C]-0.013976[/C][C]-0.1452[/C][C]0.442396[/C][/ROW]
[ROW][C]21[/C][C]-0.01428[/C][C]-0.1484[/C][C]0.441152[/C][/ROW]
[ROW][C]22[/C][C]-0.014296[/C][C]-0.1486[/C][C]0.441087[/C][/ROW]
[ROW][C]23[/C][C]-0.014933[/C][C]-0.1552[/C][C]0.438483[/C][/ROW]
[ROW][C]24[/C][C]-0.014345[/C][C]-0.1491[/C][C]0.440887[/C][/ROW]
[ROW][C]25[/C][C]-0.014052[/C][C]-0.146[/C][C]0.442084[/C][/ROW]
[ROW][C]26[/C][C]-0.014341[/C][C]-0.149[/C][C]0.440902[/C][/ROW]
[ROW][C]27[/C][C]-0.014663[/C][C]-0.1524[/C][C]0.439585[/C][/ROW]
[ROW][C]28[/C][C]-0.014367[/C][C]-0.1493[/C][C]0.440796[/C][/ROW]
[ROW][C]29[/C][C]-0.014362[/C][C]-0.1493[/C][C]0.440817[/C][/ROW]
[ROW][C]30[/C][C]-0.014049[/C][C]-0.146[/C][C]0.442098[/C][/ROW]
[ROW][C]31[/C][C]-0.014642[/C][C]-0.1522[/C][C]0.439672[/C][/ROW]
[ROW][C]32[/C][C]-0.014028[/C][C]-0.1458[/C][C]0.44218[/C][/ROW]
[ROW][C]33[/C][C]-0.014302[/C][C]-0.1486[/C][C]0.441062[/C][/ROW]
[ROW][C]34[/C][C]-0.014285[/C][C]-0.1485[/C][C]0.441129[/C][/ROW]
[ROW][C]35[/C][C]-0.014575[/C][C]-0.1515[/C][C]0.439944[/C][/ROW]
[ROW][C]36[/C][C]-0.014246[/C][C]-0.1481[/C][C]0.441289[/C][/ROW]
[ROW][C]37[/C][C]-0.01391[/C][C]-0.1446[/C][C]0.442666[/C][/ROW]
[ROW][C]38[/C][C]-0.014156[/C][C]-0.1471[/C][C]0.44166[/C][/ROW]
[ROW][C]39[/C][C]-0.014744[/C][C]-0.1532[/C][C]0.439254[/C][/ROW]
[ROW][C]40[/C][C]-0.014104[/C][C]-0.1466[/C][C]0.441871[/C][/ROW]
[ROW][C]41[/C][C]-0.014045[/C][C]-0.146[/C][C]0.442111[/C][/ROW]
[ROW][C]42[/C][C]-0.013675[/C][C]-0.1421[/C][C]0.443628[/C][/ROW]
[ROW][C]43[/C][C]-0.014209[/C][C]-0.1477[/C][C]0.441443[/C][/ROW]
[ROW][C]44[/C][C]-0.01353[/C][C]-0.1406[/C][C]0.44422[/C][/ROW]
[ROW][C]45[/C][C]-0.013734[/C][C]-0.1427[/C][C]0.443385[/C][/ROW]
[ROW][C]46[/C][C]-0.013646[/C][C]-0.1418[/C][C]0.443746[/C][/ROW]
[ROW][C]47[/C][C]-0.014173[/C][C]-0.1473[/C][C]0.441588[/C][/ROW]
[ROW][C]48[/C][C]-0.013471[/C][C]-0.14[/C][C]0.444464[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=280225&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=280225&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.97223810.10380
2-0.013852-0.1440.442901
3-0.014503-0.15070.440239
4-0.013928-0.14470.44259
5-0.013948-0.1450.442508
6-0.013663-0.1420.443676
7-0.014285-0.14840.441133
8-0.013707-0.14250.443494
9-0.01402-0.14570.442215
10-0.014044-0.14590.442117
11-0.01469-0.15270.439474
12-0.014111-0.14670.441841
13-0.013837-0.14380.442965
14-0.014138-0.14690.441732
15-0.014789-0.15370.439069
16-0.014215-0.14770.441417
17-0.014232-0.14790.441349
18-0.013943-0.14490.442532
19-0.01456-0.15130.440005
20-0.013976-0.14520.442396
21-0.01428-0.14840.441152
22-0.014296-0.14860.441087
23-0.014933-0.15520.438483
24-0.014345-0.14910.440887
25-0.014052-0.1460.442084
26-0.014341-0.1490.440902
27-0.014663-0.15240.439585
28-0.014367-0.14930.440796
29-0.014362-0.14930.440817
30-0.014049-0.1460.442098
31-0.014642-0.15220.439672
32-0.014028-0.14580.44218
33-0.014302-0.14860.441062
34-0.014285-0.14850.441129
35-0.014575-0.15150.439944
36-0.014246-0.14810.441289
37-0.01391-0.14460.442666
38-0.014156-0.14710.44166
39-0.014744-0.15320.439254
40-0.014104-0.14660.441871
41-0.014045-0.1460.442111
42-0.013675-0.14210.443628
43-0.014209-0.14770.441443
44-0.01353-0.14060.44422
45-0.013734-0.14270.443385
46-0.013646-0.14180.443746
47-0.014173-0.14730.441588
48-0.013471-0.140.444464



Parameters (Session):
par1 = 48 ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = 48 ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','ACF(k)','click here for more information about the Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','PACF(k)','click here for more information about the Partial Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')