Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_bootstrapplot.wasp
Title produced by softwareBlocked Bootstrap Plot - Central Tendency
Date of computationTue, 01 Dec 2015 13:07:37 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2015/Dec/01/t1448975328ccm9vp69jzbf295.htm/, Retrieved Thu, 31 Oct 2024 22:51:50 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=284714, Retrieved Thu, 31 Oct 2024 22:51:50 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact86
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Blocked Bootstrap Plot - Central Tendency] [opdracht 11 oefen...] [2015-12-01 13:07:37] [cd0005da8c1be4acc9acd7984e542112] [Current]
Feedback Forum

Post a new message
Dataseries X:
85.13
85.54
85.47
85.78
86.07
86.05
86.32
86.43
86.41
86.38
86.59
86.68
86.87
87.32
87.13
87.42
87.22
87.17
87.52
87.49
87.53
87.93
88.54
88.96
89.3
90.01
90.52
90.64
91.25
91.59
92.09
91.81
92.03
92.15
91.98
92.11
92.28
92.53
91.97
92.05
91.87
91.49
91.48
91.63
91.46
91.61
91.7
91.87
92.21
92.65
92.83
93.02
93.33
93.35
93.45
93.51
93.8
93.94
94.02
94.26
94.71
95.26
95.54
95.69
96.03
96.4
96.55
96.45
96.65
96.84
97.21
97.31
97.91
98.51
98.54
98.52
98.66
98.53
98.71
98.92
98.96
99.25
99.32
99.41
99.36
99.58
99.77
99.77
100.03
100.2
100.24
100.1
100.03
100.18
100.29
100.41
100.6
100.75
100.79
100.44
100.29
100.34
100.46
100.12
100.06
100.28
100.28
100.4




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 5 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=284714&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]5 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=284714&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=284714&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Estimation Results of Blocked Bootstrap
statisticP1P5Q1EstimateQ3P95P99S.D.IQR
mean90.60991.39892.91393.94894.66795.94296.5961.39611.754
median88.23790.25292.0593.495.76698.54499.2512.56763.7163
midrange92.08792.76592.91492.9693.1393.9895.6950.569690.21625
mode86.42687.5291.8798.448100.02100.29100.294.40688.155
mode k.dens86.20386.38791.778100.0699.262100.25100.344.92287.4843

\begin{tabular}{lllllllll}
\hline
Estimation Results of Blocked Bootstrap \tabularnewline
statistic & P1 & P5 & Q1 & Estimate & Q3 & P95 & P99 & S.D. & IQR \tabularnewline
mean & 90.609 & 91.398 & 92.913 & 93.948 & 94.667 & 95.942 & 96.596 & 1.3961 & 1.754 \tabularnewline
median & 88.237 & 90.252 & 92.05 & 93.4 & 95.766 & 98.544 & 99.251 & 2.5676 & 3.7163 \tabularnewline
midrange & 92.087 & 92.765 & 92.914 & 92.96 & 93.13 & 93.98 & 95.695 & 0.56969 & 0.21625 \tabularnewline
mode & 86.426 & 87.52 & 91.87 & 98.448 & 100.02 & 100.29 & 100.29 & 4.4068 & 8.155 \tabularnewline
mode k.dens & 86.203 & 86.387 & 91.778 & 100.06 & 99.262 & 100.25 & 100.34 & 4.9228 & 7.4843 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=284714&T=1

[TABLE]
[ROW][C]Estimation Results of Blocked Bootstrap[/C][/ROW]
[ROW][C]statistic[/C][C]P1[/C][C]P5[/C][C]Q1[/C][C]Estimate[/C][C]Q3[/C][C]P95[/C][C]P99[/C][C]S.D.[/C][C]IQR[/C][/ROW]
[ROW][C]mean[/C][C]90.609[/C][C]91.398[/C][C]92.913[/C][C]93.948[/C][C]94.667[/C][C]95.942[/C][C]96.596[/C][C]1.3961[/C][C]1.754[/C][/ROW]
[ROW][C]median[/C][C]88.237[/C][C]90.252[/C][C]92.05[/C][C]93.4[/C][C]95.766[/C][C]98.544[/C][C]99.251[/C][C]2.5676[/C][C]3.7163[/C][/ROW]
[ROW][C]midrange[/C][C]92.087[/C][C]92.765[/C][C]92.914[/C][C]92.96[/C][C]93.13[/C][C]93.98[/C][C]95.695[/C][C]0.56969[/C][C]0.21625[/C][/ROW]
[ROW][C]mode[/C][C]86.426[/C][C]87.52[/C][C]91.87[/C][C]98.448[/C][C]100.02[/C][C]100.29[/C][C]100.29[/C][C]4.4068[/C][C]8.155[/C][/ROW]
[ROW][C]mode k.dens[/C][C]86.203[/C][C]86.387[/C][C]91.778[/C][C]100.06[/C][C]99.262[/C][C]100.25[/C][C]100.34[/C][C]4.9228[/C][C]7.4843[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=284714&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=284714&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimation Results of Blocked Bootstrap
statisticP1P5Q1EstimateQ3P95P99S.D.IQR
mean90.60991.39892.91393.94894.66795.94296.5961.39611.754
median88.23790.25292.0593.495.76698.54499.2512.56763.7163
midrange92.08792.76592.91492.9693.1393.9895.6950.569690.21625
mode86.42687.5291.8798.448100.02100.29100.294.40688.155
mode k.dens86.20386.38791.778100.0699.262100.25100.344.92287.4843



Parameters (Session):
par1 = 200 ; par2 = 12 ; par3 = 5 ; par4 = P1 P5 Q1 Q3 P95 P99 ;
Parameters (R input):
par1 = 200 ; par2 = 12 ; par3 = 5 ; par4 = P1 P5 Q1 Q3 P95 P99 ;
R code (references can be found in the software module):
par4 <- 'P1 P5 Q1 Q3 P95 P99'
par3 <- '5'
par2 <- '12'
par1 <- '50'
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
if (par1 < 10) par1 = 10
if (par1 > 5000) par1 = 5000
if (par2 < 3) par2 = 3
if (par2 > length(x)) par2 = length(x)
library(modeest)
library(lattice)
library(boot)
boot.stat <- function(s)
{
s.mean <- mean(s)
s.median <- median(s)
s.midrange <- (max(s) + min(s)) / 2
s.mode <- mlv(s,method='mfv')$M
s.kernelmode <- mlv(s, method='kernel')$M
c(s.mean, s.median, s.midrange, s.mode, s.kernelmode)
}
(r <- tsboot(x, boot.stat, R=par1, l=12, sim='fixed'))
bitmap(file='plot1.png')
plot(r$t[,1],type='p',ylab='simulated values',main='Simulation of Mean')
grid()
dev.off()
bitmap(file='plot2.png')
plot(r$t[,2],type='p',ylab='simulated values',main='Simulation of Median')
grid()
dev.off()
bitmap(file='plot3.png')
plot(r$t[,3],type='p',ylab='simulated values',main='Simulation of Midrange')
grid()
dev.off()
bitmap(file='plot7a.png')
plot(r$t[,4],type='p',ylab='simulated values',main='Simulation of Mode')
grid()
dev.off()
bitmap(file='plot8a.png')
plot(r$t[,5],type='p',ylab='simulated values',main='Simulation of Mode of Kernel Density')
grid()
dev.off()
bitmap(file='plot4.png')
densityplot(~r$t[,1],col='black',main='Density Plot',xlab='mean')
dev.off()
bitmap(file='plot5.png')
densityplot(~r$t[,2],col='black',main='Density Plot',xlab='median')
dev.off()
bitmap(file='plot6.png')
densityplot(~r$t[,3],col='black',main='Density Plot',xlab='midrange')
dev.off()
z <- data.frame(cbind(r$t[,1],r$t[,2],r$t[,3],r$t[,4],r$t[,5]) )
colnames(z) <- list('mean','median','midrange','mode','mode.k.dens')
bitmap(file='plot7.png')
boxplot(z,notch=TRUE,ylab='simulated values',main='Bootstrap Simulation - Central Tendency')
grid()
dev.off()
if (par4 == 'P1 P5 Q1 Q3 P95 P99') {
myq.1 <- 0.01
myq.2 <- 0.05
myq.3 <- 0.95
myq.4 <- 0.99
myl.1 <- 'P1'
myl.2 <- 'P5'
myl.3 <- 'P95'
myl.4 <- 'P99'
}
if (par4 == 'P0.5 P2.5 Q1 Q3 P97.5 P99.5') {
myq.1 <- 0.005
myq.2 <- 0.025
myq.3 <- 0.975
myq.4 <- 0.995
myl.1 <- 'P0.5'
myl.2 <- 'P2.5'
myl.3 <- 'P97.5'
myl.4 <- 'P99.5'
}
if (par4 == 'P10 P20 Q1 Q3 P80 P90') {
myq.1 <- 0.10
myq.2 <- 0.20
myq.3 <- 0.80
myq.4 <- 0.90
myl.1 <- 'P10'
myl.2 <- 'P20'
myl.3 <- 'P80'
myl.4 <- 'P90'
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimation Results of Blocked Bootstrap',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'statistic',header=TRUE)
a<-table.element(a,myl.1,header=TRUE)
a<-table.element(a,myl.2,header=TRUE)
a<-table.element(a,'Q1',header=TRUE)
a<-table.element(a,'Estimate',header=TRUE)
a<-table.element(a,'Q3',header=TRUE)
a<-table.element(a,myl.3,header=TRUE)
a<-table.element(a,myl.4,header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'IQR',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mean',header=TRUE)
q1 <- quantile(r$t[,1],0.25)[[1]]
q3 <- quantile(r$t[,1],0.75)[[1]]
p01 <- quantile(r$t[,1],myq.1)[[1]]
p05 <- quantile(r$t[,1],myq.2)[[1]]
p95 <- quantile(r$t[,1],myq.3)[[1]]
p99 <- quantile(r$t[,1],myq.4)[[1]]
a<-table.element(a,signif(p01,par3))
a<-table.element(a,signif(p05,par3))
a<-table.element(a,signif(q1,par3))
a<-table.element(a,signif(r$t0[1],par3))
a<-table.element(a,signif(q3,par3))
a<-table.element(a,signif(p95,par3))
a<-table.element(a,signif(p99,par3))
a<-table.element( a,signif( sqrt(var(r$t[,1])),par3 ) )
a<-table.element(a,signif(q3-q1,par3))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'median',header=TRUE)
q1 <- quantile(r$t[,2],0.25)[[1]]
q3 <- quantile(r$t[,2],0.75)[[1]]
p01 <- quantile(r$t[,2],myq.1)[[1]]
p05 <- quantile(r$t[,2],myq.2)[[1]]
p95 <- quantile(r$t[,2],myq.3)[[1]]
p99 <- quantile(r$t[,2],myq.4)[[1]]
a<-table.element(a,signif(p01,par3))
a<-table.element(a,signif(p05,par3))
a<-table.element(a,signif(q1,par3))
a<-table.element(a,signif(r$t0[2],par3))
a<-table.element(a,signif(q3,par3))
a<-table.element(a,signif(p95,par3))
a<-table.element(a,signif(p99,par3))
a<-table.element(a,signif(sqrt(var(r$t[,2])),par3))
a<-table.element(a,signif(q3-q1,par3))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'midrange',header=TRUE)
q1 <- quantile(r$t[,3],0.25)[[1]]
q3 <- quantile(r$t[,3],0.75)[[1]]
p01 <- quantile(r$t[,3],myq.1)[[1]]
p05 <- quantile(r$t[,3],myq.2)[[1]]
p95 <- quantile(r$t[,3],myq.3)[[1]]
p99 <- quantile(r$t[,3],myq.4)[[1]]
a<-table.element(a,signif(p01,par3))
a<-table.element(a,signif(p05,par3))
a<-table.element(a,signif(q1,par3))
a<-table.element(a,signif(r$t0[3],par3))
a<-table.element(a,signif(q3,par3))
a<-table.element(a,signif(p95,par3))
a<-table.element(a,signif(p99,par3))
a<-table.element(a,signif(sqrt(var(r$t[,3])),par3))
a<-table.element(a,signif(q3-q1,par3))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mode',header=TRUE)
q1 <- quantile(r$t[,4],0.25)[[1]]
q3 <- quantile(r$t[,4],0.75)[[1]]
p01 <- quantile(r$t[,4],myq.1)[[1]]
p05 <- quantile(r$t[,4],myq.2)[[1]]
p95 <- quantile(r$t[,4],myq.3)[[1]]
p99 <- quantile(r$t[,4],myq.4)[[1]]
a<-table.element(a,signif(p01,par3))
a<-table.element(a,signif(p05,par3))
a<-table.element(a,signif(q1,par3))
a<-table.element(a,signif(r$t0[4],par3))
a<-table.element(a,signif(q3,par3))
a<-table.element(a,signif(p95,par3))
a<-table.element(a,signif(p99,par3))
a<-table.element(a,signif(sqrt(var(r$t[,4])),par3))
a<-table.element(a,signif(q3-q1,par3))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mode k.dens',header=TRUE)
q1 <- quantile(r$t[,5],0.25)[[1]]
q3 <- quantile(r$t[,5],0.75)[[1]]
p01 <- quantile(r$t[,5],myq.1)[[1]]
p05 <- quantile(r$t[,5],myq.2)[[1]]
p95 <- quantile(r$t[,5],myq.3)[[1]]
p99 <- quantile(r$t[,5],myq.4)[[1]]
a<-table.element(a,signif(p01,par3))
a<-table.element(a,signif(p05,par3))
a<-table.element(a,signif(q1,par3))
a<-table.element(a,signif(r$t0[5],par3))
a<-table.element(a,signif(q3,par3))
a<-table.element(a,signif(p95,par3))
a<-table.element(a,signif(p99,par3))
a<-table.element(a,signif(sqrt(var(r$t[,5])),par3))
a<-table.element(a,signif(q3-q1,par3))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')