Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_bootstrapplot.wasp
Title produced by softwareBlocked Bootstrap Plot - Central Tendency
Date of computationThu, 03 Dec 2015 10:37:31 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2015/Dec/03/t14491390921vlrh703j6wizks.htm/, Retrieved Thu, 31 Oct 2024 22:46:01 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=284909, Retrieved Thu, 31 Oct 2024 22:46:01 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact139
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Blocked Bootstrap Plot - Central Tendency] [] [2015-12-03 10:33:44] [0018d7578cf543a80e31e68d42751f97]
- R PD    [Blocked Bootstrap Plot - Central Tendency] [] [2015-12-03 10:37:31] [cb8108074d5ede30ed5e3c15decd01d7] [Current]
-   PD      [Blocked Bootstrap Plot - Central Tendency] [] [2015-12-20 17:44:04] [0018d7578cf543a80e31e68d42751f97]
Feedback Forum

Post a new message
Dataseries X:
143,7
149,3
121,7
81
68,1
92,3
107,7
114,4
98,6
106,7
73,9
85,9
118,4
144,2
118,4
82,6
68
99,8
93,4
107,9
101,1
100,4
76,7
89,1
105,3
124,8
111,9
89
88,6
84,5
91,1
118,1
103,6
92,6
70,2
70,2
114,3
125,3
98,9
65,4
66
71,2
84,6
102,6
91,8
97,4
64,1
62,3
96,2
104,9
90,3
65,2
57,8
70,5
93,2
74,2
91,1
85
58,9
68,3
98,1
110,5
77,6
55,1
49,8
58,5
86,5
88,8
94
65
52,2
70,9




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Sir Maurice George Kendall' @ kendall.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 5 seconds \tabularnewline
R Server & 'Sir Maurice George Kendall' @ kendall.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=284909&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]5 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Maurice George Kendall' @ kendall.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=284909&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=284909&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Sir Maurice George Kendall' @ kendall.wessa.net







Estimation Results of Blocked Bootstrap
statisticP1P5Q1EstimateQ3P95P99S.D.IQR
mean83.34484.59687.85990.27493.13995.34596.4293.45095.2795
median81.88285.49589.06290.792.23893.56595.1512.80093.175
midrange87.5588.74299.5599.55100.45101103.553.56730.9
mode70.270.273.74393.233105.29118.4118.417.41531.549
mode k.dens65.91467.90890.65293.07593.88596.81999.0999.04213.2337

\begin{tabular}{lllllllll}
\hline
Estimation Results of Blocked Bootstrap \tabularnewline
statistic & P1 & P5 & Q1 & Estimate & Q3 & P95 & P99 & S.D. & IQR \tabularnewline
mean & 83.344 & 84.596 & 87.859 & 90.274 & 93.139 & 95.345 & 96.429 & 3.4509 & 5.2795 \tabularnewline
median & 81.882 & 85.495 & 89.062 & 90.7 & 92.238 & 93.565 & 95.151 & 2.8009 & 3.175 \tabularnewline
midrange & 87.55 & 88.742 & 99.55 & 99.55 & 100.45 & 101 & 103.55 & 3.5673 & 0.9 \tabularnewline
mode & 70.2 & 70.2 & 73.743 & 93.233 & 105.29 & 118.4 & 118.4 & 17.415 & 31.549 \tabularnewline
mode k.dens & 65.914 & 67.908 & 90.652 & 93.075 & 93.885 & 96.819 & 99.099 & 9.0421 & 3.2337 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=284909&T=1

[TABLE]
[ROW][C]Estimation Results of Blocked Bootstrap[/C][/ROW]
[ROW][C]statistic[/C][C]P1[/C][C]P5[/C][C]Q1[/C][C]Estimate[/C][C]Q3[/C][C]P95[/C][C]P99[/C][C]S.D.[/C][C]IQR[/C][/ROW]
[ROW][C]mean[/C][C]83.344[/C][C]84.596[/C][C]87.859[/C][C]90.274[/C][C]93.139[/C][C]95.345[/C][C]96.429[/C][C]3.4509[/C][C]5.2795[/C][/ROW]
[ROW][C]median[/C][C]81.882[/C][C]85.495[/C][C]89.062[/C][C]90.7[/C][C]92.238[/C][C]93.565[/C][C]95.151[/C][C]2.8009[/C][C]3.175[/C][/ROW]
[ROW][C]midrange[/C][C]87.55[/C][C]88.742[/C][C]99.55[/C][C]99.55[/C][C]100.45[/C][C]101[/C][C]103.55[/C][C]3.5673[/C][C]0.9[/C][/ROW]
[ROW][C]mode[/C][C]70.2[/C][C]70.2[/C][C]73.743[/C][C]93.233[/C][C]105.29[/C][C]118.4[/C][C]118.4[/C][C]17.415[/C][C]31.549[/C][/ROW]
[ROW][C]mode k.dens[/C][C]65.914[/C][C]67.908[/C][C]90.652[/C][C]93.075[/C][C]93.885[/C][C]96.819[/C][C]99.099[/C][C]9.0421[/C][C]3.2337[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=284909&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=284909&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimation Results of Blocked Bootstrap
statisticP1P5Q1EstimateQ3P95P99S.D.IQR
mean83.34484.59687.85990.27493.13995.34596.4293.45095.2795
median81.88285.49589.06290.792.23893.56595.1512.80093.175
midrange87.5588.74299.5599.55100.45101103.553.56730.9
mode70.270.273.74393.233105.29118.4118.417.41531.549
mode k.dens65.91467.90890.65293.07593.88596.81999.0999.04213.2337



Parameters (Session):
par1 = 50 ; par2 = 12 ; par3 = 5 ; par4 = P1 P5 Q1 Q3 P95 P99 ;
Parameters (R input):
par1 = 50 ; par2 = 12 ; par3 = 5 ; par4 = P1 P5 Q1 Q3 P95 P99 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
if (par1 < 10) par1 = 10
if (par1 > 5000) par1 = 5000
if (par2 < 3) par2 = 3
if (par2 > length(x)) par2 = length(x)
library(modeest)
library(lattice)
library(boot)
boot.stat <- function(s)
{
s.mean <- mean(s)
s.median <- median(s)
s.midrange <- (max(s) + min(s)) / 2
s.mode <- mlv(s,method='mfv')$M
s.kernelmode <- mlv(s, method='kernel')$M
c(s.mean, s.median, s.midrange, s.mode, s.kernelmode)
}
(r <- tsboot(x, boot.stat, R=par1, l=12, sim='fixed'))
bitmap(file='plot1.png')
plot(r$t[,1],type='p',ylab='simulated values',main='Simulation of Mean')
grid()
dev.off()
bitmap(file='plot2.png')
plot(r$t[,2],type='p',ylab='simulated values',main='Simulation of Median')
grid()
dev.off()
bitmap(file='plot3.png')
plot(r$t[,3],type='p',ylab='simulated values',main='Simulation of Midrange')
grid()
dev.off()
bitmap(file='plot7a.png')
plot(r$t[,4],type='p',ylab='simulated values',main='Simulation of Mode')
grid()
dev.off()
bitmap(file='plot8a.png')
plot(r$t[,5],type='p',ylab='simulated values',main='Simulation of Mode of Kernel Density')
grid()
dev.off()
bitmap(file='plot4.png')
densityplot(~r$t[,1],col='black',main='Density Plot',xlab='mean')
dev.off()
bitmap(file='plot5.png')
densityplot(~r$t[,2],col='black',main='Density Plot',xlab='median')
dev.off()
bitmap(file='plot6.png')
densityplot(~r$t[,3],col='black',main='Density Plot',xlab='midrange')
dev.off()
z <- data.frame(cbind(r$t[,1],r$t[,2],r$t[,3],r$t[,4],r$t[,5]) )
colnames(z) <- list('mean','median','midrange','mode','mode.k.dens')
bitmap(file='plot7.png')
boxplot(z,notch=TRUE,ylab='simulated values',main='Bootstrap Simulation - Central Tendency')
grid()
dev.off()
if (par4 == 'P1 P5 Q1 Q3 P95 P99') {
myq.1 <- 0.01
myq.2 <- 0.05
myq.3 <- 0.95
myq.4 <- 0.99
myl.1 <- 'P1'
myl.2 <- 'P5'
myl.3 <- 'P95'
myl.4 <- 'P99'
}
if (par4 == 'P0.5 P2.5 Q1 Q3 P97.5 P99.5') {
myq.1 <- 0.005
myq.2 <- 0.025
myq.3 <- 0.975
myq.4 <- 0.995
myl.1 <- 'P0.5'
myl.2 <- 'P2.5'
myl.3 <- 'P97.5'
myl.4 <- 'P99.5'
}
if (par4 == 'P10 P20 Q1 Q3 P80 P90') {
myq.1 <- 0.10
myq.2 <- 0.20
myq.3 <- 0.80
myq.4 <- 0.90
myl.1 <- 'P10'
myl.2 <- 'P20'
myl.3 <- 'P80'
myl.4 <- 'P90'
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimation Results of Blocked Bootstrap',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'statistic',header=TRUE)
a<-table.element(a,myl.1,header=TRUE)
a<-table.element(a,myl.2,header=TRUE)
a<-table.element(a,'Q1',header=TRUE)
a<-table.element(a,'Estimate',header=TRUE)
a<-table.element(a,'Q3',header=TRUE)
a<-table.element(a,myl.3,header=TRUE)
a<-table.element(a,myl.4,header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'IQR',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mean',header=TRUE)
q1 <- quantile(r$t[,1],0.25)[[1]]
q3 <- quantile(r$t[,1],0.75)[[1]]
p01 <- quantile(r$t[,1],myq.1)[[1]]
p05 <- quantile(r$t[,1],myq.2)[[1]]
p95 <- quantile(r$t[,1],myq.3)[[1]]
p99 <- quantile(r$t[,1],myq.4)[[1]]
a<-table.element(a,signif(p01,par3))
a<-table.element(a,signif(p05,par3))
a<-table.element(a,signif(q1,par3))
a<-table.element(a,signif(r$t0[1],par3))
a<-table.element(a,signif(q3,par3))
a<-table.element(a,signif(p95,par3))
a<-table.element(a,signif(p99,par3))
a<-table.element( a,signif( sqrt(var(r$t[,1])),par3 ) )
a<-table.element(a,signif(q3-q1,par3))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'median',header=TRUE)
q1 <- quantile(r$t[,2],0.25)[[1]]
q3 <- quantile(r$t[,2],0.75)[[1]]
p01 <- quantile(r$t[,2],myq.1)[[1]]
p05 <- quantile(r$t[,2],myq.2)[[1]]
p95 <- quantile(r$t[,2],myq.3)[[1]]
p99 <- quantile(r$t[,2],myq.4)[[1]]
a<-table.element(a,signif(p01,par3))
a<-table.element(a,signif(p05,par3))
a<-table.element(a,signif(q1,par3))
a<-table.element(a,signif(r$t0[2],par3))
a<-table.element(a,signif(q3,par3))
a<-table.element(a,signif(p95,par3))
a<-table.element(a,signif(p99,par3))
a<-table.element(a,signif(sqrt(var(r$t[,2])),par3))
a<-table.element(a,signif(q3-q1,par3))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'midrange',header=TRUE)
q1 <- quantile(r$t[,3],0.25)[[1]]
q3 <- quantile(r$t[,3],0.75)[[1]]
p01 <- quantile(r$t[,3],myq.1)[[1]]
p05 <- quantile(r$t[,3],myq.2)[[1]]
p95 <- quantile(r$t[,3],myq.3)[[1]]
p99 <- quantile(r$t[,3],myq.4)[[1]]
a<-table.element(a,signif(p01,par3))
a<-table.element(a,signif(p05,par3))
a<-table.element(a,signif(q1,par3))
a<-table.element(a,signif(r$t0[3],par3))
a<-table.element(a,signif(q3,par3))
a<-table.element(a,signif(p95,par3))
a<-table.element(a,signif(p99,par3))
a<-table.element(a,signif(sqrt(var(r$t[,3])),par3))
a<-table.element(a,signif(q3-q1,par3))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mode',header=TRUE)
q1 <- quantile(r$t[,4],0.25)[[1]]
q3 <- quantile(r$t[,4],0.75)[[1]]
p01 <- quantile(r$t[,4],myq.1)[[1]]
p05 <- quantile(r$t[,4],myq.2)[[1]]
p95 <- quantile(r$t[,4],myq.3)[[1]]
p99 <- quantile(r$t[,4],myq.4)[[1]]
a<-table.element(a,signif(p01,par3))
a<-table.element(a,signif(p05,par3))
a<-table.element(a,signif(q1,par3))
a<-table.element(a,signif(r$t0[4],par3))
a<-table.element(a,signif(q3,par3))
a<-table.element(a,signif(p95,par3))
a<-table.element(a,signif(p99,par3))
a<-table.element(a,signif(sqrt(var(r$t[,4])),par3))
a<-table.element(a,signif(q3-q1,par3))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mode k.dens',header=TRUE)
q1 <- quantile(r$t[,5],0.25)[[1]]
q3 <- quantile(r$t[,5],0.75)[[1]]
p01 <- quantile(r$t[,5],myq.1)[[1]]
p05 <- quantile(r$t[,5],myq.2)[[1]]
p95 <- quantile(r$t[,5],myq.3)[[1]]
p99 <- quantile(r$t[,5],myq.4)[[1]]
a<-table.element(a,signif(p01,par3))
a<-table.element(a,signif(p05,par3))
a<-table.element(a,signif(q1,par3))
a<-table.element(a,signif(r$t0[5],par3))
a<-table.element(a,signif(q3,par3))
a<-table.element(a,signif(p95,par3))
a<-table.element(a,signif(p99,par3))
a<-table.element(a,signif(sqrt(var(r$t[,5])),par3))
a<-table.element(a,signif(q3-q1,par3))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')