Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_correlation.wasp
Title produced by softwarePearson Correlation
Date of computationFri, 04 Dec 2015 10:29:23 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2015/Dec/04/t144922498557ohi15utrdh57u.htm/, Retrieved Fri, 01 Nov 2024 00:06:31 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=285053, Retrieved Fri, 01 Nov 2024 00:06:31 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact123
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Pearson Correlation] [pearson -25] [2015-12-04 10:29:23] [b273fd68f4630bf668d6e366c549a45c] [Current]
Feedback Forum

Post a new message
Dataseries X:
20.7
20.7
20.7
18
18
18
16.9
16.9
16.9
24.4
24.4
24.4
15.5
15.5
15.5
18.4
18.4
18.4
16.2
16.2
16.2
20.6
20.6
20.6
19.8
19.8
19.8
21.6
21.6
21.6
22.3
22.3
22.3
23.7
23.7
23.7
22.1
22.1
22.1
26.6
26.6
26.6
23.5
23.5
23.5
19.6
19.6
19.6
20
20
20
20.1
20.1
20.1
16
16
16
18.9
18.9
18.9
Dataseries Y:
21.6
21.6
21.6
19.4
19.4
19.4
15.9
15.9
15.9
21.8
21.8
21.8
17.6
17.6
17.6
19
19
19
16.3
16.3
16.3
22.5
22.5
22.5
23.8
23.8
23.8
24.6
24.6
24.6
22.7
22.7
22.7
25.2
25.2
25.2
26.4
26.4
26.4
26
26
26
23.2
23.2
23.2
22.7
22.7
22.7
24
24
24
20.7
20.7
20.7
23.8
23.8
23.8
27.1
27.1
27.1




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ fisher.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=285053&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ fisher.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=285053&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=285053&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Sir Ronald Aylmer Fisher' @ fisher.wessa.net







Pearson Product Moment Correlation - Ungrouped Data
StatisticVariable XVariable Y
Mean20.24522.215
Biased Variance8.4524759.865275
Biased Standard Deviation2.907314052523393.14090353242502
Covariance5.71151694915254
Correlation0.615043291337623
Determination0.378278250219416
T-Test5.94048156130503
p-value (2 sided)1.70819242306663e-07
p-value (1 sided)8.54096211533317e-08
95% CI of Correlation[0.427954201410717, 0.751588843129527]
Degrees of Freedom58
Number of Observations60

\begin{tabular}{lllllllll}
\hline
Pearson Product Moment Correlation - Ungrouped Data \tabularnewline
Statistic & Variable X & Variable Y \tabularnewline
Mean & 20.245 & 22.215 \tabularnewline
Biased Variance & 8.452475 & 9.865275 \tabularnewline
Biased Standard Deviation & 2.90731405252339 & 3.14090353242502 \tabularnewline
Covariance & 5.71151694915254 \tabularnewline
Correlation & 0.615043291337623 \tabularnewline
Determination & 0.378278250219416 \tabularnewline
T-Test & 5.94048156130503 \tabularnewline
p-value (2 sided) & 1.70819242306663e-07 \tabularnewline
p-value (1 sided) & 8.54096211533317e-08 \tabularnewline
95% CI of Correlation & [0.427954201410717, 0.751588843129527] \tabularnewline
Degrees of Freedom & 58 \tabularnewline
Number of Observations & 60 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=285053&T=1

[TABLE]
[ROW][C]Pearson Product Moment Correlation - Ungrouped Data[/C][/ROW]
[ROW][C]Statistic[/C][C]Variable X[/C][C]Variable Y[/C][/ROW]
[ROW][C]Mean[/C][C]20.245[/C][C]22.215[/C][/ROW]
[ROW][C]Biased Variance[/C][C]8.452475[/C][C]9.865275[/C][/ROW]
[ROW][C]Biased Standard Deviation[/C][C]2.90731405252339[/C][C]3.14090353242502[/C][/ROW]
[ROW][C]Covariance[/C][C]5.71151694915254[/C][/ROW]
[ROW][C]Correlation[/C][C]0.615043291337623[/C][/ROW]
[ROW][C]Determination[/C][C]0.378278250219416[/C][/ROW]
[ROW][C]T-Test[/C][C]5.94048156130503[/C][/ROW]
[ROW][C]p-value (2 sided)[/C][C]1.70819242306663e-07[/C][/ROW]
[ROW][C]p-value (1 sided)[/C][C]8.54096211533317e-08[/C][/ROW]
[ROW][C]95% CI of Correlation[/C][C][0.427954201410717, 0.751588843129527][/C][/ROW]
[ROW][C]Degrees of Freedom[/C][C]58[/C][/ROW]
[ROW][C]Number of Observations[/C][C]60[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=285053&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=285053&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Pearson Product Moment Correlation - Ungrouped Data
StatisticVariable XVariable Y
Mean20.24522.215
Biased Variance8.4524759.865275
Biased Standard Deviation2.907314052523393.14090353242502
Covariance5.71151694915254
Correlation0.615043291337623
Determination0.378278250219416
T-Test5.94048156130503
p-value (2 sided)1.70819242306663e-07
p-value (1 sided)8.54096211533317e-08
95% CI of Correlation[0.427954201410717, 0.751588843129527]
Degrees of Freedom58
Number of Observations60







Normality Tests
> jarque.x
	Jarque-Bera Normality Test
data:  x
JB = 1.3352, p-value = 0.5129
alternative hypothesis: greater
> jarque.y
	Jarque-Bera Normality Test
data:  y
JB = 3.5388, p-value = 0.1704
alternative hypothesis: greater
> ad.x
	Anderson-Darling normality test
data:  x
A = 0.476, p-value = 0.2307
> ad.y
	Anderson-Darling normality test
data:  y
A = 1.0717, p-value = 0.007574

\begin{tabular}{lllllllll}
\hline
Normality Tests \tabularnewline
> jarque.x
	Jarque-Bera Normality Test
data:  x
JB = 1.3352, p-value = 0.5129
alternative hypothesis: greater
\tabularnewline
> jarque.y
	Jarque-Bera Normality Test
data:  y
JB = 3.5388, p-value = 0.1704
alternative hypothesis: greater
\tabularnewline
> ad.x
	Anderson-Darling normality test
data:  x
A = 0.476, p-value = 0.2307
\tabularnewline
> ad.y
	Anderson-Darling normality test
data:  y
A = 1.0717, p-value = 0.007574
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=285053&T=2

[TABLE]
[ROW][C]Normality Tests[/C][/ROW]
[ROW][C]
> jarque.x
	Jarque-Bera Normality Test
data:  x
JB = 1.3352, p-value = 0.5129
alternative hypothesis: greater
[/C][/ROW] [ROW][C]
> jarque.y
	Jarque-Bera Normality Test
data:  y
JB = 3.5388, p-value = 0.1704
alternative hypothesis: greater
[/C][/ROW] [ROW][C]
> ad.x
	Anderson-Darling normality test
data:  x
A = 0.476, p-value = 0.2307
[/C][/ROW] [ROW][C]
> ad.y
	Anderson-Darling normality test
data:  y
A = 1.0717, p-value = 0.007574
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=285053&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=285053&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Normality Tests
> jarque.x
	Jarque-Bera Normality Test
data:  x
JB = 1.3352, p-value = 0.5129
alternative hypothesis: greater
> jarque.y
	Jarque-Bera Normality Test
data:  y
JB = 3.5388, p-value = 0.1704
alternative hypothesis: greater
> ad.x
	Anderson-Darling normality test
data:  x
A = 0.476, p-value = 0.2307
> ad.y
	Anderson-Darling normality test
data:  y
A = 1.0717, p-value = 0.007574



Parameters (Session):
Parameters (R input):
R code (references can be found in the software module):
library(psychometric)
x <- x[!is.na(y)]
y <- y[!is.na(y)]
y <- y[!is.na(x)]
x <- x[!is.na(x)]
bitmap(file='test1.png')
histx <- hist(x, plot=FALSE)
histy <- hist(y, plot=FALSE)
maxcounts <- max(c(histx$counts, histx$counts))
xrange <- c(min(x),max(x))
yrange <- c(min(y),max(y))
nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE)
par(mar=c(4,4,1,1))
plot(x, y, xlim=xrange, ylim=yrange, xlab=xlab, ylab=ylab, sub=main)
par(mar=c(0,4,1,1))
barplot(histx$counts, axes=FALSE, ylim=c(0, maxcounts), space=0)
par(mar=c(4,0,1,1))
barplot(histy$counts, axes=FALSE, xlim=c(0, maxcounts), space=0, horiz=TRUE)
dev.off()
lx = length(x)
makebiased = (lx-1)/lx
varx = var(x)*makebiased
vary = var(y)*makebiased
corxy <- cor.test(x,y,method='pearson', na.rm = T)
cxy <- as.matrix(corxy$estimate)[1,1]
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Pearson Product Moment Correlation - Ungrouped Data',3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Statistic',1,TRUE)
a<-table.element(a,'Variable X',1,TRUE)
a<-table.element(a,'Variable Y',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('arithmetic_mean.htm','Mean',''),header=TRUE)
a<-table.element(a,mean(x))
a<-table.element(a,mean(y))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('biased.htm','Biased Variance',''),header=TRUE)
a<-table.element(a,varx)
a<-table.element(a,vary)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('biased1.htm','Biased Standard Deviation',''),header=TRUE)
a<-table.element(a,sqrt(varx))
a<-table.element(a,sqrt(vary))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('covariance.htm','Covariance',''),header=TRUE)
a<-table.element(a,cov(x,y),2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('pearson_correlation.htm','Correlation',''),header=TRUE)
a<-table.element(a,cxy,2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('coeff_of_determination.htm','Determination',''),header=TRUE)
a<-table.element(a,cxy*cxy,2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('ttest_statistic.htm','T-Test',''),header=TRUE)
a<-table.element(a,as.matrix(corxy$statistic)[1,1],2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value (2 sided)',header=TRUE)
a<-table.element(a,(p2 <- as.matrix(corxy$p.value)[1,1]),2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value (1 sided)',header=TRUE)
a<-table.element(a,p2/2,2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'95% CI of Correlation',header=TRUE)
a<-table.element(a,paste('[',CIr(r=cxy, n = lx, level = .95)[1],', ', CIr(r=cxy, n = lx, level = .95)[2],']',sep=''),2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Degrees of Freedom',header=TRUE)
a<-table.element(a,lx-2,2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of Observations',header=TRUE)
a<-table.element(a,lx,2)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
library(moments)
library(nortest)
jarque.x <- jarque.test(x)
jarque.y <- jarque.test(y)
if(lx>7) {
ad.x <- ad.test(x)
ad.y <- ad.test(y)
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Normality Tests',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,paste('
',RC.texteval('jarque.x'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,paste('
',RC.texteval('jarque.y'),'
',sep=''))
a<-table.row.end(a)
if(lx>7) {
a<-table.row.start(a)
a<-table.element(a,paste('
',RC.texteval('ad.x'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,paste('
',RC.texteval('ad.y'),'
',sep=''))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
library(car)
bitmap(file='test2.png')
qq.plot(x,main='QQplot of variable x')
dev.off()
bitmap(file='test3.png')
qq.plot(y,main='QQplot of variable y')
dev.off()